Tuning a wave-energy-driven OWC seawater pump to polychromatic waves

polychromatic_signalsOn the tuning of a wave-energy driven oscillating-water-column seawater pump to polychromatic waves
R. Godoy-Diana & S. P. R. Czitrom.
Ocean Engineering, 34 : 2374-2384 (2007).

Abstract: Performance of wave-energy devices of the oscillating water column (OWC) type is greatly enhanced when a resonant condition with the forcing waves is maintained. The natural frequency of such systems can in general be tuned to resonate with a given wave forcing frequency. In this paper we address the tuning of an OWC sea-water pump to polychromatic waves. We report results of wave tank experiments, which were conducted with a scale model of the pump. Continue reading “Tuning a wave-energy-driven OWC seawater pump to polychromatic waves”

Internal gravity waves in a dipolar wind

Internal gravity waves in a dipolar wind: a wave–vortex interaction experiment in a stratified fluid
R. Godoy-Diana; J. M. Chomaz & C. Donnadieu.
Journal of Fluid Mechanics, 548 : 281-308 (2006).

 

Abstract: An experimental study on the interaction of the internal wave field generated by oscillating cylinders in a stratified fluid with a pancake dipole is presented. The experiments are carried out in a salt-stratified water tank with constant Brunt–Väisälä frequency ($N$). Experimental observations of the deformation of the wave beams owing to the interaction with the dipole are presented. Continue reading “Internal gravity waves in a dipolar wind”

Vertical length scale selection for pancake vortices in strongly stratified viscous fluids

conical_diffuser

Vertical length scale selection for pancake vortices in strongly stratified viscous fluids
R. Godoy-Diana; J. M. Chomaz & P. Billant.
Journal of Fluid Mechanics, 504 : 229-238 (2004).

Abstract: The evolution of pancake dipoles of different aspect ratio is studied in a stratified tank experiment. Two cases are reported here for values of the dipole initial aspect ratio $\alpha_0 = L_v/L_h$ (where $L_v$ and $L_h$ are vertical and horizontal length scales, respectively) of $\alpha_0 = 0.4$ (case I) and $\alpha_0 = 1.2$ (case II). Continue reading “Vertical length scale selection for pancake vortices in strongly stratified viscous fluids”

The dynamics of pancake vortices in strongly stratified fluids

schmidt I did my PhD at LadHyX during 2000-2004 supervised by Jean-Marc Chomaz. My dissertation was an experimental and theoretical study of the dynamics of pancake vortices and their interaction with internal gravity waves in a strongly stratified fluid.

Abstract. Stably stratified fluids give rise to distinct internal wave modes and potential vorticity modes (PV). The timescales relevant to these two types of motion separate when the stratification is strong: Internal waves propagate on a fast timescale based on the buoyancy frequency (TN = N-1) while a slower timescale in terms of the horizontal advection —TA = Lh/U, where Lh and U are the horizontal length scale and mean velocity of the horizontal motions— characterizes the evolution of vortices. An illustration of the difference between these two modes can be observed in turbulent regions decaying in presence of background stable stratification : As vertical motions are suppressed, energy is either radiated as internal waves, which propagate away from the initially turbulent region, or transferred to horizontal advective motions which are finally organized as patches of potential vorticity. This thesis presents a theoretical and experimental study of the interaction between pancake vortices (representing the PV mode) and internal gravity waves in a strongly stratified fluid, and of the diffusive mechanisms of pancake vortices.

Document indexed at https://pastel.archives-ouvertes.fr/tel-00007046/

Continue reading “The dynamics of pancake vortices in strongly stratified fluids”

Diffusion of pancake-like vortices in cyclostrophic balance

conical_diffuserEffect of the Schmidt number on the diffusion of axisymmetric pancake vortices in a stratified fluid
R. Godoy-Diana & J. M. Chomaz.
Physics of Fluids, 15 : 1058-1064 (2003).

Abstract: An asymptotic analysis of the equations for quasi-two-dimensional flow in stratified fluids is conducted, leading to a model for the diffusion of pancake-like vortices in cyclostrophic balance. This analysis permits one to derive formally the model for the diffusion of an axisymmetric monopole proposed by Beckers et al. [J. Fluid Mech. 433, 1 (2001)], and to extend their results. The appropriate parameter for the perturbation analysis is identified as the square of the vertical Froude number Fv=U/(Lv N), where U is the horizontal velocity scale, N is the Brunt–Väisälä frequency, and Lv the vertical length scale. Continue reading “Diffusion of pancake-like vortices in cyclostrophic balance”

Hydrodynamics of an oscillating water column seawater pump

sibeo_colorHydrodynamics of an oscillating water column seawater pump. Part I: Theoretical Aspects
S. P. R. Czitrom; R. Godoy; E. Prado; P. Pérez & R. Peralta-Fabi.
Ocean Engineering, 27 : 1181-1198 (2000).

Abstract: A wave-driven seawater pump, composed of a resonant and an exhaust duct joined by a variable-volume air compression chamber, is studied. The time dependent form of Bernoulli’s equation, adapted to incorporate losses due to friction, vortex formation at the mouths and radiation damping, describes the pump behaviour. A dimensional analysis of the pump equations shows that a proposed scale-model will perform similar to a full-scale seawater pump. Continue reading “Hydrodynamics of an oscillating water column seawater pump”

Hydrodynamics of an oscillating water column seawater pump (Part II)

sibeoHydrodynamics of an oscillating water column seawater pump. Part II: Tuning to Monochromatic Waves
S. P. R. Czitrom; R. Godoy; E. Prado; A. Olvera & C. Stern.
Ocean Engineering, 27 : 1199-1219 (2000).

Abstract: Flume experiments with a scale-model of a wave driven seawater pump in monochromatic waves are described. A tuning mechanism optimises the pump performance by keeping it at resonance with the waves. The pumping process itself was found to de-tune the system because of the reduced gravity restoring force due to spilling in the compression chamber. A perturbation analysis of the pump equations shows that performance of the system can be increased by optimising the shape of the pump intake to minimise losses due to vortex formation. Continue reading “Hydrodynamics of an oscillating water column seawater pump (Part II)”

Vortex suppresion in an oscillating flow

conical_diffuserVortex suppresion in an oscillating flow
C. Stern; S. Czitrom; E. Prado & R. Godoy.
Revista Mexicana de Fisica, 46 : 409-410 (2000).

Abstract: The motivation for this work was the reduction of losses due to vortex formation at the entrance of a wave driven seawater pump. Measurements in a wave tank using a prototype had shown a 10% ¡ncrease in the pumping efficiency when a trumpet like shape was added to the intake. This lead us to search for an inlake that would reduce or completely suppress vortex formation. In this experiment a piston produces an oscil1ating flow inside a partly submerged duct. At the end of the duct four different shapes were tested. Continue reading “Vortex suppresion in an oscillating flow”

Oscillating Flow through a Funnel

vortex_owc_exitOscillating Flow through a Funnel
C. Stern; S. Czitrom & R. Godoy.
Physics of Fluids, 11 : S3 (Gallery of Fluids) (1999).

Abstract: Our interest in vortex suppression at the entrance of a wave-driven seawater pump leads us to study vortex formation at the exit of a diffuser due to an oscillating flow. In the present experiment, a piston produces an oscillating flow inside a partly submerged duct that ends in a diffuser. The diffuser is designed such that a constant relationship between centripetal and inertial forces is maintained along the profile. The flow in the near field of the mouth is visualized by injecting diluted fluorescent water paint just outside the diffuser. Continue reading “Oscillating Flow through a Funnel”