Tag Archives: take-off

Research

Habilitation à diriger des recherches (HDR)

Bio-inspired swimming and flying – Vortex dynamics and fluid/structure interaction

Ramiro Godoy-Diana
Habilitation à diriger des recherches, Université Pierre et Marie Curie, 2014.
[hal.archives-ouvertes.fr]

PDF file here (19.4 MB)

The present document, prepared in view of obtaining the Habilitation à diriger des recherches, reviews my main research subject at PMMH since 2006, which concerns the study of swimming and flying inspired by nature. Canonical examples of flapping flight and undulatory swimming are explored using simplified experimental models as a starting point. This allows for the discussion of some fundamental questions related to the physics of bio-inspired locomotion at “intermediate” Reynolds numbers. In particular, we address the strong fluid-structure interactions that arise in these problems, where we have focused on: simplified models of flapping foils in hydrodynamic tunnel experiments, especially in the dynamics of vorticity in the wake of an oscillating foil ; mechanical models of flapping flyers with flexible wings in a self-propelled configuration (in the spirit of the pioneer experiments of Etienne-Jules Marey), as well as novel experimental models of undulatory swimming.
read more »

Publications Research

Force balance in the take-off of a pierid butterfly


montage_Pieris_rapae
Force balance in the take-off of a pierid butterfly: relative importance and timing of leg impulsion and aerodynamic forces

G. Bimbard, D. Kolomenskiy, O. Bouteleux, J. Casas & R. Godoy-Diana.
Journal of Experimental Biology, 216 : 3551-3563 (2013).

Abstract: Up to now, the take-off stage remains an elusive phase of insect flight relatively poorly explored compared to other maneuvers. An overall assessment of the different mechanisms involved in the force production during take-off has never been explored. Focusing on the first downstroke, we have addressed this problem from a force balance perspective in butterflies taking-off from the ground. read more »