Internal gravity waves in a dipolar wind

Internal gravity waves in a dipolar wind: a wave–vortex interaction experiment in a stratified fluid
R. Godoy-Diana; J. M. Chomaz & C. Donnadieu.
Journal of Fluid Mechanics, 548 : 281-308 (2006).

 

Abstract: An experimental study on the interaction of the internal wave field generated by oscillating cylinders in a stratified fluid with a pancake dipole is presented. The experiments are carried out in a salt-stratified water tank with constant Brunt–Väisälä frequency ($N$). Experimental observations of the deformation of the wave beams owing to the interaction with the dipole are presented. Continue reading “Internal gravity waves in a dipolar wind”

Vertical length scale selection for pancake vortices in strongly stratified viscous fluids

conical_diffuser

Vertical length scale selection for pancake vortices in strongly stratified viscous fluids
R. Godoy-Diana; J. M. Chomaz & P. Billant.
Journal of Fluid Mechanics, 504 : 229-238 (2004).

Abstract: The evolution of pancake dipoles of different aspect ratio is studied in a stratified tank experiment. Two cases are reported here for values of the dipole initial aspect ratio $\alpha_0 = L_v/L_h$ (where $L_v$ and $L_h$ are vertical and horizontal length scales, respectively) of $\alpha_0 = 0.4$ (case I) and $\alpha_0 = 1.2$ (case II). Continue reading “Vertical length scale selection for pancake vortices in strongly stratified viscous fluids”

The dynamics of pancake vortices in strongly stratified fluids

schmidt I did my PhD at LadHyX during 2000-2004 supervised by Jean-Marc Chomaz. My dissertation was an experimental and theoretical study of the dynamics of pancake vortices and their interaction with internal gravity waves in a strongly stratified fluid.

Abstract. Stably stratified fluids give rise to distinct internal wave modes and potential vorticity modes (PV). The timescales relevant to these two types of motion separate when the stratification is strong: Internal waves propagate on a fast timescale based on the buoyancy frequency (TN = N-1) while a slower timescale in terms of the horizontal advection —TA = Lh/U, where Lh and U are the horizontal length scale and mean velocity of the horizontal motions— characterizes the evolution of vortices. An illustration of the difference between these two modes can be observed in turbulent regions decaying in presence of background stable stratification : As vertical motions are suppressed, energy is either radiated as internal waves, which propagate away from the initially turbulent region, or transferred to horizontal advective motions which are finally organized as patches of potential vorticity. This thesis presents a theoretical and experimental study of the interaction between pancake vortices (representing the PV mode) and internal gravity waves in a strongly stratified fluid, and of the diffusive mechanisms of pancake vortices.

Document indexed at https://pastel.archives-ouvertes.fr/tel-00007046/

Continue reading “The dynamics of pancake vortices in strongly stratified fluids”

Diffusion of pancake-like vortices in cyclostrophic balance

conical_diffuserEffect of the Schmidt number on the diffusion of axisymmetric pancake vortices in a stratified fluid
R. Godoy-Diana & J. M. Chomaz.
Physics of Fluids, 15 : 1058-1064 (2003).

Abstract: An asymptotic analysis of the equations for quasi-two-dimensional flow in stratified fluids is conducted, leading to a model for the diffusion of pancake-like vortices in cyclostrophic balance. This analysis permits one to derive formally the model for the diffusion of an axisymmetric monopole proposed by Beckers et al. [J. Fluid Mech. 433, 1 (2001)], and to extend their results. The appropriate parameter for the perturbation analysis is identified as the square of the vertical Froude number Fv=U/(Lv N), where U is the horizontal velocity scale, N is the Brunt–Väisälä frequency, and Lv the vertical length scale. Continue reading “Diffusion of pancake-like vortices in cyclostrophic balance”