Tuning a wave-energy-driven OWC seawater pump to polychromatic waves

polychromatic_signalsOn the tuning of a wave-energy driven oscillating-water-column seawater pump to polychromatic waves
R. Godoy-Diana & S. P. R. Czitrom.
Ocean Engineering, 34 : 2374-2384 (2007).

Abstract: Performance of wave-energy devices of the oscillating water column (OWC) type is greatly enhanced when a resonant condition with the forcing waves is maintained. The natural frequency of such systems can in general be tuned to resonate with a given wave forcing frequency. In this paper we address the tuning of an OWC sea-water pump to polychromatic waves. We report results of wave tank experiments, which were conducted with a scale model of the pump. Continue reading “Tuning a wave-energy-driven OWC seawater pump to polychromatic waves”

Hydrodynamics of an oscillating water column seawater pump

sibeo_colorHydrodynamics of an oscillating water column seawater pump. Part I: Theoretical Aspects
S. P. R. Czitrom; R. Godoy; E. Prado; P. Pérez & R. Peralta-Fabi.
Ocean Engineering, 27 : 1181-1198 (2000).

Abstract: A wave-driven seawater pump, composed of a resonant and an exhaust duct joined by a variable-volume air compression chamber, is studied. The time dependent form of Bernoulli’s equation, adapted to incorporate losses due to friction, vortex formation at the mouths and radiation damping, describes the pump behaviour. A dimensional analysis of the pump equations shows that a proposed scale-model will perform similar to a full-scale seawater pump. Continue reading “Hydrodynamics of an oscillating water column seawater pump”

Hydrodynamics of an oscillating water column seawater pump (Part II)

sibeoHydrodynamics of an oscillating water column seawater pump. Part II: Tuning to Monochromatic Waves
S. P. R. Czitrom; R. Godoy; E. Prado; A. Olvera & C. Stern.
Ocean Engineering, 27 : 1199-1219 (2000).

Abstract: Flume experiments with a scale-model of a wave driven seawater pump in monochromatic waves are described. A tuning mechanism optimises the pump performance by keeping it at resonance with the waves. The pumping process itself was found to de-tune the system because of the reduced gravity restoring force due to spilling in the compression chamber. A perturbation analysis of the pump equations shows that performance of the system can be increased by optimising the shape of the pump intake to minimise losses due to vortex formation. Continue reading “Hydrodynamics of an oscillating water column seawater pump (Part II)”