Confinement-driven state transition and bistability in schooling fish

B. Lafoux, P. Bernard, B. Thiria, R. Godoy-Diana
Physical Review E, 110(3), 034613 (2024).
doi: 10.1103/PhysRevE.110.034613
arXiv preprint: https://arxiv.org/abs/2401.01850

In this work we have quantified how fish swimming in groups change their behavior based on how crowded they are. We found that fish switch between two main swimming patterns: moving in the same direction or circling like a whirlpool. The amount of space available influences how long the fish stick to each pattern and how often they switch. This research not only helps us understand how fish and other animals behave in groups, but also provides valuable real-world data that can help tuning computer models of group behavior. The findings highlight the importance of considering space limitations when studying how animals move together, which could lead to better understanding of complex group behaviors in nature.

Synchronisation and pattern formation in fish swimming

Tetrafish2

Simple phalanx pattern leads to energy saving in cohesive fish schooling
I. Ashraf, H. Bradshaw, T. T. Ha, J. Halloy, R. Godoy-Diana, B. Thiria
PNAS 114 (36) 9599-9604 (2017)
[doi:10.1073/pnas.1706503114]PDF file

Synchronisation and collective swimming patterns in Hemigrammus bleheri
I. Ashraf, R. Godoy-Diana, J. Halloy, B. Collignon, B. Thiria
Journal of the Royal Society Interface 13 20160734 (2016)
[doi:10.1098/rsif.2016.0734] PDF file

The question of how individuals in a population organize when living in groups arises for systems as different as a swarm of microorganisms or a flock of seagulls. The different patterns for moving collectively involve a wide spectrum of reasons, such as evading predators or optimizing food prospection. Also, the schooling pattern has often been associated with an advantage in terms of energy consumption. We use a popular aquarium fish, the red nose tetra fish, Hemigrammus bleheri, which is known to swim in highly cohesive groups, to ana- lyze the schooling dynamics. In our experiments, fish swim in a shallow-water tunnel with controlled velocity, Continue reading “Synchronisation and pattern formation in fish swimming”