Drag-induced dissipation in wave-structure interaction

In the interaction of water waves with marine structures, the interplay between wave diffraction and drag-induced dissipation is seldom, if ever, considered. In particular, linear hydrodynamic models, and extensions thereof through the addition of a quadratic force term, do not represent the change in amplitude of the waves diffracted and radiated to the far field, which should result from local energy dissipation in the vicinity of the structure. In this work, a series of wave flume experiments is carried out, whereby waves of increasing amplitude impinge upon a vertical barrier, extending partway through the flume width. As the wave amplitude increases, the effect of drag – which is known to increase quadratically with the flow velocity – is enhanced, thus allowing the examination of the far-field effect of drag-induced dissipation, in terms of wave reflection and transmission. A potential flow model is proposed, with a simple quadratic pressure drop condition through a virtual porous surface, located on the sides of the barrier (where dissipation occurs). Experimental results confirm that drag-induced dissipation has a marked effect on the diffracted flow, i.e. on wave reflection and transmission, which is appropriately captured in the proposed model. Conversely, when diffraction becomes dominant as the barrier width becomes comparable to the incoming wavelength, the diffracted flow must be accounted for in predicting drag-induced forces and dissipation.

Modelling the far-field effect of drag-induced dissipation in wave-structure interaction: A numerical and experimental study
A. Mérigaud, B. Thiria, R. Godoy-Diana, G. Perret
Journal of Fluid Mechanics, 987, A24 (2024).
doi: 10.1017/jfm.2024.298

Internal gravity waves in a dipolar wind

Internal gravity waves in a dipolar wind: a wave–vortex interaction experiment in a stratified fluid
R. Godoy-Diana; J. M. Chomaz & C. Donnadieu.
Journal of Fluid Mechanics, 548 : 281-308 (2006).

 

Abstract: An experimental study on the interaction of the internal wave field generated by oscillating cylinders in a stratified fluid with a pancake dipole is presented. The experiments are carried out in a salt-stratified water tank with constant Brunt–Väisälä frequency ($N$). Experimental observations of the deformation of the wave beams owing to the interaction with the dipole are presented. Continue reading “Internal gravity waves in a dipolar wind”

The dynamics of pancake vortices in strongly stratified fluids

schmidt I did my PhD at LadHyX during 2000-2004 supervised by Jean-Marc Chomaz. My dissertation was an experimental and theoretical study of the dynamics of pancake vortices and their interaction with internal gravity waves in a strongly stratified fluid.

Abstract. Stably stratified fluids give rise to distinct internal wave modes and potential vorticity modes (PV). The timescales relevant to these two types of motion separate when the stratification is strong: Internal waves propagate on a fast timescale based on the buoyancy frequency (TN = N-1) while a slower timescale in terms of the horizontal advection —TA = Lh/U, where Lh and U are the horizontal length scale and mean velocity of the horizontal motions— characterizes the evolution of vortices. An illustration of the difference between these two modes can be observed in turbulent regions decaying in presence of background stable stratification : As vertical motions are suppressed, energy is either radiated as internal waves, which propagate away from the initially turbulent region, or transferred to horizontal advective motions which are finally organized as patches of potential vorticity. This thesis presents a theoretical and experimental study of the interaction between pancake vortices (representing the PV mode) and internal gravity waves in a strongly stratified fluid, and of the diffusive mechanisms of pancake vortices.

Document indexed at https://pastel.archives-ouvertes.fr/tel-00007046/

Continue reading “The dynamics of pancake vortices in strongly stratified fluids”