
Demené Charlie
Associate professor at ESPCI Paris
charlie.demene@espci.fr
See ResearchGate profile >
Education
- 2015 – PhD in Physics, Université Paris Diderot, France
“Vascular and functional brain mapping via Ultrafast Doppler imaging: applications to preclinical and neonate cerebral imaging” - 2010 – Master of Science in Signal, Image and Shape recognition, Telecom ParisTech, France
- 2010 – Engineering degree at ESPCI Paris (Ecole Supérieure de Physique et de Chimie Industrielles), France
Professional experience
- since 2017 – Associate professor in Acoustics at ESPCI Paris, France
- 2016-2017 – Postdoctoral researcher at University Hospital Geneva, Switzerland/Institut Langevin Ondes et Images, France
- 2010-2011 – R&D engineer at Echosens, Paris, France
Main awards and distinctions
- Prize of the Chancellerie des Universités de Paris in 2016
- Best Student Paper Award of the IEEE International Ultrasonics Symposium in 2014, Chicago, USA
- Best Student Award at the 18th Meeting of the European Society of Neurosonology and Cerebral Hemodynamics in 2013, Porto, Portugal
Research topics
- ultrasensitive Doppler imaging
- functional ultrasound imaging
- ultrafast ultrasound imaging of the brain
Main publications
4989618
{151195:DDK87VN9},{151195:ZV3HIJJG},{151195:8DUQ6XLR},{151195:DAF98N4Y},{151195:KHBKEC48}
1
national-institute-of-health-research
50
date
desc
7237
https://blog.espci.fr/physmed/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22DDK87VN9%22%2C%22library%22%3A%7B%22id%22%3A151195%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Renaudin%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E1%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3ERenaudin%20N%2C%20Demen%26%23xE9%3B%20C%2C%20Dizeux%20A%2C%20Ialy-Radio%20N%2C%20Pezet%20S%2C%20Tanter%20M.%20Functional%20ultrasound%20localization%20microscopy%20reveals%20brain-wide%20neurovascular%20activity%20on%20a%20microscopic%20scale.%20%3Ci%3ENat%20Methods%3C%5C%2Fi%3E%202022%3B%3Cb%3E19%3C%5C%2Fb%3E%3A1004%26%23x2013%3B12.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41592-022-01549-5%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41592-022-01549-5%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Functional%20ultrasound%20localization%20microscopy%20reveals%20brain-wide%20neurovascular%20activity%20on%20a%20microscopic%20scale%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22No%5Cu00e9mi%22%2C%22lastName%22%3A%22Renaudin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charlie%22%2C%22lastName%22%3A%22Demen%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexandre%22%2C%22lastName%22%3A%22Dizeux%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nathalie%22%2C%22lastName%22%3A%22Ialy-Radio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sophie%22%2C%22lastName%22%3A%22Pezet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mickael%22%2C%22lastName%22%3A%22Tanter%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20advent%20of%20neuroimaging%20has%20increased%20our%20understanding%20of%20brain%20function.%20While%20most%20brain-wide%20functional%20imaging%20modalities%20exploit%20neurovascular%20coupling%20to%20map%20brain%20activity%20at%20millimeter%20resolutions%2C%20the%20recording%20of%20functional%20responses%20at%20microscopic%20scale%20in%20mammals%20remains%20the%20privilege%20of%20invasive%20electrophysiological%20or%20optical%20approaches%2C%20but%20is%20mostly%20restricted%20to%20either%20the%20cortical%20surface%20or%20the%20vicinity%20of%20implanted%20sensors.%20Ultrasound%20localization%20microscopy%20%28ULM%29%20has%20achieved%20transcranial%20imaging%20of%20cerebrovascular%20flow%2C%20up%20to%20micrometre%20scales%2C%20by%20localizing%20intravenously%20injected%20microbubbles%3B%20however%2C%20the%20long%20acquisition%20time%20required%20to%20detect%20microbubbles%20within%20microscopic%20vessels%20has%20so%20far%20restricted%20ULM%20application%20mainly%20to%20microvasculature%20structural%20imaging.%20Here%20we%20show%20how%20ULM%20can%20be%20modified%20to%20quantify%20functional%20hyperemia%20dynamically%20during%20brain%20activation%20reaching%20a%206.5-%5Cu00b5m%20spatial%20and%201-s%20temporal%20resolution%20in%20deep%20regions%20of%20the%20rat%20brain.%22%2C%22date%22%3A%2208%5C%2F2022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41592-022-01549-5%22%2C%22ISSN%22%3A%221548-7091%2C%201548-7105%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41592-022-01549-5%22%2C%22collections%22%3A%5B%22GSDRE8AN%22%5D%2C%22dateModified%22%3A%222022-08-11T08%3A05%3A34Z%22%7D%7D%2C%7B%22key%22%3A%22DAF98N4Y%22%2C%22library%22%3A%7B%22id%22%3A151195%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Baranger%20et%20al.%22%2C%22parsedDate%22%3A%222021-02-17%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E1%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EBaranger%20J%2C%20Demen%26%23xE9%3B%20C%2C%20Frerot%20A%2C%20Faure%20F%2C%20Delano%26%23xEB%3B%20C%2C%20Serroune%20H%2C%20%3Ci%3Eet%20al.%3C%5C%2Fi%3E%20Bedside%20functional%20monitoring%20of%20the%20dynamic%20brain%20connectivity%20in%20human%20neonates.%20%3Ci%3ENature%20Communications%3C%5C%2Fi%3E%202021%3B%3Cb%3E12%3C%5C%2Fb%3E%3A1080.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-021-21387-x%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-021-21387-x%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Bedside%20functional%20monitoring%20of%20the%20dynamic%20brain%20connectivity%20in%20human%20neonates%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jerome%22%2C%22lastName%22%3A%22Baranger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charlie%22%2C%22lastName%22%3A%22Demen%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alice%22%2C%22lastName%22%3A%22Frerot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Flora%22%2C%22lastName%22%3A%22Faure%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Catherine%22%2C%22lastName%22%3A%22Delano%5Cu00eb%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hicham%22%2C%22lastName%22%3A%22Serroune%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexandre%22%2C%22lastName%22%3A%22Houdouin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jerome%22%2C%22lastName%22%3A%22Mairesse%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valerie%22%2C%22lastName%22%3A%22Biran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Olivier%22%2C%22lastName%22%3A%22Baud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mickael%22%2C%22lastName%22%3A%22Tanter%22%7D%5D%2C%22abstractNote%22%3A%22Clinicians%20have%20long%20been%20interested%20in%20functional%20brain%20monitoring%2C%20as%20reversible%20functional%20losses%20often%20precedes%20observable%20irreversible%20structural%20insults.%20By%20characterizing%20neonatal%20functional%20cerebral%20networks%2C%20resting-state%20functional%20connectivity%20is%20envisioned%20to%20provide%20early%20markers%20of%20cognitive%20impairments.%20Here%20we%20present%20a%20pioneering%20bedside%20deep%20brain%20resting-state%20functional%20connectivity%20imaging%20at%20250-%5Cu03bcm%20resolution%20on%20human%20neonates%20using%20functional%20ultrasound.%20Signal%20correlations%20between%20cerebral%20regions%20unveil%20interhemispheric%20connectivity%20in%20very%20preterm%20newborns.%20Furthermore%2C%20fine-grain%20correlations%20between%20homologous%20pixels%20are%20consistent%20with%20white%5C%2Fgrey%20matter%20organization.%20Finally%2C%20dynamic%20resting-state%20connectivity%20reveals%20a%20significant%20occurrence%20decrease%20of%20thalamo-cortical%20networks%20for%20very%20preterm%20neonates%20as%20compared%20to%20control%20term%20newborns.%20The%20same%20method%20also%20shows%20abnormal%20patterns%20in%20a%20congenital%20seizure%20disorder%20case%20compared%20with%20the%20control%20group.%20These%20results%20pave%20the%20way%20to%20infants%5Cu2019%20brain%20continuous%20monitoring%20and%20may%20enable%20the%20identification%20of%20abnormal%20brain%20development%20at%20the%20bedside.%22%2C%22date%22%3A%222021-02-17%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41467-021-21387-x%22%2C%22ISSN%22%3A%222041-1723%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41467-021-21387-x%22%2C%22collections%22%3A%5B%22GSDRE8AN%22%5D%2C%22dateModified%22%3A%222022-02-02T14%3A00%3A35Z%22%7D%7D%2C%7B%22key%22%3A%22ZV3HIJJG%22%2C%22library%22%3A%7B%22id%22%3A151195%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Demen%5Cu00e9%20et%20al.%22%2C%22parsedDate%22%3A%222021%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E1%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EDemen%26%23xE9%3B%20C%2C%20Robin%20J%2C%20Dizeux%20A%2C%20Heiles%20B%2C%20Pernot%20M%2C%20Tanter%20M%2C%20%3Ci%3Eet%20al.%3C%5C%2Fi%3E%20Transcranial%20ultrafast%20ultrasound%20localization%20microscopy%20of%20brain%20vasculature%20in%20patients.%20%3Ci%3ENat%20Biomed%20Eng%3C%5C%2Fi%3E%202021%3B%3Cb%3E5%3C%5C%2Fb%3E%3A219%26%23x2013%3B28.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41551-021-00697-x%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41551-021-00697-x%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Transcranial%20ultrafast%20ultrasound%20localization%20microscopy%20of%20brain%20vasculature%20in%20patients%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charlie%22%2C%22lastName%22%3A%22Demen%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Justine%22%2C%22lastName%22%3A%22Robin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexandre%22%2C%22lastName%22%3A%22Dizeux%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Baptiste%22%2C%22lastName%22%3A%22Heiles%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mathieu%22%2C%22lastName%22%3A%22Pernot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mickael%22%2C%22lastName%22%3A%22Tanter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fabienne%22%2C%22lastName%22%3A%22Perren%22%7D%5D%2C%22abstractNote%22%3A%22Changes%20in%20cerebral%20blood%20flow%20are%20associated%20with%20stroke%2C%20aneurysms%2C%20vascular%20cognitive%20impairment%2C%20neurodegenerative%20diseases%20and%20other%20pathologies.%20Brain%20angiograms%2C%20typically%20performed%20via%20computed%20tomography%20or%20magnetic%20resonance%20imaging%2C%20are%20limited%20to%20millimetrescale%20resolution%20and%20are%20insensitive%20to%20blood-flow%20dynamics.%20Here%2C%20we%20show%20that%20ultrafast%20ultrasound%20localization%20microscopy%20of%20intravenously%20injected%20microbubbles%20enables%20transcranial%20imaging%20of%20deep%20vasculature%20in%20the%20adult%20human%20brain%20at%20microscopic%20resolution%20and%20the%20quantification%20of%20haemodynamic%20parameters.%20Adaptive%20speckle%20tracking%20to%20correct%20for%20micrometric%20brain-motion%20artefacts%20and%20for%20ultrasonic-wave%20aberrations%20induced%20during%20transcranial%20propagation%20allowed%20us%20to%20map%20the%20vascular%20network%20of%20tangled%20arteries%2C%20to%20functionally%20characterize%20blood-flow%20dynamics%20at%20a%20resolution%20of%20up%20to%2025%20%5Cu03bcm%2C%20and%20to%20detect%20blood%20vortices%20in%20a%20small%20deep-seated%20aneurysm%20in%20a%20patient.%20Ultrafast%20ultrasound%20localization%20microscopy%20may%20facilitate%20the%20understanding%20of%20brain%20haemodynamics%20and%20of%20how%20vascular%20abnormalities%20in%20the%20brain%20are%20related%20to%20neurological%20pathologies.%22%2C%22date%22%3A%2203%5C%2F2021%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41551-021-00697-x%22%2C%22ISSN%22%3A%222157-846X%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41551-021-00697-x%22%2C%22collections%22%3A%5B%22GSDRE8AN%22%5D%2C%22dateModified%22%3A%222022-02-22T16%3A16%3A41Z%22%7D%7D%2C%7B%22key%22%3A%228DUQ6XLR%22%2C%22library%22%3A%7B%22id%22%3A151195%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Demen%5Cu00e9%20et%20al.%22%2C%22parsedDate%22%3A%222019%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E1%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EDemen%26%23xE9%3B%20C%2C%20Mairesse%20J%2C%20Baranger%20J%2C%20Tanter%20M%2C%20Baud%20O.%20Ultrafast%20Doppler%20for%20neonatal%20brain%20imaging.%20%3Ci%3ENeuroImage%3C%5C%2Fi%3E%202019%3B%3Cb%3E185%3C%5C%2Fb%3E%3A851%26%23x2013%3B6.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.neuroimage.2018.04.016%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.neuroimage.2018.04.016%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Ultrafast%20Doppler%20for%20neonatal%20brain%20imaging%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charlie%22%2C%22lastName%22%3A%22Demen%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00e9r%5Cu00f4me%22%2C%22lastName%22%3A%22Mairesse%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00e9r%5Cu00f4me%22%2C%22lastName%22%3A%22Baranger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mickael%22%2C%22lastName%22%3A%22Tanter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Olivier%22%2C%22lastName%22%3A%22Baud%22%7D%5D%2C%22abstractNote%22%3A%22The%20emergence%20of%20functional%20neuroimaging%20has%20dramatically%20accelerated%20our%20understanding%20of%20the%20human%20mind.%20The%20advent%20of%20functional%20Magnetic%20Resonance%20Imaging%20paved%20the%20way%20for%20the%20next%20decades%27%20major%20discoveries%20in%20neuroscience%20and%20today%20remains%20the%20%5C%22gold%20standard%5C%22%20for%20deep%20brain%20imaging.%20Recent%20improvements%20in%20imaging%20technology%20have%20been%20somewhat%20limited%20to%20incremental%20innovations%20of%20mature%20techniques%20instead%20of%20breakthroughs.%20Recently%2C%20the%20use%20of%20ultrasonic%20plane%20waves%20transmitted%20at%20ultrafast%20frame%20rates%20was%20shown%20to%20highly%20increase%20Doppler%20ultrasound%20sensitivity%20to%20blood%20%5Cufb02ows%20in%20small%20vessels%20in%20rodents.%20By%20identifying%20regions%20of%20brain%20activation%20through%20neurovascular%20coupling%2C%20Ultrafast%20Doppler%20was%20entering%20into%20the%20world%20of%20preclinical%20neuroimaging.%20The%20combination%20of%20many%20advantages%2C%20including%20high%20spatio-temporal%20resolution%2C%20deep%20penetration%2C%20high%20sensitivity%20and%20portability%20provided%20unique%20information%20about%20brain%20function.%20Recently%2C%20Ultrafast%20Doppler%20imaging%20was%20found%20able%20to%20non-invasively%20image%20the%20spatial%20and%20temporal%20dynamics%20of%20microvascular%20changes%20during%20seizures%20and%20interictal%20periods%20with%20an%20unprecedented%20resolution%20at%20bedside.%20This%20review%20summarizes%20the%20technical%20basis%2C%20the%20added%20value%20and%20the%20clinical%20perspectives%20provided%20by%20this%20new%20brain%20imaging%20modality%20that%20could%20create%20a%20breakthrough%20in%20the%20knowledge%20of%20brain%20hemodynamics%2C%20brain%20insult%2C%20and%20neuroprotection.%22%2C%22date%22%3A%2201%5C%2F2019%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.neuroimage.2018.04.016%22%2C%22ISSN%22%3A%2210538119%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS1053811918303008%22%2C%22collections%22%3A%5B%22GSDRE8AN%22%5D%2C%22dateModified%22%3A%222022-02-22T16%3A52%3A17Z%22%7D%7D%2C%7B%22key%22%3A%22KHBKEC48%22%2C%22library%22%3A%7B%22id%22%3A151195%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Demen%5Cu00e9%20et%20al.%22%2C%22parsedDate%22%3A%222015%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E1%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EDemen%26%23xE9%3B%20C%2C%20Deffieux%20T%2C%20Pernot%20M%2C%20Osmanski%20B-F%2C%20Biran%20V%2C%20Gennisson%20J-L%2C%20%3Ci%3Eet%20al.%3C%5C%2Fi%3E%20Spatiotemporal%20Clutter%20Filtering%20of%20Ultrafast%20Ultrasound%20Data%20Highly%20Increases%20Doppler%20and%20fUltrasound%20Sensitivity.%20%3Ci%3EIEEE%20Trans%20Med%20Imaging%3C%5C%2Fi%3E%202015%3B%3Cb%3E34%3C%5C%2Fb%3E%3A2271%26%23x2013%3B85.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTMI.2015.2428634%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTMI.2015.2428634%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Spatiotemporal%20Clutter%20Filtering%20of%20Ultrafast%20Ultrasound%20Data%20Highly%20Increases%20Doppler%20and%20fUltrasound%20Sensitivity%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charlie%22%2C%22lastName%22%3A%22Demen%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Deffieux%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mathieu%22%2C%22lastName%22%3A%22Pernot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bruno-Felix%22%2C%22lastName%22%3A%22Osmanski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valerie%22%2C%22lastName%22%3A%22Biran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Luc%22%2C%22lastName%22%3A%22Gennisson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lim-Anna%22%2C%22lastName%22%3A%22Sieu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Antoine%22%2C%22lastName%22%3A%22Bergel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stephanie%22%2C%22lastName%22%3A%22Franqui%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Michel%22%2C%22lastName%22%3A%22Correas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ivan%22%2C%22lastName%22%3A%22Cohen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Olivier%22%2C%22lastName%22%3A%22Baud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mickael%22%2C%22lastName%22%3A%22Tanter%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2211%5C%2F2015%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1109%5C%2FTMI.2015.2428634%22%2C%22ISSN%22%3A%220278-0062%2C%201558-254X%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fieeexplore.ieee.org%5C%2Fdocument%5C%2F7098422%5C%2F%22%2C%22collections%22%3A%5B%22GSDRE8AN%22%5D%2C%22dateModified%22%3A%222022-11-21T15%3A55%3A08Z%22%7D%7D%5D%7D
1
Renaudin N, Demené C, Dizeux A, Ialy-Radio N, Pezet S, Tanter M. Functional ultrasound localization microscopy reveals brain-wide neurovascular activity on a microscopic scale. Nat Methods 2022;19:1004–12. https://doi.org/10.1038/s41592-022-01549-5.
1
Baranger J, Demené C, Frerot A, Faure F, Delanoë C, Serroune H, et al. Bedside functional monitoring of the dynamic brain connectivity in human neonates. Nature Communications 2021;12:1080. https://doi.org/10.1038/s41467-021-21387-x.
1
Demené C, Robin J, Dizeux A, Heiles B, Pernot M, Tanter M, et al. Transcranial ultrafast ultrasound localization microscopy of brain vasculature in patients. Nat Biomed Eng 2021;5:219–28. https://doi.org/10.1038/s41551-021-00697-x.
1
Demené C, Mairesse J, Baranger J, Tanter M, Baud O. Ultrafast Doppler for neonatal brain imaging. NeuroImage 2019;185:851–6. https://doi.org/10.1016/j.neuroimage.2018.04.016.
1
Demené C, Deffieux T, Pernot M, Osmanski B-F, Biran V, Gennisson J-L, et al. Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity. IEEE Trans Med Imaging 2015;34:2271–85. https://doi.org/10.1109/TMI.2015.2428634.
Latest publications
4989618
94NJIV78
demené
1
national-institute-of-health-research
5
date
desc
7237
https://blog.espci.fr/physmed/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22IVNQDDKW%22%2C%22library%22%3A%7B%22id%22%3A4989618%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Morin%20et%20al.%22%2C%22parsedDate%22%3A%222025-01-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E1%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EMorin%20C%2C%20Faure%20F%2C%20Mollet%20J%2C%20Guenoun%20D%2C%20Heydari-Olya%20A%2C%20Sautet%20I%2C%20%3Ci%3Eet%20al.%3C%5C%2Fi%3E%20C-section%20and%20systemic%20inflammation%20synergize%20to%20disrupt%20the%20neonatal%20gut%20microbiota%20and%20brain%20development%20in%20a%20model%20of%20prematurity.%20%3Ci%3EBrain%20Behavior%20and%20Immunity%3C%5C%2Fi%3E%202025%3B%3Cb%3E123%3C%5C%2Fb%3E%3A824%26%23x2013%3B37.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.bbi.2024.10.023%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.bbi.2024.10.023%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22C-section%20and%20systemic%20inflammation%20synergize%20to%20disrupt%20the%20neonatal%20gut%20microbiota%20and%20brain%20development%20in%20a%20model%20of%20prematurity%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C%5Cu00e9cile%22%2C%22lastName%22%3A%22Morin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Flora%22%2C%22lastName%22%3A%22Faure%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julie%22%2C%22lastName%22%3A%22Mollet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Guenoun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ariane%22%2C%22lastName%22%3A%22Heydari-Olya%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Irvin%22%2C%22lastName%22%3A%22Sautet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sihao%22%2C%22lastName%22%3A%22Diao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Val%5Cu00e9rie%22%2C%22lastName%22%3A%22Faivre%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julien%22%2C%22lastName%22%3A%22Pansiot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lara%22%2C%22lastName%22%3A%22Tabet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jennifer%22%2C%22lastName%22%3A%22Hua%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Leslie%22%2C%22lastName%22%3A%22Schwendimann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Amazigh%22%2C%22lastName%22%3A%22Mokhtari%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rebeca%22%2C%22lastName%22%3A%22Martin-Rosique%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sead%22%2C%22lastName%22%3A%22Chadi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mireille%22%2C%22lastName%22%3A%22Laforge%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charlie%22%2C%22lastName%22%3A%22Demen%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andr%5Cu00e9e%22%2C%22lastName%22%3A%22Delahaye-Duriez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rochellys%22%2C%22lastName%22%3A%22Diaz-Heijtz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bobbi%22%2C%22lastName%22%3A%22Fleiss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Boris%22%2C%22lastName%22%3A%22Matrot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sandrine%22%2C%22lastName%22%3A%22Auger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mickael%22%2C%22lastName%22%3A%22Tanter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juliette%22%2C%22lastName%22%3A%22Van%20Steenwinckel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pierre%22%2C%22lastName%22%3A%22Gressens%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cindy%22%2C%22lastName%22%3A%22Bokobza%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222025%5C%2F01%5C%2F01%5C%2FJanuary%202025%5C%2F%5C%2F%5C%2F%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.bbi.2024.10.023%22%2C%22ISSN%22%3A%220889-1591%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%2294NJIV78%22%5D%2C%22dateModified%22%3A%222024-11-27T07%3A48%3A03Z%22%7D%7D%2C%7B%22key%22%3A%22WDVISZAM%22%2C%22library%22%3A%7B%22id%22%3A4989618%7D%2C%22meta%22%3A%7B%22lastModifiedByUser%22%3A%7B%22id%22%3A11283997%2C%22username%22%3A%22Justine_Robin_PhysMed%22%2C%22name%22%3A%22%22%2C%22links%22%3A%7B%22alternate%22%3A%7B%22href%22%3A%22https%3A%5C%2F%5C%2Fwww.zotero.org%5C%2Fjustine_robin_physmed%22%2C%22type%22%3A%22text%5C%2Fhtml%22%7D%7D%7D%2C%22creatorSummary%22%3A%22Zucker%20et%20al.%22%2C%22parsedDate%22%3A%222025%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E1%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EZucker%20N%2C%20Le%20Meur-Diebolt%20S%2C%20Cybis%20Pereira%20F%2C%20Baranger%20J%2C%20Hurvitz%20I%2C%20Demen%26%23xE9%3B%20C%2C%20%3Ci%3Eet%20al.%3C%5C%2Fi%3E%20Physio-fUS%3A%20a%20tissue-motion%20based%20method%20for%20heart%20and%20breathing%20rate%20assessment%20in%20neurofunctional%20ultrasound%20imaging.%20%3Ci%3EEBioMedicine%3C%5C%2Fi%3E%202025%3B%3Cb%3E112%3C%5C%2Fb%3E%3A105581.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.ebiom.2025.105581%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.ebiom.2025.105581%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Physio-fUS%3A%20a%20tissue-motion%20based%20method%20for%20heart%20and%20breathing%20rate%20assessment%20in%20neurofunctional%20ultrasound%20imaging%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicolas%22%2C%22lastName%22%3A%22Zucker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Samuel%22%2C%22lastName%22%3A%22Le%20Meur-Diebolt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Felipe%22%2C%22lastName%22%3A%22Cybis%20Pereira%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00e9r%5Cu00f4me%22%2C%22lastName%22%3A%22Baranger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Isabella%22%2C%22lastName%22%3A%22Hurvitz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charlie%22%2C%22lastName%22%3A%22Demen%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bruno-F%5Cu00e9lix%22%2C%22lastName%22%3A%22Osmanski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nathalie%22%2C%22lastName%22%3A%22Ialy-Radio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Val%5Cu00e9rie%22%2C%22lastName%22%3A%22Biran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Olivier%22%2C%22lastName%22%3A%22Baud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sophie%22%2C%22lastName%22%3A%22Pezet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Deffieux%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mickael%22%2C%22lastName%22%3A%22Tanter%22%7D%5D%2C%22abstractNote%22%3A%22Background%20Recent%20studies%20have%20shown%20growing%20evidence%20that%20brain%20function%20is%20closely%20synchronised%20with%20global%20physiological%20parameters.%20Heart%20rate%20is%20linked%20to%20various%20cognitive%20processes%20and%20a%20strong%20correlation%20between%20neuronal%20activity%20and%20breathing%20has%20been%20demonstrated.%20These%20%5Cufb01ndings%20highlight%20the%20signi%5Cufb01cance%20of%20monitoring%20these%20key%20physiological%20parameters%20during%20neuroimaging%20as%20they%20provide%20valuable%20insights%20into%20the%20overall%20brain%20function.%20Today%2C%20in%20neuroimaging%2C%20assessing%20these%20parameters%20requires%20additional%20cumbersome%20devices%20or%20implanted%20electrodes.%20Here%20we%20demonstrate%20that%20ultrasonic%20neurofunctional%20imaging%20data%20alone%20is%20suf%5Cufb01cient%20to%20extract%20these%20parameters.%22%2C%22date%22%3A%2202%5C%2F2025%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.ebiom.2025.105581%22%2C%22ISSN%22%3A%2223523964%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS2352396425000258%22%2C%22collections%22%3A%5B%2294NJIV78%22%5D%2C%22dateModified%22%3A%222025-05-27T20%3A26%3A39Z%22%7D%7D%2C%7B%22key%22%3A%22KQJ5C2NF%22%2C%22library%22%3A%7B%22id%22%3A4989618%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zamfirov%20et%20al.%22%2C%22parsedDate%22%3A%222024-12-20%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E1%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EZamfirov%20L%2C%20Nguyen%20N-M%2C%20Fern%26%23xE1%3Bndez-S%26%23xE1%3Bnchez%20ME%2C%20Cambronera%20Ghiglione%20P%2C%20Teston%20E%2C%20Dizeux%20A%2C%20%3Ci%3Eet%20al.%3C%5C%2Fi%3E%20Acoustic-pressure-driven%20ultrasonic%20activation%20of%20the%20mechanosensitive%20receptor%20RET%20and%20of%20cell%20proliferation%20in%20colonic%20tissue.%20%3Ci%3ENat%20Biomed%20Eng%3C%5C%2Fi%3E%202024%3A1%26%23x2013%3B12.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41551-024-01300-9%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41551-024-01300-9%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Acoustic-pressure-driven%20ultrasonic%20activation%20of%20the%20mechanosensitive%20receptor%20RET%20and%20of%20cell%20proliferation%20in%20colonic%20tissue%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%22%2C%22lastName%22%3A%22Zamfirov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ngoc-Minh%22%2C%22lastName%22%3A%22Nguyen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maria%20Elena%22%2C%22lastName%22%3A%22Fern%5Cu00e1ndez-S%5Cu00e1nchez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paula%22%2C%22lastName%22%3A%22Cambronera%20Ghiglione%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eliott%22%2C%22lastName%22%3A%22Teston%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexandre%22%2C%22lastName%22%3A%22Dizeux%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Tiennot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuel%22%2C%22lastName%22%3A%22Farge%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charlie%22%2C%22lastName%22%3A%22Demen%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mickael%22%2C%22lastName%22%3A%22Tanter%22%7D%5D%2C%22abstractNote%22%3A%22Ultrasound%20generates%20both%20compressive%20and%20shear%20mechanical%20forces%20in%20soft%20tissues.%20However%2C%20the%20specific%20mechanisms%20by%20which%20these%20forces%20activate%20cellular%20processes%20remain%20unclear.%20Here%20we%20show%20that%20low-intensity%20focused%20ultrasound%20can%20activate%20the%20mechanosensitive%20RET%20signalling%20pathway.%20Specifically%2C%20in%20mouse%20colon%20tissues%20ex%20vivo%20and%20in%20vivo%2C%20focused%20ultrasound%20induced%20RET%20phosphorylation%20in%20colonic%20crypts%20cells%2C%20which%20correlated%20with%20markers%20of%20proliferation%20and%20stemness%20when%20using%20hours-long%20insonication.%20The%20activation%20of%20the%20RET%20pathway%20is%20non-thermal%2C%20is%20linearly%20related%20to%20acoustic%20pressure%20and%20is%20independent%20of%20radiation-force-induced%20shear%20strain%20in%20tissue.%20Our%20findings%20suggest%20that%20ultrasound%20could%20be%20used%20to%20regulate%20cell%20proliferation%2C%20particularly%20in%20the%20context%20of%20regenerative%20medicine%2C%20and%20highlight%20the%20importance%20of%20adhering%20to%20current%20ultrasound-safety%20regulations%20for%20medical%20imaging.%22%2C%22date%22%3A%222024-12-20%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41551-024-01300-9%22%2C%22ISSN%22%3A%222157-846X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41551-024-01300-9%22%2C%22collections%22%3A%5B%2294NJIV78%22%5D%2C%22dateModified%22%3A%222025-01-20T09%3A41%3A28Z%22%7D%7D%2C%7B%22key%22%3A%22FK5BBAQE%22%2C%22library%22%3A%7B%22id%22%3A4989618%7D%2C%22meta%22%3A%7B%22lastModifiedByUser%22%3A%7B%22id%22%3A111638%2C%22username%22%3A%22tdeffieux%22%2C%22name%22%3A%22%22%2C%22links%22%3A%7B%22alternate%22%3A%7B%22href%22%3A%22https%3A%5C%2F%5C%2Fwww.zotero.org%5C%2Ftdeffieux%22%2C%22type%22%3A%22text%5C%2Fhtml%22%7D%7D%7D%2C%22creatorSummary%22%3A%22Faure%20et%20al.%22%2C%22parsedDate%22%3A%222024-05-23%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E1%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EFaure%20F%2C%20Alison%20M%2C%20Francavilla%20M%2C%20Boizeau%20P%2C%20Guilmin%20Crepon%20S%2C%20Lim%20C%2C%20%3Ci%3Eet%20al.%3C%5C%2Fi%3E%20Transfontanellar%20shear%20wave%20elastography%20of%20the%20neonatal%20brain%20for%20quantitative%20evaluation%20of%20white%20matter%20damage.%20%3Ci%3ESci%20Rep%3C%5C%2Fi%3E%202024%3B%3Cb%3E14%3C%5C%2Fb%3E%3A11827.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-024-60968-w%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-024-60968-w%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Transfontanellar%20shear%20wave%20elastography%20of%20the%20neonatal%20brain%20for%20quantitative%20evaluation%20of%20white%20matter%20damage%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Flora%22%2C%22lastName%22%3A%22Faure%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marianne%22%2C%22lastName%22%3A%22Alison%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mariantonietta%22%2C%22lastName%22%3A%22Francavilla%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Priscilla%22%2C%22lastName%22%3A%22Boizeau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sophie%22%2C%22lastName%22%3A%22Guilmin%20Crepon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chung%22%2C%22lastName%22%3A%22Lim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gregory%22%2C%22lastName%22%3A%22Planchette%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mickael%22%2C%22lastName%22%3A%22Prigent%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alice%22%2C%22lastName%22%3A%22Fr%5Cu00e9rot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mickael%22%2C%22lastName%22%3A%22Tanter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charlie%22%2C%22lastName%22%3A%22Demen%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Olivier%22%2C%22lastName%22%3A%22Baud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Val%5Cu00e9rie%22%2C%22lastName%22%3A%22Biran%22%7D%5D%2C%22abstractNote%22%3A%22Cerebral%20white%20matter%20damage%20%28WMD%29%20is%20the%20most%20frequent%20brain%20lesion%20observed%20in%20infants%20surviving%20premature%20birth.%20Qualitative%20B-mode%20cranial%20ultrasound%20%28cUS%29%20is%20widely%20used%20to%20assess%20brain%20integrity%20at%20bedside.%20Its%20limitations%20include%20lower%20discriminatory%20power%20to%20predict%20long-term%20outcomes%20compared%20to%20magnetic%20resonance%20imaging%20%28MRI%29.%20Shear%20wave%20elastography%20%28SWE%29%2C%20a%20promising%20ultrasound%20imaging%20modality%2C%20might%20improve%20this%20limitation%20by%20detecting%20quantitative%20differences%20in%20tissue%20stiffness.%20The%20study%20enrolled%2090%20neonates%20%2852%25%20female%2C%20mean%20gestational%20age%5Cu2009%3D%5Cu200930.1%5Cu2009%24%24%5C%5Cpm%20%5C%5Chspace%7B0.17em%7D%24%244.5%5Cu00a0weeks%29%2C%20including%2078%20preterm%20and%2012%20term%20controls.%20Preterm%20neonates%20underwent%20B-mode%20and%20SWE%20assessments%20in%20frontal%20white%20matter%20%28WM%29%2C%20parietal%20WM%2C%20and%20thalami%20on%20day%20of%20life%20%28DOL%29%203%2C%20DOL8%2C%20DOL21%2C%2040%5Cu00a0weeks%2C%20and%20MRI%20at%20term%20equivalent%20age%20%28TEA%29.%20Term%20infants%20were%20assessed%20on%20DOL3%20only.%20Our%20data%20revealed%20that%20brain%20stiffness%20increased%20with%20gestational%20age%20in%20preterm%20infants%20but%20remained%20lower%20at%20TEA%20compared%20to%20the%20control%20group.%20In%20the%20frontal%20WM%2C%20elasticity%20values%20were%20lower%20in%20preterm%20infants%20with%20WMD%20detected%20on%20B-mode%20or%20MRI%20at%20TEA%20and%20show%20a%20good%20predictive%20value%20at%20DOL3.%20Thus%2C%20brain%20stiffness%20measurement%20using%20SWE%20could%20be%20a%20useful%20screening%20method%20for%20early%20identification%20of%20preterm%20infants%20at%20high%20WMD%20risk.%22%2C%22date%22%3A%222024-05-23%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41598-024-60968-w%22%2C%22ISSN%22%3A%222045-2322%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41598-024-60968-w%22%2C%22collections%22%3A%5B%2294NJIV78%22%5D%2C%22dateModified%22%3A%222024-07-23T12%3A44%3A50Z%22%7D%7D%2C%7B%22key%22%3A%22YI2W9GMD%22%2C%22library%22%3A%7B%22id%22%3A4989618%7D%2C%22meta%22%3A%7B%22lastModifiedByUser%22%3A%7B%22id%22%3A111638%2C%22username%22%3A%22tdeffieux%22%2C%22name%22%3A%22%22%2C%22links%22%3A%7B%22alternate%22%3A%7B%22href%22%3A%22https%3A%5C%2F%5C%2Fwww.zotero.org%5C%2Ftdeffieux%22%2C%22type%22%3A%22text%5C%2Fhtml%22%7D%7D%7D%2C%22creatorSummary%22%3A%22Faure%20et%20al.%22%2C%22parsedDate%22%3A%222024-02-10%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E1%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EFaure%20F%2C%20Baranger%20J%2C%20Alison%20M%2C%20Boutillier%20B%2C%20Fr%26%23xE9%3Brot%20A%2C%20Lim%20C%2C%20%3Ci%3Eet%20al.%3C%5C%2Fi%3E%20Quantification%20of%20brain-wide%20vascular%20resistivity%20via%20ultrafast%20Doppler%20in%20human%20neonates%20helps%20early%20detection%20of%20white%20matter%20injury.%20%3Ci%3EJ%20Cereb%20Blood%20Flow%20Metab%3C%5C%2Fi%3E%202024%3A0271678X241232197.%20%3Ca%20class%3D%27zp-ItemURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1177%5C%2F0271678X241232197%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1177%5C%2F0271678X241232197%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Quantification%20of%20brain-wide%20vascular%20resistivity%20via%20ultrafast%20Doppler%20in%20human%20neonates%20helps%20early%20detection%20of%20white%20matter%20injury%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Flora%22%2C%22lastName%22%3A%22Faure%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00e9r%5Cu00f4me%22%2C%22lastName%22%3A%22Baranger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marianne%22%2C%22lastName%22%3A%22Alison%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B%5Cu00e9atrice%22%2C%22lastName%22%3A%22Boutillier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alice%22%2C%22lastName%22%3A%22Fr%5Cu00e9rot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chung%22%2C%22lastName%22%3A%22Lim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gr%5Cu00e9gory%22%2C%22lastName%22%3A%22Planchette%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mickael%22%2C%22lastName%22%3A%22Prigent%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Micka%5Cu00ebl%22%2C%22lastName%22%3A%22Tanter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Olivier%22%2C%22lastName%22%3A%22Baud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Val%5Cu00e9rie%22%2C%22lastName%22%3A%22Biran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charlie%22%2C%22lastName%22%3A%22Demen%5Cu00e9%22%7D%5D%2C%22abstractNote%22%3A%22Preterm%20birth%20is%20associated%20with%20cerebrovascular%20development%20disruption%20and%20can%20induce%20white%20matter%20injuries%20%28WMI%29.%20Transfontanellar%20ultrasound%20Doppler%20is%20the%20most%20widely%20used%20clinical%20imaging%20technique%20to%20monitor%20neonatal%20cerebral%20vascularisation%20and%20haemodynamics%20based%20on%20vascular%20indexes%20such%20as%20the%20resistivity%20index%20%28RI%29%3B%20however%2C%20it%20has%20poor%20predictive%20value%20for%20brain%20damage.%20Indeed%2C%20these%20RI%20measurements%20are%20currently%20limited%20to%20large%20vessels%2C%20leading%20to%20a%20very%20limited%20probing%20of%20the%20brain%3Fs%20vascularisation%2C%20which%20may%20hinder%20prognosis.%20Here%20we%20show%20that%20ultrafast%20Doppler%20imaging%20%28UfD%29%20enables%20simultaneous%20quantification%2C%20in%20the%20whole%20field%20of%20view%2C%20of%20the%20local%20RI%20and%20vessel%20diameter%2C%20even%20in%20small%20vessels.%20Combining%20both%20pieces%20of%20information%2C%20we%20defined%20two%20new%20comprehensive%20resistivity%20parameters%20of%20the%20vascular%20trees.%20First%2C%20we%20showed%20that%20our%20technique%20is%20more%20sensitive%20in%20the%20early%20characterisation%20of%20the%20RI%20modifications%20between%20term%20and%20preterm%20neonates%20and%20for%20the%20first%20time%20we%20could%20show%20that%20the%20RI%20depends%20both%20on%20the%20vessel%20diameter%20and%20vascular%20territory.%20We%20then%20showed%20that%20our%20parameters%20can%20be%20used%20for%20early%20prediction%20of%20WMI.%20Our%20results%20demonstrate%20the%20potential%20of%20UfD%20to%20provide%20new%20biomarkers%20and%20pave%20the%20way%20for%20continuous%20monitoring%20of%20neonatal%20brain%20resistivity.%22%2C%22date%22%3A%222024-02-10%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1177%5C%2F0271678X241232197%22%2C%22ISSN%22%3A%220271-678X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1177%5C%2F0271678X241232197%22%2C%22collections%22%3A%5B%2294NJIV78%22%5D%2C%22dateModified%22%3A%222024-03-29T15%3A36%3A01Z%22%7D%7D%5D%7D
1
Morin C, Faure F, Mollet J, Guenoun D, Heydari-Olya A, Sautet I, et al. C-section and systemic inflammation synergize to disrupt the neonatal gut microbiota and brain development in a model of prematurity. Brain Behavior and Immunity 2025;123:824–37. https://doi.org/10.1016/j.bbi.2024.10.023.
1
Zucker N, Le Meur-Diebolt S, Cybis Pereira F, Baranger J, Hurvitz I, Demené C, et al. Physio-fUS: a tissue-motion based method for heart and breathing rate assessment in neurofunctional ultrasound imaging. EBioMedicine 2025;112:105581. https://doi.org/10.1016/j.ebiom.2025.105581.
1
Zamfirov L, Nguyen N-M, Fernández-Sánchez ME, Cambronera Ghiglione P, Teston E, Dizeux A, et al. Acoustic-pressure-driven ultrasonic activation of the mechanosensitive receptor RET and of cell proliferation in colonic tissue. Nat Biomed Eng 2024:1–12. https://doi.org/10.1038/s41551-024-01300-9.
1
Faure F, Alison M, Francavilla M, Boizeau P, Guilmin Crepon S, Lim C, et al. Transfontanellar shear wave elastography of the neonatal brain for quantitative evaluation of white matter damage. Sci Rep 2024;14:11827. https://doi.org/10.1038/s41598-024-60968-w.
1
Faure F, Baranger J, Alison M, Boutillier B, Frérot A, Lim C, et al. Quantification of brain-wide vascular resistivity via ultrafast Doppler in human neonates helps early detection of white matter injury. J Cereb Blood Flow Metab 2024:0271678X241232197. https://doi.org/10.1177/0271678X241232197.
Nov 21, 2022 |
|