
Jimenez Anatole
PhD student
anatole.jimenez@espci.fr
Research topic
Functional ultrasound imaging of the brain
Supervisor
Latest publications
4989618
94NJIV78
jimenez
1
national-institute-of-health-research
5
date
desc
4886
https://blog.espci.fr/physmed/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22IERTZCX2%22%2C%22library%22%3A%7B%22id%22%3A4989618%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zhang%20et%20al.%22%2C%22parsedDate%22%3A%222025-04-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E1%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EZhang%20G%2C%20Vert%20M%2C%20Nouhoum%20M%2C%20Rivera%20E%2C%20Haidour%20N%2C%20Jimenez%20A%2C%20%3Ci%3Eet%20al.%3C%5C%2Fi%3E%20Amplitude-Modulated%20Singular%20Value%20Decomposition%20for%20Ultrafast%20Ultrasound%20Imaging%20of%20Gas%20Vesicles.%20%3Ci%3EIEEE%20Transactions%20on%20Medical%20Imaging%3C%5C%2Fi%3E%202025%3B%3Cb%3EPP%3C%5C%2Fb%3E%3A%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTMI.2025.3565023%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1109%5C%2FTMI.2025.3565023%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Amplitude-Modulated%20Singular%20Value%20Decomposition%20for%20Ultrafast%20Ultrasound%20Imaging%20of%20Gas%20Vesicles.%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ge%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mathis%22%2C%22lastName%22%3A%22Vert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mohamed%22%2C%22lastName%22%3A%22Nouhoum%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Esteban%22%2C%22lastName%22%3A%22Rivera%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nabil%22%2C%22lastName%22%3A%22Haidour%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anatole%22%2C%22lastName%22%3A%22Jimenez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Deffieux%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Simon%22%2C%22lastName%22%3A%22Barral%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pascal%22%2C%22lastName%22%3A%22Hersen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sophie%22%2C%22lastName%22%3A%22Pezet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claire%22%2C%22lastName%22%3A%22Rabut%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mikhail%20G%22%2C%22lastName%22%3A%22Shapiro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mickael%22%2C%22lastName%22%3A%22Tanter%22%7D%5D%2C%22abstractNote%22%3A%22Ultrasound%20imaging%20holds%20significant%20promise%20for%20the%20observation%20of%20molecular%20and%20cellular%20phenomena%20through%20the%20utilization%20of%20acoustic%20contrast%20agents%20and%20acoustic%20reporter%20genes.%20Optimizing%20imaging%20methodologies%20for%20enhanced%20detection%20represents%20an%20imperative%20advancement%20in%20this%20field.%20Most%20advanced%20techniques%20relying%20on%20amplitude%20modulation%20schemes%20such%20as%20cross%20amplitude%20modulation%20%28xAM%29%20and%20ultrafast%20amplitude%20modulation%20%28uAM%29%20combined%20with%20Hadamard%20encoded%20multiplane%20wave%20transmissions%20have%20shown%20efficacy%20in%20capturing%20the%20acoustic%20signals%20of%20gas%20vesicles%20%28GVs%29.%20Nonetheless%2C%20uAM%20sequence%20requires%20odd-%20or%20even-element%20transmissions%20leading%20to%20imprecise%20amplitude%20modulation%20emitting%20scheme%2C%20and%20the%20complex%20multiplane%20wave%20transmission%20scheme%20inherently%20yields%20overlong%20pulse%20durations.%20xAM%20sequence%20is%20limited%20in%20terms%20of%20field%20of%20view%20and%20imaging%20depth.%20To%20overcome%20these%20limitations%2C%20we%20introduce%20an%20innovative%20ultrafast%20imaging%20sequence%20called%20amplitude-modulated%20singular%20value%20decomposition%20%28SVD%29%20processing.%20Our%20method%20demonstrates%20a%20contrast%20imaging%20sensitivity%20comparable%20to%20the%20current%20gold-standard%20xAM%20and%20uAM%2C%20while%20requiring%204.8%20times%20fewer%20pulse%20transmissions.%20With%20a%20similar%20number%20of%20transmit%20pulses%2C%20amplitude-modulated%20SVD%20outperforms%20xAM%20and%20uAM%20in%20terms%20of%20an%20improvement%20in%20signal-to-background%20ratio%20of%20%2B%204.78%20%5Cu00b1%200.35%20dB%20and%20%2B%208.29%20%5Cu00b1%203.52%20dB%2C%20respectively.%20Furthermore%2C%20the%20method%20exhibits%20superior%20robustness%20across%20a%20wide%20range%20of%20acoustic%20pressures%20and%20enables%20high-contrast%20imaging%20in%20ex%20vivo%20and%20in%20vivo%20settings.%20Furthermore%2C%20amplitude-modulated%20SVD%20is%20envisioned%20to%20be%20applicable%20for%20the%20detection%20of%20slow%20moving%20microbubbles%20in%20ultrasound%20localization%20microscopy%20%28ULM%29.%22%2C%22date%22%3A%222025-04-28%22%2C%22language%22%3A%22eng%22%2C%22DOI%22%3A%2210.1109%5C%2FTMI.2025.3565023%22%2C%22ISSN%22%3A%221558-254X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fresearch.ebsco.com%5C%2Flinkprocessor%5C%2Fplink%3Fid%3Df7e0f525-05ef-3327-b61a-de4bf9ed5ce1%22%2C%22collections%22%3A%5B%2294NJIV78%22%5D%2C%22dateModified%22%3A%222025-05-05T09%3A04%3A16Z%22%7D%7D%2C%7B%22key%22%3A%227NPF6FEK%22%2C%22library%22%3A%7B%22id%22%3A4989618%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Leroy%20et%20al.%22%2C%22parsedDate%22%3A%222025-01-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E1%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3ELeroy%20H%2C%20Wang%20LZ%2C%20Jimenez%20A%2C%20Mohamedi%20N%2C%20Papadacci%20C%2C%20Julia%20P%2C%20%3Ci%3Eet%20al.%3C%5C%2Fi%3E%20Assessment%20of%20microvascular%20flow%20in%20human%20atherosclerotic%20carotid%20plaques%20using%20ultrasound%20localization%20microscopy.%20%3Ci%3EeBioMedicine%3C%5C%2Fi%3E%202025%3B%3Cb%3E111%3C%5C%2Fb%3E%3A105528.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.ebiom.2024.105528%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.ebiom.2024.105528%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Assessment%20of%20microvascular%20flow%20in%20human%20atherosclerotic%20carotid%20plaques%20using%20ultrasound%20localization%20microscopy%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Henri%22%2C%22lastName%22%3A%22Leroy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Louise%20Z.%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anatole%22%2C%22lastName%22%3A%22Jimenez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nassim%22%2C%22lastName%22%3A%22Mohamedi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cl%5Cu00e9ment%22%2C%22lastName%22%3A%22Papadacci%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pierre%22%2C%22lastName%22%3A%22Julia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Salma%22%2C%22lastName%22%3A%22El%20Batti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Marc%22%2C%22lastName%22%3A%22Alsac%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonas%22%2C%22lastName%22%3A%22Sitruk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Armelle%22%2C%22lastName%22%3A%22Arnoux%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrick%22%2C%22lastName%22%3A%22Bruneval%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuel%22%2C%22lastName%22%3A%22Messas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tristan%22%2C%22lastName%22%3A%22Mirault%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guillaume%22%2C%22lastName%22%3A%22Goudot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mathieu%22%2C%22lastName%22%3A%22Pernot%22%7D%5D%2C%22abstractNote%22%3A%22Background%5CnNeovascularisation%20of%20carotid%20plaques%20contributes%20to%20their%20vulnerability.%20Current%20imaging%20methods%20such%20as%20contrast-enhanced%20ultrasound%20%28CEUS%29%20usually%20lack%20the%20required%20spatial%20resolution%20and%20quantification%20capability%20for%20precise%20neovessels%20identification.%20We%20aimed%20at%20quantifying%20plaque%20vascularisation%20with%20ultrasound%20localization%20microscopy%20%28ULM%29%20and%20compared%20the%20results%20to%20histological%20analysis.%5CnMethods%5CnWe%20conducted%20a%20prospective%2C%20monocentric%2C%20study%20involving%20patients%20who%20were%20undergoing%20carotid%20endarterectomy%20%28CEA%29%20for%20carotid%20artery%20stenosis.%20The%20day%20before%20CEA%20ultrasound%20examination%20coupled%20with%20the%20injection%20of%20microbubbles%20%28MB%29%20as%20a%20contrast%20agent%20%28CEUS%29%20to%20image%20the%20MB%20circulating%20within%20and%20around%20the%20carotid%20plaque%20was%20performed.%20CEUS%20images%20analysis%20classified%20patients%20into%202%20groups%3A%20absence%20of%20neovascularisation%20%28group%20A%29%20or%20presence%20of%20neovascularisation%20%28group%20B%29.%20ULM%20was%20performed%20by%20localising%20and%20tracking%20individual%20MB%20centres%20to%20reconstruct%20the%20neovessels%20structure%20with%20a%20resolution%20of%20around%2060%5Cu00a0%5Cu03bcm.%20Plaques%20were%20manually%20segmented%20on%20the%20images%20to%20quantify%20the%20number%20of%20neovessels%20and%20various%20haemodynamic%20metrics%20inside%20the%20plaques.%20Histological%20analysis%20of%20the%20excised%20carotid%20plaque%20specimens%20classified%20patients%20into%202%20groups%3A%20absence%20of%20neovascularisation%20%28group%20I%29%20or%20presence%20of%20neovascularisation%20%28group%20II%29.%5CnFindings%5CnAmong%20the%2026%20patients%20included%2C%20classification%20was%20as%20follows%3A%20group%20I%3A%20n%5Cu00a0%3D%5Cu00a08%20and%20group%20II%3A%20n%5Cu00a0%3D%5Cu00a018%2C%2018%20patients%20had%20analysable%20CEUS%20images%20and%20were%20classified%20as%20follows%3A%20group%20A%3A%20n%5Cu00a0%3D%5Cu00a010%2C%20group%20B%3A%20n%5Cu00a0%3D%5Cu00a08.%20The%20median%20%28Q1-Q3%29%20number%20of%20MB%20tracked%20per%20second%20inside%20the%20plaque%20was%200.03%20%280%5Cu20130.37%29%20for%20patients%20in%20group%20I%20and%200.51%20%280%5Cu20133%29%20for%20patients%20in%20group%20A%20versus%20%28vs.%29%203.55%20%281.26%5Cu201317.68%29%20for%20patients%20in%20group%20II%20and%209.69%20%285.83%5Cu201334.68%29%20for%20patients%20in%20group%20B%20%28p%5Cu00a0%3D%5Cu00a00.00049%3B%20p%5Cu00a0%3D%5Cu00a00.010%20respectively%29.%20The%20length%20of%20the%20MB%20tracks%20was%200.02%5Cu00a0mm%20%280%5Cu20130.16%29%20in%20group%20I%20vs.%200.29%5Cu00a0mm%20%280.22%5Cu20130.45%29%20in%20group%20II%20%28p%5Cu00a0%3D%5Cu00a00.0069%29.%20The%20study%20also%20showed%20that%20flow%20in%20the%20neovessels%20was%20greater%20during%20systole%20than%20during%20diastole%20period%3A%209.38%20%281.67%5Cu201319.17%29%20MB%20tracked%20per%20second%20vs.%201.35%20%280.28%5Cu20136.56%29%20%28p%5Cu00a0%3D%5Cu00a00.021%29.%5CnInterpretation%5CnULM%20allows%20the%20detection%20of%20neovessels%20within%20the%20carotid%20atherosclerotic%20plaque.%20Thus%2C%20ULM%20provides%20a%20precise%20picture%20of%20plaque%20neovascularisation%20in%20patients%20and%20could%20be%20used%20as%20a%20non-invasive%20imaging%20technique%20to%20assess%20carotid%20plaque%20vulnerability.%5CnFunding%5CnThe%20study%20was%20sponsored%20and%20funded%20by%20Assistance%20Publique%5Cu2013H%5Cu00f4pitaux%20de%20Paris%20%28CRC%201806%20APHP%20INNOVATION%202018%29.%20Co-funding%20by%20ART%20%28Technological%20Research%20Accelerator%29%20biomedical%20ultrasound%20program%20of%20INSERM%2C%20France.%22%2C%22date%22%3A%222025-01-01%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.ebiom.2024.105528%22%2C%22ISSN%22%3A%222352-3964%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.sciencedirect.com%5C%2Fscience%5C%2Farticle%5C%2Fpii%5C%2FS2352396424005644%22%2C%22collections%22%3A%5B%2294NJIV78%22%5D%2C%22dateModified%22%3A%222025-01-20T09%3A41%3A28Z%22%7D%7D%2C%7B%22key%22%3A%22T5MIPTLK%22%2C%22library%22%3A%7B%22id%22%3A4989618%7D%2C%22meta%22%3A%7B%22lastModifiedByUser%22%3A%7B%22id%22%3A111638%2C%22username%22%3A%22tdeffieux%22%2C%22name%22%3A%22%22%2C%22links%22%3A%7B%22alternate%22%3A%7B%22href%22%3A%22https%3A%5C%2F%5C%2Fwww.zotero.org%5C%2Ftdeffieux%22%2C%22type%22%3A%22text%5C%2Fhtml%22%7D%7D%7D%2C%22creatorSummary%22%3A%22Goudot%20et%20al.%22%2C%22parsedDate%22%3A%222024-03-15%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E1%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EGoudot%20G%2C%20Jimenez%20A%2C%20Mohamedi%20N%2C%20Sitruk%20J%2C%20Wang%20LZ%2C%20Khider%20L%2C%20%3Ci%3Eet%20al.%3C%5C%2Fi%3E%20Vasa%20vasorum%20interna%20in%20the%20carotid%20wall%20of%20active%20forms%20of%20Takayasu%20arteritis%20evidenced%20by%20ultrasound%20localization%20microscopy.%20%3Ci%3EVasc%20Med%3C%5C%2Fi%3E%202024%3A1358863X241228262.%20%3Ca%20class%3D%27zp-ItemURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1177%5C%2F1358863X241228262%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1177%5C%2F1358863X241228262%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Vasa%20vasorum%20interna%20in%20the%20carotid%20wall%20of%20active%20forms%20of%20Takayasu%20arteritis%20evidenced%20by%20ultrasound%20localization%20microscopy%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guillaume%22%2C%22lastName%22%3A%22Goudot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anatole%22%2C%22lastName%22%3A%22Jimenez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nassim%22%2C%22lastName%22%3A%22Mohamedi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonas%22%2C%22lastName%22%3A%22Sitruk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Louise%20Z%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lina%22%2C%22lastName%22%3A%22Khider%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrick%22%2C%22lastName%22%3A%22Bruneval%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuel%22%2C%22lastName%22%3A%22Messas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mathieu%22%2C%22lastName%22%3A%22Pernot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tristan%22%2C%22lastName%22%3A%22Mirault%22%7D%5D%2C%22abstractNote%22%3A%22Introduction%3A%20Takayasu%20arteritis%20%28TA%29%20is%20associated%20with%20microvascularization%20of%20the%20wall%20of%20large%20arteries%20and%20is%20related%20to%20inflammation.%20Ultrasound%20localization%20microscopy%20%28ULM%29%2C%20combining%20ultrafast%20ultrasound%20imaging%20with%20microbubble%20%28MB%29%20injection%2C%20can%20track%20the%20path%20of%20MBs%20within%20the%20arterial%20wall%20and%20thus%20provide%20imaging%20of%20the%20vasa%20vasorum.%20From%20the%20analysis%20of%20MB%20tracks%20in%20the%20common%20carotid%20arteries%20of%20patients%20with%20active%20TA%2C%20we%20report%20the%20presence%20of%20microvessels%20in%20connection%20with%20the%20carotid%20lumen%20%28i.e.%2C%20vasa%20vasorum%20interna%20%5BVVI%5D%29.%20Methods%3A%20ULM%20maps%20were%20obtained%20on%20five%20patients%20with%20active%20disease%20in%20the%20observational%20single-center%20series%20of%20the%20TAK-UF%20study.%20MB%20tracks%20connected%20to%20the%20carotid%20lumen%20were%20automatically%20identified%2C%20allowing%20the%20reconstruction%20of%20VVI.%20Results%3A%20MB%20tracking%20allows%20us%20to%20observe%20a%20microvascular%20network%20on%20the%20inner%20part%20of%20the%20wall%2C%20with%20some%20vessels%20in%20communication%20with%20the%20carotid%20lumen.%20This%20type%20of%20vessel%20was%20identified%20in%20all%20patients%20with%20active%20TA%20%28n%20%3D%205%29%20with%20a%20median%20of%202.2%20%5B1.1%5Cu20133.0%5D%20vessels%20per%20acquisition%20%282D%20longitudinal%20view%20of%203%20cm%20of%20the%20common%20carotid%20artery%29.%20The%20blood%20flow%20within%20these%20vessels%20is%20mainly%20centrifugal%3B%20that%20is%2C%20toward%20the%20adventitia%20%2888%25%20%5B54%5Cu2013100%5D%20of%20MB%20tracks%20with%20flow%20directed%20to%20the%20outer%20part%20of%20the%20wall%29.%20Conclusion%3A%20VVI%20are%20present%20in%20humans%20in%20the%20case%20of%20active%20TA%20and%20emphasize%20the%20involvement%20of%20the%20intima%20in%20the%20pathological%20process.%20ClinicalTrials.gov%20Identifier%3A%20NCT03956394%22%2C%22date%22%3A%222024-03-15%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1177%5C%2F1358863x241228262%22%2C%22ISSN%22%3A%221358-863X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1177%5C%2F1358863X241228262%22%2C%22collections%22%3A%5B%2294NJIV78%22%5D%2C%22dateModified%22%3A%222024-03-29T15%3A35%3A51Z%22%7D%7D%2C%7B%22key%22%3A%22A36HZWGZ%22%2C%22library%22%3A%7B%22id%22%3A4989618%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Goudot%20et%20al.%22%2C%22parsedDate%22%3A%222023-04-01%22%2C%22numChildren%22%3A3%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E1%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EGoudot%20G%2C%20Jimenez%20A%2C%20Mohamedi%20N%2C%20Sitruk%20J%2C%20Khider%20L%2C%20Mortelette%20H%2C%20%3Ci%3Eet%20al.%3C%5C%2Fi%3E%20Assessment%20of%20Takayasu%26%23x2019%3Bs%20arteritis%20activity%20by%20ultrasound%20localization%20microscopy.%20%3Ci%3EeBioMedicine%3C%5C%2Fi%3E%202023%3B%3Cb%3E90%3C%5C%2Fb%3E%3A.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.ebiom.2023.104502%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.ebiom.2023.104502%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Assessment%20of%20Takayasu%27s%20arteritis%20activity%20by%20ultrasound%20localization%20microscopy%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guillaume%22%2C%22lastName%22%3A%22Goudot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anatole%22%2C%22lastName%22%3A%22Jimenez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nassim%22%2C%22lastName%22%3A%22Mohamedi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonas%22%2C%22lastName%22%3A%22Sitruk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lina%22%2C%22lastName%22%3A%22Khider%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H%5Cu00e9l%5Cu00e8ne%22%2C%22lastName%22%3A%22Mortelette%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cl%5Cu00e9ment%22%2C%22lastName%22%3A%22Papadacci%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fabien%22%2C%22lastName%22%3A%22Hyafil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Micka%5Cu00ebl%22%2C%22lastName%22%3A%22Tanter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuel%22%2C%22lastName%22%3A%22Messas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mathieu%22%2C%22lastName%22%3A%22Pernot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tristan%22%2C%22lastName%22%3A%22Mirault%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-04-01%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.ebiom.2023.104502%22%2C%22ISSN%22%3A%222352-3964%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.thelancet.com%5C%2Fjournals%5C%2Febiom%5C%2Farticle%5C%2FPIIS2352-3964%2823%2900067-1%5C%2Ffulltext%22%2C%22collections%22%3A%5B%2294NJIV78%22%5D%2C%22dateModified%22%3A%222023-03-14T16%3A30%3A32Z%22%7D%7D%2C%7B%22key%22%3A%22R2NFKK6I%22%2C%22library%22%3A%7B%22id%22%3A4989618%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Goudot%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E1%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EGoudot%20G%2C%20Sitruk%20J%2C%20Jimenez%20A%2C%20Julia%20P%2C%20Khider%20L%2C%20Alsac%20J-M%2C%20%3Ci%3Eet%20al.%3C%5C%2Fi%3E%20Carotid%20plaque%20vulnerability%20assessed%20by%20combined%20shear%20wave%20elastography%20and%20ultrafast%20doppler%20compared%20to%20histology.%20%3Ci%3ETranslational%20Stroke%20Research%3C%5C%2Fi%3E%202022%3B%3Cb%3E13%3C%5C%2Fb%3E%3A100%26%23x2013%3B11.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs12975-021-00920-6%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs12975-021-00920-6%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Carotid%20plaque%20vulnerability%20assessed%20by%20combined%20shear%20wave%20elastography%20and%20ultrafast%20doppler%20compared%20to%20histology%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guillaume%22%2C%22lastName%22%3A%22Goudot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonas%22%2C%22lastName%22%3A%22Sitruk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anatole%22%2C%22lastName%22%3A%22Jimenez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pierre%22%2C%22lastName%22%3A%22Julia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lina%22%2C%22lastName%22%3A%22Khider%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean-Marc%22%2C%22lastName%22%3A%22Alsac%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Salma%22%2C%22lastName%22%3A%22El%20Batti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrick%22%2C%22lastName%22%3A%22Bruneval%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kisaki%22%2C%22lastName%22%3A%22Amemyia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Olivier%22%2C%22lastName%22%3A%22Pedreira%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222022%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1007%5C%2Fs12975-021-00920-6%22%2C%22ISSN%22%3A%221868-4483%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22DSPDI74A%22%2C%2294NJIV78%22%5D%2C%22dateModified%22%3A%222023-04-07T13%3A32%3A29Z%22%7D%7D%5D%7D
1
Zhang G, Vert M, Nouhoum M, Rivera E, Haidour N, Jimenez A, et al. Amplitude-Modulated Singular Value Decomposition for Ultrafast Ultrasound Imaging of Gas Vesicles. IEEE Transactions on Medical Imaging 2025;PP: https://doi.org/10.1109/TMI.2025.3565023.
1
Leroy H, Wang LZ, Jimenez A, Mohamedi N, Papadacci C, Julia P, et al. Assessment of microvascular flow in human atherosclerotic carotid plaques using ultrasound localization microscopy. eBioMedicine 2025;111:105528. https://doi.org/10.1016/j.ebiom.2024.105528.
1
Goudot G, Jimenez A, Mohamedi N, Sitruk J, Wang LZ, Khider L, et al. Vasa vasorum interna in the carotid wall of active forms of Takayasu arteritis evidenced by ultrasound localization microscopy. Vasc Med 2024:1358863X241228262. https://doi.org/10.1177/1358863X241228262.
1
Goudot G, Jimenez A, Mohamedi N, Sitruk J, Khider L, Mortelette H, et al. Assessment of Takayasu’s arteritis activity by ultrasound localization microscopy. eBioMedicine 2023;90:. https://doi.org/10.1016/j.ebiom.2023.104502.
1
Goudot G, Sitruk J, Jimenez A, Julia P, Khider L, Alsac J-M, et al. Carotid plaque vulnerability assessed by combined shear wave elastography and ultrafast doppler compared to histology. Translational Stroke Research 2022;13:100–11. https://doi.org/10.1007/s12975-021-00920-6.
Jun 20, 2019 |
|