RAPPEL: Journée de la Matière et des Systèmes Complexes le 30/11/2017 à l’ENS Paris-Saclay — date limite inscription: 15 novembre 2016

 

Petit mail de rappel sur la journée scientifique autour de Systèmes & Matière Complexes – deuxième édition qui se tiendra le 30 Novembre 2017 à l’Amphithéâtre Marie Curie de l’ENS Paris-Saclay à Cachan. Cette journée se déroulera en quatre sessions de présentations courtes de 4 min + 1 min de questions (trois planches maximum). Chacune de ces sessions sera précédée d’une conférence.

L’inscription est gratuite mais obligatoire (nombre de places limité) et le repas sera offert aux participants (aucun soutien financier ne sera accordé en dehors du repas et des pauses). La date limite pour l’inscription est fixée au 15 novembre 2017.

https://www.universite-paris-saclay.fr/fr/inscriptions-journee-de-la-matiere-et-des-systemes-complexes

Les orateurs invités pour cette deuxième édition sont :
Cécile Appert-Roland, Université Paris-Saclay
Kirsten Martens, Université Grenoble-Alpes
Olivier Theodoly, Université d’Aix-Marseille
Francois Ladieu, Université Paris-Saclay

L’objectif de cette journée est de permettre à la communauté systèmes & matière complexes de se rencontrer et d’échanger autour de ses thèmes de recherche qui sont, au sens large :
· les systèmes désordonnés,
· les fluides complexes,
· la dynamique complexe,
· les approches statistiques,
· les matériaux multi-échelle,
· les systèmes biologiques.

Nous demandons aux destinataires de ce mail de diffuser largement l’information dans leur laboratoire et plus largement à tout public intéressé.

Merci d’avance de votre aide.

Bien cordialement

Le comité d’organisation : H. Auradou, G. Baldinozzi, G. Biroli, D. Bonamy, C. Douarche, P. Guenoun, H. Henry, M. Lebental, L.T. Lee,
A. Rosso, conjointement avec les labex PALM et Nanosaclay

Post-doc « Micro-nageurs biosourcés pilotables à l’aide d’ultrasons » (LiPhy)

voir l’annonce en pdf

Poste à pourvoir début 2018.

Dans un but ultérieur de délivrance ciblée de médicaments, nous
cherchons à réaliser un micro-nageur qui soit à la fois propulsé et
dirigé par des ondes ultrasonores. La brique élémentaire d’un tel
micro-nageur est une coquille colloïdale élastique contenant de l’air,qui se déforme sous la pression oscillante des ultrasons. Dans un
souci de biocompatibilité, ces briques seront réalisées par adsorption
de muticouches nanocristaux de cellulose / xyloglucane (système modèlepour les parois végétales) à la surface de bulles microniques obtenues
en dispositif microfluidique. Leur nage sous l’effet de déformations
induites par des cycles de pression, à orientation aléatoire, sera
étudiée via des méthodes statistiques (parcours projeté,
diffusion…). À la lumière d’une étude récemment réalisée à l’échelle
du centimètre, on s’attachera à étudier l’effet du couplage entre les
fréquences propres de déformation des coquilles et la fréquence des
ondes de pression excitatrices, ici ultrasonores, afin de connaître
les moyens d’amplifier ou réprimer le déplacement des coquilles.
Des coquilles aux propriétés différentes (taille, épaisseur) seront
ensuite agrégées via des moyens microfluidiques (confinement
capillaire dans une goutte en évaporation) afin de former un nageur
dont la direction de déplacement depend de la coquille, ou du groupe
de coquilles, effectivement déformée(s) par l’onde ultrasonore.
L’objectif du projet est de parvenir à la preuve de concept de
propulsion du nageur par une onde ultrasonore, et du pilotage à
distance par simple modulation de l’amplitude et de la fréquence.

Contact : Catherine.Quilliet@univ-grenoble-alpes.fr

mini-symposium « mécanique des matériaux complexes et désordonnés » World Congress of Computational Mechanics (New-York,22-27/07/2018)

 

Cher collègues,

un mini-symposium sur « La réponse mécanique des matériaux complexes et désordonnés » est organisé au World Congress of Computational Mechanics à New-York du 22 au 27 jullet 2018 (http://www.wccm2018.org)
Les abstracts doivent être soumis dès maintenant et avant le 31 décembre à l’adresse suivante:

http://www.wccm2018.org/abstract-submission

En vous espérant nombreux à venir partager votre travail à ce congrès

Abstract: The mini-symposium WCCM 2018 MS 602 focuses on the small scale mechanical response of complex materials (disordered materials, glasses, granular media, beam lattices, fibreous materials, etc.) subjected to mechanical load. These materials exhibit complex inhomogeneous deformations, with strain localization and/or history dependence, yielding to unusual visco-plastic properties.
The application of numerical approaches for analyzing the response of the complex microstructure of disordered materials has resulted in a coupling between scales, with the goal of formulating a continuum description of the mechanical response at large scale from first principles. Such approaches include molecular dynamics simulations, smoothed particle hydrodynamics, coarse-graining methods, second-gradient or Cosserat modelization, and mesoscopic modelling.
The purpose of the meeting is to answer the following questions: How may one take into account the microstructure of such disordered materials? How much precision is required for adequately capturing particular properties? Is there a length scale dependence in the continuum description of such systems? What is the most appropriate way to transfer information from the lower to the upper length scale.
The mini-symposium will be organized into successive sessions, interspersed with time slots specifically devoted to thematic discussions.
It will promote interactions between participants from mechanical engineering, computational mechanics as well as condensed matter and statistical physics.

 

***
Pr Anne Tanguy
INSA Lyon
laboratoire LAMCOS
Bat. Joseph Jacquard
27 avenue Jean Capelle
F-69621 Villeurbanne cedex

poste MCf microfluidique / acoustofluidique IEMN (Lille)

voir l’annonce en pdf

Chers collègues,

Un poste de Maître de Conférence en microfluidique ou/et en acoustofluidique va s’ouvrir à l’IEMN, avec rattachement pour la partie enseignement au département de Mécanique de l’Université de Lille. Nous souhaitons recruter une personne dynamique qui s’impliquera tant dans les aspects recherche qu’enseignement. Le profil de recherche est très ouvert et les enseignements s’effectueront au sein du département de Mécanique de l’Université de Lille dans les domaines de la mécanique des fluides, mécanique des solides, l’acoustique, la thermodynamique, les mathématiques pour la mécanique, le numérique et les sciences et projets expérimentaux. Vous trouverez plus de détail sur le profil en pièce jointe (document préliminaire en cours de validation par l’université).

Merci de diffuser l’information auprès de vos contact. Si un candidat est intéressé par ce poste, n’hésitez surtout pas à nous contacter si vous souhaitez plus d’information: M. Baudoin (michael.baudoin@univ-lille1.fr) ou M. Zoueshtiagh (farzam.zoueshtiagh@univ-lille1.fr) pour la partie recherche et M. Leriche (Emmanuel.Leriche@univ-lille1.fr) pour la partie enseignement.

Bien cordialement,

M. Baudoin, E. Leriche, F. Zoueshtiagh

=====================================

APS March Meeting : plusieurs sessions

Dear Colleagues,

We are writing to bring your attention to the upcoming March Meeting of the American Physical Society in Los Angeles, CA (March 5-9, 2018). Our mechanics community continues to have a strong presence at the March Meeting, and we are pleased to announce several focus and invited sessions sponsored by the APS Groups on Statistical and Nonlinear Physics (GSNP) and Soft Matter (GSOFT). Full descriptions are available at the end of this email.

The deadline for abstract submission is November 3, 2017 at 11:59 p.m. ET. Abstracts can be submitted here: http://abstracts.aps.org/

Focus sessions include:

  • 01.1.22 Mechanics of Mechanical Networks (GSOFT, DPOLY, GSNP) [same as 02.1.5, 03.1.9, 04.1.23]
  • 03.1.6 Morphable Structures (GSNP)
  • 02.1.7 Morphogenesis (DBIO, GSOFT, GSNP) [same as 03.1.10, 04.1.16]
  • 02.1.4 Origami and Kirigami Metamaterials (GSOFT, GSNP)
  • 02.1.3 Machine Learning in Nonlinear Physics and Mechanics (GSOFT, GSNP) [same as 03.1.14]
  • 03.1.3 Mechanical Metamaterials (GSNP, DPOLY, GSOFT, DBIO)
  • 01.1.23 Soft Interface Mechanics (GSOFT, DPOLY, DBIO) [same as 02.1.10, 04.1.28]
  • 02.1.11 Fluid Mechanics for Soft Matter (GSOFT, DPOLY, GSNP) [same as 01.1.24, 03.1.15]
  • 3.1.4 Extreme Mechanical Instabilities, Defects, and Large Deformations (GSNP, DBIO) [same as 04.1.30]

When submitting your abstract, please make sure to include the relevant sorting category to ensure that your submission is not overlooked or misplaced.

We look forward to seeing you in LA. Should you have questions or concerns about the sorting process, please feel free to contact us.

Best Regards,

P.-T. Brun

and the co-organizers of the above sessions

 

Zi Chen (zi.chen@dartmouth.edu, Dartmouth)
Corentin Coulais (coulais@uva.nl, Amsterdam University)
James Hanna (hannaj@vt.edu, Virginia Tech)
Katharine E. Jensen (kej2@williams.edu, Williams College)
Francisco Jimenez (Francisco.LopezJimenez@colorado.edu, Boulder University)
Sung Hoon Kang (shkang@jhu.edu, Johns Hopkins University)
Eleni Katifori (katifori@sas.upenn.edu, U Penn)
John M. Kolinski (john.kolinski@epfl.ch, EPFL)
Andrej Kosmrlj (andrej@princeton.edu, Princeton)
Joel Marthelot (jgam@princeton.edu, Princeton)
Johannes Overvelde (overvelde@amolf.nl, AMOLF)
Pedro M. Reis (pedro.reis@epfl.ch, EPFL)
Zeb Rocklin (dzr3@cornell.edu, Cornell and Georgia Tech)
Shmuel M. Rubinstein (shmuel@seas.harvard.edu, Harvard)
Chris Rycroft (chr@seas.harvard.edu, Harvard)
Christian Santangelo (csantang@physics.umass.edu, U Mass Amherst)

 

01.1.22 Mechanics of Mechanical Networks (GSOFT, DPOLY, GSNP) [same as 02.1.5, 03.1.9, 04.1.23]
Physical networks are foundational to the physics of polymers and biological tissues, and trussed systems have long been ubiquitous in engineering. Over the past few years, the study of mechanical networks has spread across length scales to encompass actin networks, venation networks in leaves, spider webs, stretchable electronics, mechanical metamaterials (including topological materials), textiles, and architectural gridshells. This focus session will provide a timely unified perspective to these networked systems, under the umbrella of the nonlinear physics of their underlying mechanics.
Organizers: Pedro M. Reis (preis@mit.edu, MIT) and Eleni Katifori (katifori@sas.upenn.edu, U Penn)

 

03.1.6 Morphable Structures (GSNP)
Structures which operate through significant geometric reconfiguration are ubiquitous in nature and engineering, including tree leaves, insect wings, ultralight spacecrafts, stents in angioplasty or pneumatically actuated soft robots. While there has been recent efforts in the study of the mechanics, the stability and the structural performance of these structures in the physics community, e.g. origami and kirigami, a unified approach to the design of structures able to achieve complex yet repeatable and programmable geometric reconfiguration remains elusive. A key challenge in the design of morphable structures is the non-trivial relationship between the actuation mechanism and the geometry and dynamics of the reconfiguration process. Controlled differential growth, pneumatic actuation, swelling, stored strain energy, osmotic or capillary effects can all be used as basic actuation mechanisms, driving single or multiple points of the structure. Recent advances in the field have focused in understanding how to embed the blueprint of the final configuration in the initial shape, and how the mechanics at the local scale (such as folds, hinges and kinks) affect the global reconfiguration process.
Organizers: Joel Marthelot (jmarthel@mit.edu, MIT), Pierre-Thomas Brun (Princeton), Francisco Jimenez (Boulder University)

02.1.7 Morphogenesis (DBIO, GSOFT, GSNP) [same as 03.1.10, 04.1.16]
The morphology of biological tissues and structures has long inspired scientific advances. Recent developments have focused on understanding the elaborate strategies developed by biological systems for regulating pattern formation and mechanical forces in both space and time. Morphogenesis is also a source of inspiration for designing shape-programmable, stimuli-responsive matter. This focus session will bring together researchers working on morphogenesis from diverse backgrounds to forge new interdisciplinary connections.
Organizers: Andrej Kosmrlj (andrej@princeton.edu, Princeton), Zi Chen (zi.chen@dartmouth.edu, Dartmouth)

02.1.4 Origami and Kirigami Metamaterials (GSOFT, GSNP)
Thin sheets possess mechanical properties programmed via patterns of folds (origami) and cuts (kirigami). From initially flat sheets, intricate three-dimensional structures are formed from the tabletop to the atomic scale and from outer space to the human heart. This focus session brings together researchers with diverse approaches to explore the varied mechanical properties of origami and kirigami metamaterials.
Organizers: Zeb Rocklin (dzr3@cornell.edu, Cornell and Georgia Tech), Christian Santangelo (csantang@physics.umass.edu, U Mass Amherst)

02.1.3 Machine Learning in Nonlinear Physics and Mechanics (GSOFT, GSNP) [same as 03.1.14]
Interest in machine learning applications to a variety of nonlinear and mechanical systems has been growing. The tool is now even affecting experimental design and data collection. This focus session aims to trigger discussions about machine learning in the context of bridging analysis and experiments.
Organizers: Chris Rycroft (chr@seas.harvard.edu, Harvard), Shmuel M. Rubinstein (shmuel@seas.harvard.edu, Harvard)

03.1.3 Mechanical Metamaterials (GSNP, DPOLY, GSOFT, DBIO)
The field of mechanical metamaterials aims at the development and understanding of materials that get their mechanical properties from their geometries, rather than solely from their chemistry. Thanks to the advent of advanced fabrication and computational techniques, the field has seen an explosion of activities. Particularly exciting directions include the creation of materials with novel and extreme mechanical properties (i.e. very light and very stiff), programmable, shape changing and advanced signaling materials, where often non-linearities play a crucial role. Lying at the cusp between physics, engineering, and mathematics, this session aims at bringing together researchers from diverse backgrounds to forge new interdisciplinary connections.
Organizers: Johannes Overvelde (overvelde@amolf.nl, AMOLF) and Sung Hoon Kang (shkang@jhu.edu, Johns Hopkins University), Corentin Coulais (coulais@uva.nl, Amsterdam University)

01.1.23 Soft Interface Mechanics (GSOFT, DPOLY, DBIO) [same as 02.1.10, 04.1.28]
The response of soft materials to stresses is often strongly influenced by boundary conditions. Given the many length scales that define the mechanical response of soft materials and the complexity that this response can have, even defining the experimental or theoretical questions that illuminate soft interface mechanics is a great challenge. This focus session highlights the latest advances in this area, covering systems ranging from fluids to solids, and showcases the new experimental and theoretical approaches that are pushing beyond the classical theories of interface mechanics.
Organizers: Katharine E. Jensen (kej2@williams.edu, Williams College), John M. Kolinski (john.kolinski@epfl.ch, EPFL)

02.1.11 Fluid Mechanics for Soft Matter (GSOFT, DPOLY, GSNP) [same as 01.1.24, 03.1.15]
Fluid mechanics plays a central role in soft matter physics, whether through capillary stresses at boundaries, establishing the bulk rheology for a porous medium, or in governing stresses acting on living materials. The many length scales of fluid flow in soft matter lead to the emergence of a variety of physical responses. This focus session will explore the central role played by fluid mechanics in determining the physics of soft and living matter.
Organizers: John M. Kolinski (john.kolinski@epfl.ch, EPFL), Pierre-Thomas Brun (Princeton, pbrun@princeton.edu, Princeton)

3.1.4 Extreme Mechanical Instabilities, Defects, and Large Deformations (GSNP, DBIO) [same as 04.1.30]
Linear stability analysis consistently overestimate the critical loads required for the collapse of loaded thin elastic structures when compared to observed values obtained though experiments. This discrepancy pertains to a plethora of mechanical systems ranging from friction, fracture and shell stability to turbulence in a pipe, and is primarily due to defects. Properly accounting for the role of defects requires understanding the non-linear failure mode in the presence of field focusing mechanism. Today, with unprecedented understanding in non-linear mechanical response we are better equipped than ever to address the subtle issues surrounding the loss of stability in such elastic systems and to lead to significant breakthroughs in their understanding exploiting both theory and experiment.
Organizers: Efi Efrati (efi.efrati@weizmann.ac.il, Weizmann) and Shmuel Rubinstein (shmuel@seas.harvard.edu, Harvard)

Modelling and Computational Challenges in Granular Flows, WCCM, 22-27/7, NY, USA

Chers collègues,

nous organisons, Ken Kamrin, Thomas Weinhart et moi-même, un mini-symposium intitulé “Modelling and Computational Challenges in Granular Flows” pour le 13ème World Congress in Computational Mechanics (WCCM), qui aura lieu du 22 au 27 juillet 2018 à New-York City. Le descriptif du mini-symposium est donné en fin de ce message.

Nous vous invitons à soumettre un abstract depuis le site de la conférence (http://www.wccm2018.org/), la date limite de soumission étant fixée au 31 décembre 2017.

N’hésitez pas à transmettre cette invitation à vos collègues ou étudiants !

Bien cordialement,

Ken, Thomas et Rudy

Session details:

Title: Modelling and Computational Challenges in Granular Flows

Keywords: Granular flows, Computational Methods, Fluid Dynamics.

Abstract: Granular flows are ubiquitous in many fields such as industrial processing, mining, energy production, food powders, biology, geoscience, or mechanical and civil engineering. The analysis and prediction of these flows is challenging as they often occur in complex geometries and their rheology can be influenced by many microscopic and macroscopic parameters. Different computational approaches exist:

– Discrete particle methods (DPMs) are a very powerful computational tool that allows the simulation of individual particles with complex interactions, arbitrary shapes, in arbitrary geometries, by solving Newton’s laws for each particle. This means elaborate interactions of sintering, breaking and agglomeration of particles can be captured by the contact model. However, this method is computationally expensive and is not able to deal with the vast number of particles involved in full-scale industrial or environmental situations.

– On the other hand, continuum methods can simulate the volume of real industrial flows, but have to make averaging approximations and require physical modelling, sometimes inspired by DPM results. Once these averaged parameters have been tuned via experimental data, these models can be surprisingly accurate but their general applicability is still to demonstrate.

An accurate prediction of granular flow is very important for the efficiency and safety of the design of many engineering and industrial applications. This mini-symposium aims to provide an opportunity for physicists, engineers, applied mathematicians and computational scientists to discuss the current progress and latest advancements in the field of advanced modelling and numerical methods for predicting granular flows. The focus will be on new rheological models, computational methods, improved algorithms and the modelling of interesting industrial and academic applications. Submissions can include, but are not limited to the following aspects: capturing shape and surface properties of grains; erosion and deposition; segregation; sintering; fluid-particle interaction; cohesive grains; non-local continuum theories; applications; and, description of benchmark problems for the community.

2 year postdoc on micro-porosity of asphaltic materials (CNRS-MIT)

Postdoctoral Position available at the Joint CNRS-MIT unit in the department of Civil & Environmental Engineering at MIT (2 years)

Job Description
The joint CNRS-MIT Laboratory is seeking a postdoctoral researcher for a new project in the area of bitumen. The project is a jointly led by Prof. Franz Ulm (MIT), Prof. Roland Pellenq (CNRS/MIT) and Dr. Thibaut Divoux (CNRS/MIT) and will have collaborations with Prof. Renal Backov (Univ. Bordeaux) and industry (Ferrovial). The main goal of the project is to gain insight on the micro-porosity of asphaltic materials, gather information on the pore size distribution and the structure of the porous network, and determine its implications on the mechanical properties of asphalt pavement with the goal to improve their strength and durability. The position will be based in Cambridge at MIT, for 2 years. This position is to be filled as soon as possible.

Requirements
* Ph.D. in area of mechanical engineering, materials science engineering, physics or related disciplines
* Candidates are expected to have expertise in experimental soft matter, mechanical tests and programming language such as Matlab or Python
* Candidates with additional experience in micro- or nano-indentation, rheology, electronic microscopy, Atomic Force microscopy will have an added advantage
* Good command of written and spoken English
* Ability to collaborate, work in teams and interact with industrial collaborators

Interested candidates should email to tdivoux@mit.edu the following documents:

(1) a personal CV (including a publication list)
(2) a concise research statement outlining research experience and interests
(3) contact information for 3 professional references