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Abstract
We experimentally study the statistical distributions and the voltage dependence of the
unzipping time of 45 base-pair-long double-stranded DNA through a nanopore. We then
propose a quantitative theoretical description considering the nanopore unzipping process as a
random walk of the opening fork through the DNA sequence energy landscape biased by a
time-fluctuating force. To achieve quantitative agreement fluctuations need to be correlated over
the millisecond range and have an amplitude of order kBT/bp. Significantly slower or faster
fluctuations are not appropriate, suggesting that the unzipping process is efficiently enhanced by
noise in the kHz range. We further show that the unzipping time of short 15 base-pair hairpins
does not always increase with the global stability of the double helix and we theoretically study
the role of DNA elasticity on the conversion of the electrical bias into a mechanical unzipping
force.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Proteinaceous and artificial nanopores are under increasing
investigation as ways to efficiently detect and count single
molecules. The transient blockade of the pore ionic current
concomitant to the translocation of a molecule of interest has
been studied to characterize the passage of single-stranded
DNA (ssDNA) [1, 2], proteins [3–5], neutral polymers [6]
or to study local chemical reactions [7]. Nanopores can also
be used as force transducers. The electrophoretically driven
translocation of molecules larger than the pore diameter can
be obtained at high enough bias provided that the molecules
deform to accommodate into the pore lumen. Double-stranded
DNA (dsDNA) [8–10], loosely folded proteins [4, 11] or
DNA-bound enzymes [12–15] can be forced to translocate by
application of a suitable voltage bias. In the case of dsDNA
the translocation process can be associated with unzipping of
the base-pair sequence if the pore is smaller than 2 nm. Force
spectroscopy [16, 17] or constant force unzipping [8, 9]
have been performed on rather short dsDNA (10–20 bp).
Unlike other micromanipulation techniques, such as optical
or magnetic trapping, nanopore unzipping does not allow the

1 Present address: School of Chemistry and Chemical Biology, University
College Dublin, Republic of Ireland.

measurement of the unzipping force nor of the position of the
DNA strand in the pore. Instead, a controlled biasing voltage
is applied and the distributions of total DNA passage time
are measured. The electrophoretic drive plays the role of the
magnetic or optical force but cannot be directly measured. To a
first approximation it can be related to the applied voltage V as
F = qeff ∗ V

d , where d is the pore length and qeff is an effective
charge, the value of which ranges from 0.1 to 0.4 e−/bp. This
approach was successfully used to explain unzipping of short
DNA hairpins under constant or ramped voltages. Several
studies tried to decipher the mechanism of DNA unzipping
in nanopores as a function of the pore size [18], sequence
length and base composition [8–10, 19, 20]. So far, the
theoretical descriptions of nanopore unzipping consider the
diffusion of the unzipping fork at constant force or constant
loading rate over a single effective energy barrier for short
hairpins [9, 21] or in a sequence-dependent energy landscape
for larger sequences [22, 23, 17, 21, 24]. All-atom molecular
dynamics simulations were performed to look at the unzipping
process of short hairpins in artificial or proteinaceous pores
[25–27]. However, to date, all models fail to quantitatively
predict the translocation time of dsDNA in nanopores although
the same approaches accurately describe DNA unzipping using
optical or magnetic traps.
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Table 1. Hairpin and duplex sequences used in this study. Duplex sequences given here are hybridized to their complementary part attached
to a polyA moiety.

Hairpins
hp1 5′ AGGCTGCGGCGTCGGATA GTTG TATCCGACGCCGCAGCCT(A)30 3′
hp2 5′ AGGCTGCGATTCGTCCTG GTTG CAGGACGAATCGCAGCCT(A)30 3′
hp3 5′ AGGCTGCGATCTGTTCGT GTTG ACGAACAGATCGCAGCCT(A)30 3′
hp4 5′ AGGCTGCGTTATCGGTTC GTTG GAACCGATAACGCAGCCT(A)30 3′
hp5 5′ AGGCTGCGAAATGCTGTT GTTG AACAGCATTTCGCAGCCT(A)30 3′

Duplex
Dupl 5′ AGGCTGCGGCATTTTGTCCGCGCCGGGCTTCGCTCACTGTTCAGG 3′

It was previously reported that the nanopore unzipping
process depends on the pore geometry [18, 28], the base-
specific pore/DNA interactions [29] and local base-pairing
stability [20, 28]. In this paper we argue that considering
the base-pair stabilities alone is not enough to account for
nanopore unzipping experiments. Force fluctuations and/or
local molecule elasticity may also play an important role. In
the first part, we show that the voltage dependence of the
translocation of a 45-mer DNA duplex can be quantitatively
explained by the presence of correlated time fluctuations
of order 1kBT/bp in the unzipping force. In the second
part we show experimental evidence that 15-mer hairpins do
not always unzip according to their global stability. We
hypothesize that this behavior may partly originate from
cooperative opening of several bases due to local differences
in molecular elasticity. We provide an illustrative 1D model
of force spreading along a DNA molecule unzipped in a shear
mode.

2. Materials and methods

2.1. Hairpins and duplex

All DNA oligonucleotides were purchased PAGE purified
from Eurogentec SA. The hairpins were slowly annealed after
thermal denaturation at 95 ◦C. They were used at a final
concentration of 2.5 μM. For the duplex, the amount of single-
stranded DNA in the solution was minimized by an agarose gel
purification (without staining) of the hybridized strands. The
sequences of the molecules are given in table 1. Common
features of the sequences are highlighted in bold and loops
are hyphenated. Hairpin sequences are given in full. The
duplex sequence is complemented by the appropriate other
DNA strand with a polyA tail of 30 bases at its 3′ end. We
used TE Buffer 1x, pH = 7.4 supplemented with 1 M KCl. All
experiments were carried out at 24 ◦C.

2.2. Experimental set-up

We used a classical nanopore set-up already described in [20].
Black lipid membranes were formed on a hole of 30 μm in
diameter, punctured in a Teflon septum. The DPhPC (Avanti
Lipids) bilayer was about 10 μm in diameter with a lipid
annulus around. This configuration allowed the membranes
to resist voltages as large as 350 mV without rupture. Alpha
hemolysin was purchased from Sigma.

Melting curves were obtained by measuring the change
in absorbance at 260 nm of the DNA hairpins at 1 μM. The

temperature was varied by 0.2 ◦C min−1 between 20 and 95 ◦C.
The following buffer was used: LiCaco 20 mM, KCl 100 mM,
pH 7.2. The dissociation coefficients were extracted using the
standard protocol described in [30].

2.3. Numerical calculation of the first passage time

We theoretically describe the translocation of DNA through a
nanopore by the biased diffusion of a fictitious point particle
representing the unzipping fork in the energy landscape E j

created by the unzipping of the first j th bases. We coined w the
mechanical and electrostatic energy difference w between two
bases paired on the cis side of the membrane and two bases,
unpaired, one on each side of the membrane. We assume that
it does not depend on the sequence. The bases are numbered
from 1 to N starting at the first base after the poly A overhang.
We call E j the free enthalpy needed to unzip the first j th bases.
The unzipping energy landscape then is

E j =
j∑

i=1

(�Hi − T �Si ) − j w (1)

where �Hi and �Si are the tabulated bulk melting values of
each base pairs according to the nearest-neighbor model [31].
The energy w linearly biases the energy landscape estimated
for DNA thermal melting in solution. Distributions of DNA
unzipping time are calculated from the distributions of the
first passage time of the unzipping fork at base N . In a
previous work [24] we solved the diffusion dynamics in this
landscape by thermally activated jumps from one to the next
base pairs using a Gillespie method [32]. This method is not
very efficient at calculating very long translocation times. In
order to compute first passage times over 13 decades in time,
we adopt a more continuous approach by solving the Fokker–
Planck equation associated with the diffusion process. Let
f (x, t) be the probability of finding the unzipping fork at
position x at time t . The time evolution of f follows

∂t f = ∂x

{
D

[
∂x + 1

kBT
∂x E j

]
f

}
. (2)

The equation was solved by matrix multiplications represent-
ing discrete spatial steps equal to one base. The diffusion
coefficient D is the only fitting parameter. It sets the uni-
tary timescale to as

√
Dto = 1 base. The boundary condi-

tions are reflecting at x = 1 to prevent backward escape, and
fully absorbing at x = N . The cumulative distributions of
first passage time Pw(τ) are calculated as 1 − ∫ N

0 f (x, t) dx .
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We use f (x, 0) = δ(0) as the initial condition. In the range
of common accessible times the Gillespie method or solving
the Fokker–Planck equations led to similar results (data not
shown).

3. Results and discussion

3.1. Unzipping of long DNA duplexes: the role of force
fluctuations

DNA unzipping under constant force using magnetic
tweezers [33] have been implemented on DNA duplexes
of several kilobase pairs. Above a certain force threshold
(between 12 and 15 pN) the DNA mechanically melts.
Around the transition a gradual opening of the molecules
was observed with transient pauses at tightly bound regions
resulting from a large local GC content. The unzipping
time thus depends not only on the global duplex stability but
on the local shape of the unzipping energy landscape. The
same behavior could be expected for nanopore unzipping.
In that case, however, the DNA duplexes are significantly
shorter (typically less than 100 bp). For so few bases other
parameters than base-pairing stability may also affect the
unzipping dynamics. Among those are DNA/pore interactions,
geometrical constraints and confinement, detailed process of
single base unzipping and local distribution of mechanical
stress. For very short sequences (10 bp or less) a small number
of molecular events are expected to allow the translocation of
the molecule. Indeed it has been reported that the translocation
of short hairpins follow a Kramers description and can be
reduced to a thermal passage over an energy barrier (Kramers
event) corresponding to the opening of five bases [9]. This
description was further refined allowing a finite escape time of
the freed molecule [17, 21]. However, the value of the energy
barrier could not be deduced directly from the sequence. For
longer sequences the Kramers picture becomes inappropriate
and it was demonstrated [24] that the unzipping process can
be described by the sequential opening of the individual
base pairs. One can expect that the detailed mechanisms of
base-pair opening are averaged and that the DNA unzipping
dynamics is mainly controlled by the large scale variations of
base composition. As a result, the unzipping time depends
mostly on the details of the energy landscape [24, 20]. In
section 3.2 we study the voltage dependence of DNA unzipping
of a 45-mer duplex coined Dupl and described in table 1. A
previous study [20] showed that 45 bp is enough to consider the
variations of base composition as the main factor controlling
the DNA translocation dynamics. We then provide a random
walk model under fluctuating force that quantitatively accounts
for the voltage dependence of the unzipping dynamics under
constant voltage.

We start by determining experimentally the voltage
dependence of the 45 bp DNA duplex coined Dupl described
in table 1. Figure 1(a) shows the translocation time cumulative
distributions P(τ ) at biasing voltages ranging from 150
to 350 mV. The voltage dependence of the median time
τ1/2 defined as P(τ1/2) = 0.5 is given in figure 1(b).
Should the unzipping be a simple Kramers process over an

Figure 1. Experimental results. (a) Cumulative distributions of the
translocation times P(τ) for the 45-mer duplex Dupl at various
voltages. From right to left, V = 150, 180, 210, 250 and 350 mV.
Translocation experiments were performed at 24 ◦C, pH 7.4, 1 M
KCl. The black solid lines correspond to an exponential fit of the
distribution at 180 mV: P(τ) = 1 − exp (−ατ). (b) Median time τ1/2

of the distributions as a function of the applied voltage V . Notice that
τ1/2 does not vary exponentially with V . Doubling V results in a 2.5
decade decrease in τ1/2.

activation energy barrier E∗, one would expect, i—cumulative
distributions P(τ ) of the form P(τ ) = 1 − exp(−τ/τo) and
ii—median times τ1/2 = ln(2) ∗ τo that scale as τ1/2 ∝
exp(

E∗−qeff V )

kBT ). Figure 1(c) shows that the predicted functional
form does not match well our experimental distributions that
are wider than exponential. Moreover, the log–lin plot of τ1/2

versus V in figure 1 shows that log(τ1/2) does not vary linearly
with V , especially for voltages below 200 mV. At low voltages
τ1/2 diverges more rapidly than exponentially with the voltage.
Since none of the above features are experimentally observed,
we conclude that the unzipping process cannot be described
by two states (open and closed) separated by a fixed effective
energy barrier. Spatial coordinates and the existence of several
unzipped states should be taken into account.

We thus describe the unzipping process as a random
walk of the opening fork. This dynamic description is
similar to the approaches proposed to explain DNA unzipping
using magnetic traps at constant force [33]. Unzipping of
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DNA can be described theoretically as a random walk of a
fictitious particle (representing the opening fork) in a free
energy landscape. The landscape is calculated as the free
enthalpy gain of the system as a function of i—the position
of the DNA in the pore [23] and ii—the number of open base
pairs [23, 24, 22]. The action of the transmembrane voltage
is modeled by a bias of the energy landscape. The bias can
be implemented in two ways. A ‘ratchet-like’ approach: the
entry rate of a single base in the pore depends on the voltage,
whereas the opening and closing of each base pair [23] is
only thermally activated without any voltage dependence. Or
a ‘mechanical’ approach: the opening fork always stands at
the pore constriction, the threading of the single strand is
instantaneous and the electrophoretic drive biases the opening
and closing rates of the last closed base pair [34, 24]. In the
following, we describe a 1D model that takes this ‘mechanical’
approach.

Let us assume that the opening fork always stands at
the pore constriction, the threading of the single strand is
instantaneous and the electrophoretic drive biases the opening
and closing rates of the last closed base pair. The energy
landscape is built as a function of the base number j as

E j =
j∑

i=1

(�Hi − T �Si ) − j w (3)

where �Hi and �Si are the tabulated bulk melting values of
each base pair according to the nearest-neighbor model [31].
The mechanical and electrostatic energy difference w between
two bases paired on the cis side of the membrane and two
bases, unpaired, one on each side of the membrane, is assumed
to be sequence-independent. The energy landscape is thus
tilted linearly by w. The translocation time of a particle equals
its first passage time at base N . The latter is calculated
numerically by solving the associated Fokker–Planck equation
by discrete steps equal to one base, as described in section 2.

Figure 2(a) shows the distributions of translocation time
calculated for the Dupl sequence at various biasing energies
w ranging from 2.5 to 5 kBT . The dependence of the median
times τ1/2 with w is also represented in figure 2(b). The model
makes both the following predictions:

(i) For w smaller than ∼3.3 kB T, the distributions can be well
fitted by a single exponential Pw(τ) = 1 − exp(−τ/τo)

(see figure 2(a)). For values of w above 3.3 kBT , the
distributions become steeper than exponential.

(ii) τ1/2 diverges very quickly at low biasing energy w and
more slowly at low w. Doubling w results in an 11 orders
of magnitude reduction of the translocation time.

Both effects can be explained by the shapes of the energy
landscape E j depicted in figure 3 for various w. At low w, the
energy landscape has local minima that pin the unzipping fork.
The pinning regions are highlighted in bold.

For w < 3kBT the landscape displays a single minimum
localized at n = 0 corresponding to the fully closed molecule.
The unzipping process is thermodynamically unfavorable and
occurs only through a fluctuation over a very large effective
energy barrier corresponding to the whole energy profile.

Figure 2. Predicted values of the distribution of first passage times
assuming constant biasing energy w. (a) Cumulative distributions of
first passage times Pw(τ) for the Dupl sequence at various w = 2.89,
3.1, 3.25, 3.5, 3.7, 3.9, 4 and 4.2 kBT (right to left). For small w, the
distributions nicely fit to a simple exponential (dashed line). At
larger w, the distributions become increasingly sharp. (b) Median
first passage times τ1/2 versus w. Notice the very strong dependence
of τ1/2 with w for w < 3.2kBT . Doubling the bias energy results in
an 11-decade decrease of the translocation time.

This explains the very large values of τ1/2 at low w and the
exponential form of Pw(τ).

For 3 < w < 3.8kB T , the unzipping process is
thermodynamically favorable but should still occur by an
activated jump over an energy barrier with a voltage-dependent
width. Furthermore, in the present energy landscape a second
minimum appears around base 15 that localizes the unzipping
fork. The activation energy for DNA unzipping is then due to
bases n > 15. The escape process is still thermally activated
but the effective energy barrier is changed. It results that τ1/2

has a non-monoexponential dependence with w.
For w > 3.8kB T , there is no local minimum anymore.

The unzipping fork is no longer pinned. The unzipping process
is not dominated by a Kramers escape rate but amounts to a
biased diffusion in a smooth landscape. In this ballistic limit
τ1/2 varies linearly with w. A detailed discussion of these
regimes can be found in [24].
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Figure 3. Energy landscape E j for the Dupl sequence at
w = 2.5kBT , 3.2kBT and 4.2kBT . Monitoring f (n, t), the
probability of finding the unzipping fork on base n at time t , we
identified the pinning region of the unzipping process. These regions
are highlighted in bold. At low w the unzipping fork is localized
around base zero and translocation occurs by an activated jump over
the energy barrier made by the whole sequence. At intermediate w, a
second minima appears that pins the unzipping fork around base 15.
The activation barrier is reduced. At large w the landscape does not
present any minima and the translocation is no longer an activated
process.

In order to relate the theoretical predictions to the
experimental data we needed to evaluate the biasing energy
applied to an individual base w as a function of V . In leading
order w is expected to be proportional to the biasing voltage
w = qeff V . The effective charge qeff should depend not
only on the charge of the DNA but also on other transduction
factors such as the local geometry and elasticity. It is left
as a fitting parameter. According to the model, doubling of
w results in a 11 orders of magnitude decrease of the predicted
τ1/2. However, we experimentally observe a 2.5 orders of
magnitude decrease upon doubling V . Hence the predicted
localization of the unzipping fork is much too strong compared
to our experimental observations. In addition, over the whole
experimental voltage range, the measured distributions Pw(τ)

always span several time decades, while the model predicts a
ballistic regime with very narrow distributions Pw(τ) at large
w. It is a clear indication that the ballistic regime is not
observed in the available voltage range.

The model hence needs to be modified in order to fit our
experimental results. In particular, the pinning transition needs
to be more progressive. Since the nonlinear dependence of
the translocation time with V is strong, one can expect that
small temporal fluctuations of the biasing energy w may result
in a large effect on the distribution of translocation times.
Indeed w is prone to fluctuate, even at fixed applied voltage,
since it should depend on the pore/DNA configuration, the
instantaneous charge distribution and the instantaneous pore
configuration. The translocation process might be assisted
by thermal fluctuations in the biasing force. To investigate
this idea, we implement such fluctuations by introducing a

time-dependent energy landscape calculated as

E j(t) =
j∑

i=0

(�Hi − T �Si ) − j w(t) (4)

where w(t) is now a time-dependent stochastic variable with
a Gaussian probability p(w) = 1√

(2πσ 2)
exp(−(w−wo)

2/2σ 2)

centered on w0 with wo = qeffV and with a voltage-
independent spread σ of order 1kBT . In order to simplify the
resolution of the dynamic equation, we assume that w(t) is
constant by part during a correlation time τcorr. We also
assume that the fluctuations of w(t) happen on a much longer
timescale than the thermal fluctuations acting on individual
base pairs. Thermal noise and force fluctuations are thus
additive. Strictly speaking, the Fokker–Planck equation is a
noiseless equation derived from a Langevin equation with a
random noise. The expression we use is valid only for white
uncorrelated thermal noise. If the random force is ‘colored’
and correlated [35], the present expression of the Fokker–
Planck equation is no longer valid. However, in the present
case since w is constant by part, our treatment of the noise is
correct. Under these assumptions the diffusion dynamics can
still be described by the usual Fokker–Planck equation. For
every τcorr the value of w is randomized to an uncorrelated
value of probability p(w). The unzipping probabilities are
averaged over 500 noise realizations for each wo. We thus have
the following fitting parameters: qeff that determines the force
transduction efficiency, D that determines the unitary timescale
of the simulation and τcorr that sets the correlation time of the
fluctuations. σ is expected to be of order 1kBT .

Let us analyze different limits for the noise correlation
time.

In the limit of τcorr∼1 (a.u.), i.e. around the unitary time
required to move by only one base, the noise effect is very
small. The value of w is randomized at each step. Since
the translocation process involves many single-base opening
steps, it amounts to biasing the energy landscape by the value
w̄ = wo. This limit is equivalent to our previously described
model at a fixed w.

The limit τcorr → ∞ depicts a situation where each
single molecule translocates with a random but fixed w. The
probability distributions of unzipping times should then be the
average of the probabilities obtained by the previous model for
w varying by a few kBT . The typical translocation times for
these distributions span the full time range covered by a 1kBT
variance in w. This range is around 7–8 decades in time for
small wo. It would thus mean that the distributions should
be extremely large with most molecules remaining stuck in
the pore. Experimentally, though, we observe that almost all
molecules end up translocating over two decades in time.

We thus investigate the regime where τcorr is of the same
order of magnitude as the translocation time of DNA for
rather large values of fixed w. Assuming σ = 1kBT , we
study the dependence of τ1/2 versus wo for various τcorr. As
shown in figure 4 the effect of τcorr is rather strong. For
τcorr = 30 a.u. we find that τ1/2 now decreases by only 2.5
orders of magnitude upon doubling wo. The first passage
time distributions are also more stretched than in the preceding
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Figure 4. Effect of a Gaussian correlated noise of amplitude
σ = 1 kBT on the unzipping process. (a) Cumulative distributions of
the first passage times Pwo,σ (τ ) for Dupl sequence at various wo and
a correlation time τcorr = 30 a.u. wo = 2, 2.3, 2.5, 2.8, 3.0, 3.3, 3.6,
3.8 and 4kBT (right to left). The distributions Pwo ,σ (τ ) are wider than
in the previous model especially at large wo. (b) Dependence of τ1/2

with wo for σ = 1kBT and τcorr = 10, 20, 30 and 40 a.u. Notice the
reduction of the divergence of τ1/2 with increasing correlation time.

model, especially at large wo. Introducing Gaussian correlated
noise in the value of the biasing energy thus greatly reduces
the dependence of τ1/2 with wo. It can be crudely understood
by saying that, even if wo lies in the highly pinned regime, the
molecules translocate when the fluctuation is large enough to
allow its unzipping during the correlation time. An analytical
description of this effect can be found in the appendix.

Our experimental data can now be fitted as shown in
figure 5. We find qeff = 0.22e (in agreement with
previous publications [9, 23, 36]) and D is 9 base2 μs−1

corresponding to a unitary time step of 1.1 μs (in agreement
with a typical DNA single-base unzipping and translocating
rate [23, 20, 37]). The best fit is obtained for σ = 1.2kBT .
Our model then predicts that the correlation time of the
fluctuations τcorr ∼ 2 ms. The fit of the unzipping time
probabilities is given in figure 4(a) at various wo. Although
the predicted distributions do not perfectly fit the experimental
curves, the agreement is very significantly improved by the
introduction of time-correlated fluctuations in the bias energy.

Figure 5. (a) Fit of the experimental curves (symbols) by the
predicted first passage time distributions for the following values of
fitting parameters: σ = 1.2kBT , D = 9 base2 μs−1, qeff = 0.22 and
τcorr = 2.1 ms. (b) Fit of the dependence of the experimental median
translocation time. The introduction of fluctuations in the biasing
energy leads to a significantly improved agreement between
experiment and theory.

This indicates that a stochastic resonance [35, 38] affects
the unzipping process, in the sense that the presence of
noise greatly facilitates the translocation. One might expect
that the agreement between experiment and theory could be
further improved by refining our description of the noise. A
more rigorous treatment of the problem would be to solve
a 2D master equation using the Gillespie method with both
fork position and w as stochastic variables with appropriate
transition rates. This approach is left for future work.

In addition to force fluctuations, one could also expect
that the unzipping energy landscape in a nanopore differs
from the landscape derived from the nearest-neighbor model
measured in bulk. Entropic differences between the unzipped
and zipped states are likely to be reduced due to the confined
environment. This effect should tend to stabilize the paired
state and minimize the effect of temperature. In contrast,
the possible interactions through hydrogen bonds of the bases
with the pore hydrophilic residues could lower the enthalpic
contribution of the melting energy and favor DNA unzipping.
The pore could then have a kind of ‘catalytic’ action on the
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Figure 6. Thermal melting curves of the five short hairpins: the
dissociation coefficient α = [ss DN A]

[ds DN A] is plotted as a function of
temperature for hp1 (•), hp2 (�), hp3 (◦), hp4 ( ) and hp5 (
).
The melting temperatures are ordered according to the predicted
hairpin stabilities.

duplex unzipping process. In the absence of quantitative
measurements of these effects, it is hard to conclude what is
the main contribution of the pore on DNA unzipping.

3.2. Unzipping of short hairpins: putative role of cooperative
unzipping

The model presented above assumes that the kinetics of
DNA unzipping is governed by the duplex energy landscape.
The influence of DNA stability on the distributions of
translocation times was usually performed on small hairpins
(around 10 bases). The sequence stabilities were modified
either by lengthening the sequence [9, 19] or by introducing
mismatches [8, 10, 19]. These modifications not only change
the total base-pairing energy by several tens of per cent but
also modify the number of base pairs to open. It was found
that the translocation times of these molecules correlate either
quantitatively [39] or qualitatively [17, 19] with the hairpin
stability. These translocation process were described by a
simple Kramers process. However, in a Kramers event the
height of the energy barrier may not correlate with the stability
difference between both equilibrium states. Furthermore,
cooperative opening of bases as well as local force spreading
along the DNA molecule could be expected to play an
important role in the dynamics of unzipping of short molecules.
In this section we experimentally show that short hairpins do
not always translocate according to their global stabilities as
usually described in the literature. We then derive a simple
1D athermal model that accounts for duplex rigidity in order
to illustrate how shear forces spread along the DNA molecule
during nanopore unzipping.

3.2.1. Small hairpins’ translocation is not always controlled
by their global stabilities. We designed 5 hairpins of 15
base pairs with the following characteristics: the first 8 bases
(AGGCTGCG) and the loop sequence (GTTG) are identical for
all molecules and an overhang of 30 polyA is added at their 3′
moieties. Mfold Server was used to predict the thermodynamic

Table 2. Thermodynamical parameters of the DNA hairpins
predicted by the Mfold Server at 1 M NaCl and 24 ◦C. �Ho is in
kcal mol−1, �So in cal mol−1 K−1 and τ1/2 in ms.

Name �Ho �So �Go A T G C τ1/2

Hp1 148.3 395.64 30.8 3 8 3 4 5
Hp2 149.1 402.8 29.5 5 6 4 3 18
Hp3 145.7 394.37 28.6 6 6 2 4 9
Hp4 145.7 394.7 28.5 6 6 2 4 39
Hp5 144.4 391.9 28 5 6 4 3 23

parameters of the hairpins. The hairpins are named according
to their stability in descending order. The free enthalpy
differences at 24 ◦C between hp1 and hp5 are 2.8 kcal mol−1 =
4.8kBT/molecule. The values are summarized in table 2.

First, we checked that the thermal melting profiles of the
hairpins vary according to the predicted stabilities. As shown
in figure 6, the melting temperatures follow the free enthalpy
order. The hairpins were then threaded at constant voltage
(150 mV) through a single alpha-hemolysin pore in 100 mM
tr i s buffer at pH = 7.4, 1 M KCl and 24 ◦C. The scatter plot
of the normalized blocked currents ib versus the translocation
times τ for each hairpin are shown on figure 7(a). Figure 7(b)
shows the overlay of the cumulative translocation probabilities
P(τ ) for the various molecules. The graphs clearly indicate
that the blocked current is the same for all sequences, whereas
the translocation times vary. The hairpins can be classified
by increasing order of characteristic translocation times as:
hp1 < hp3 < hp2 < hp5 < hp4. The corresponding
values of τ1/2 defined as P(τ1/2) = 0.5 are given in table 2.
Surprisingly, figure 7(b) indicates that hp1 translocates about
ten times faster than hp4. The cumulative distributions
P(τ ) cannot be perfectly fitted by a monoexponential. They
display a long time tail larger than what is expected from an
activated jump over a single energy barrier. The width of the
distributions also increase as the characteristic time becomes
longer. It results that the unzipping of these hairpins cannot
be described by a simple two-state process separated by an
activation energy barrier that scales with the global stability
of the hairpins. The non-exponential distributions probably
result from multiple intermediate states, the energies of which
are not correlated with the global helix stability. In particular,
DNA/pore interactions can act as catalysts as described in
section 3.1. However, hp3 and hp4 have almost the same
global stability and base content but translocate on different
timescales. We do not have any final explanation for our
observations: however, in the rest of the paper we would like
to point out the possible role of the local elasticity of the DNA
molecule on the force spreading along the bases and in turn on
the unzipping cooperativity. We do not pretend that it explains
our results but it just emphasizes the fact that local mechanical
properties of the DNA helix can play an additional role to base-
pair stability for unzipping of short DNA hairpins.

3.2.2. Simple athermal 1D model. It was previously
reported that the unzipping time of a hairpin depends on
the pore geometry and on the DNA position relative to
the pore constriction [28]. Similarly, experiments and

7
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Figure 7. (a): Scatter plots of normalized blocked currents versus
translocation times τ for all hairpins. From top to bottom: hp4, hp5,
hp2, hp3 and hp1. (b): Cumulative probability of the translocation
times of hp1 (•), hp2 (�), hp3 (◦), hp4 ( ) and hp5 (
). The
probability is calculated over 600 events on average. Straight lines
are guides to the eye. Notice that the median translocation times do
not follow the hairpin stability order.

simulations [40, 18] have shown that the threshold voltage for
DNA hairpin translocation through artificial pores of 1.5 nm
is lower than through pores of 2 nm. This counterintuitive
result was attributed to two preferential translocation modes
selected by the pore diameter: smaller holes favor low energy
translocation modes where the DNA bases unzip; in contrast,
larger holes favor higher energy processes where the DNA
duplex is stretched without unzipping. Selection of these
modes is mediated through DNA/pore interactions. In this
section we point out that the local elasticity of the molecule
might also play an important role in short DNA unzipping.
The unzipping of a DNA hairpin lodged in the vestibule part
of the pore and held with the polyA handle is depicted in
figure 8. The bases are likely to undergo a shear stress,
forcing them to open along the DNA axis. However, in such
a configuration, the electrophoretic drive is transduced into
a mechanical force through the single-stranded part lodged
in the stem and the mechanical reaction of the pore in the
vicinity of the constriction. The size of the sheared region

and the magnitude of the shear stress depend on the local
torsional and elongational modules of the molecule. In
turn, these local moduli depend on the sequence. Figure 8
depicts an idealized 1D model view inspired by [41] of the
DNA hairpin under a shear force F applied at its ends.
The model is purely athermal and intended to illustrate the
putative role of molecule elasticity. More elaborate models
or simulations should be derived to expect any fitting potency.
Each nucleotide is represented by a massless bead connected
along the DNA backbone by a spring of constant ks and bound
to its complementary base by a breakable elastic spring of
constant kb and rupture force fc. This is, of course, an
oversimplified vision, neglecting the 3D DNA structure. The
structure is coarsely described by the effective value of ks that
also accounts for part of the stacking interactions between
bases. We define r = kb

ks
and call N the number of base

pairs. ui (respectively vi ) represents the displacement of
base pair i from its equilibrium position on strand 1 (strand
2, respectively). fi is the local force sustained by base i .
Unzipping occurs if fi > fc, where fc is the local critical
force. fi is written: fi = kb(ui − vi ) and can be calculated
by solving the following system (see the appendix):

⎛
⎜⎜⎜⎜⎝

α 1
1 α − 1 1

1 α − 1 1
...

1 α

⎞
⎟⎟⎟⎟⎠

fi =

⎛
⎜⎜⎜⎜⎝

2 f r
0
0

· · ·
0

⎞
⎟⎟⎟⎟⎠

(5)
where α = −(1 + 2r). In this model fi , the force supported
by each base pair is thus a function of the relative rigidity of
the bases compared to backbone r and on the total number of
base pairs of the DNA duplex (through the dimension of the
matrix).

Let us first analyze the regime of large N . As shown in
figure 9 inset, fi is accurately approximated in this limit by the
continuum solution fi = f1 exp[(i − 1)/λ] with λ = √

1/2r .
The shear stress amplitude 2F is supported by each base pair
with a characteristic exponential decay length λ. In a quasi-
static regime the sum of forces is null

∑N
0 fi = 2F . This

condition imposes F = λ
2 f1[1 − exp(−N/λ)]. The critical

external force needed to trigger DNA unzipping is thus: Fc =
λ
2 fc[1 − exp(−N/λ)]. If F > Fc collective opening can occur
over j base pairs provided that f j > f c. Fc does depend on
N and r because of the shear spreading along the molecule.
In typical DNA unzipping using magnetic or optical tweezers
the force is applied orthogonally to the DNA backbone. Only
the first base supports the whole external stress and Fc = fc.
In contrast, for nanopore unzipping where DNA is likely to be

shear-opened, the critical external force is Fc =
√

1
8r fc in the

limit of large N . Figure 9(a) shows the dependence of fi with
the ratio r = kb

ks
for a duplex of 40 base pairs. For large r ,

the first base undergoes a high shear force of the order of 2 f
whereas the following bases hardly support any stress. In the
other limit, r � 1, the shear force is equally supported by all
base pairs. The threshold force supported by a base pair is the
rupture force fc above which the base pairs open. If r � 1 the
bases will open one by one for F > 1/2 fc. If r � 1, all base

8
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F

-F

ks

k
b

Figure 8. Left: putative position of the dsDNA in the pore. Right:
1D model of the DNA molecule under a shear stress. A point force f
is applied on the first closed base pair. The elasticity of the DNA
backbone is described by a spring constant ks between each
nucleotide. The elasticity of a base pair is modeled by the spring
constant kb. The force spreads exponentially along the DNA helix.

pairs will open simultaneously for F > N/2 fc. It is likely
that the relevant values of r are below 0.1 if one compares the
forces needed to unzip DNA (12 bp) compared to those needed
to stretch it (60–120 pN). A good way to estimate r would be to
run a simulation of DNA under shear and measure the spread
of the deformation for a very long DNA duplex.

In the limit of N � λ finite size effects occur and the
shear spreading is no longer exponential. Figure 9(b) shows
the distribution of the force along the duplex for a fixed force
F , a ratio r = 0.001 and for different duplex lengths. For
N = 200 the force decreases exponentially along the molecule.
As N decreases the force sustained by each base increases
accordingly. Hence for a homogeneous duplex with r = 0.001
and a critical force fc, the critical shear Fc = 0.5 fc

0.1 for

N = 10 but increases to Fc = 0.5 fc

0.04 for N = 200. In this
limit, and for a fixed external stress F , a short hairpin can open
j base pairs at a time whereas a longer hairpin can stay closed.
This result is not due to the global stability of the hairpin but to
elastic spreading of the force along the molecule. This effect
does not exist in optical trap DNA unzipping since the force is
orthogonal to the backbone and Fc = fc independently of the
duplex length.

We conclude that molecules shorter than the typical
length λ may open cooperatively at smaller forces than longer

Figure 9. A: normalized forces exerted on the base pair as a function
of the ratio r = kb/ks for bases 1, 2, 3, 4, 5, 6, 10, 20 and 40. fb(n)
denotes the force sustained by base pair n and f is the externally
applied force. At large r , the shear force is mostly supported by the
first base pair. In the opposite limit, each base pair is equivalently
sheared. Inset: force supported by each base pair for r = 5, 1, 0.1,
0.05, 0.015, 0.002 and 0.001 from left to right. The shear force

decays exponentially over a characteristic distance λ =
√

ks
2.kb

. B:

finite size effects on the base pair load for fixed force F and given
ratio r = 0.001. The various curves are plotted for 10 (◦), 20 (�), 40
(
) and 200 ( ) base pairs.

molecules and that more rigid molecules are expected to
unzip at larger forces but in a more cooperative way. These
conclusions do not involve any considerations on the base-
pairing stability. For short hairpins the sequence-dependent
local elasticity of the molecule is likely to play a role in the
unzipping mechanism. More accurate evaluation of this effect
could be tested by MD simulations.

4. Conclusion

We showed that the nanopore unzipping of long DNA
sequences can be understood as a diffusion of the unzipping
fork along the sequence energy landscape, biased by a
fluctuating force. Assuming Gaussian fluctuations with a
standard deviation of 1kBT and a correlation time around 2 ms,
we could reproduce the measured distributions of unzipping
times and their voltage dependence. The comparison between
experiment and theory indicates that thermal fluctuations of the
biasing force are important for the translocation of molecules
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through nanopores and that the associated unzipping is assisted
by a stochastic resonance. We further showed examples of
15 base-pair hairpins that do not translocate according to
the global stability of their helix, as usually reported in the
literature. We discussed the influence of factors other than
base-pair stability on the dynamics of translocation of short
hairpins. We specifically focus on the problem of cooperativity
due to local DNA elasticity.
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Appendix

A.1. Analytical derivation of the cumulative first passage time
distributions

In this appendix we derive a semi-analytical expression of the
distribution of first passage time Pwo,σ (τ ) assuming that the
biasing energy is constant over a time τcorr. We study both
limits: τ � τcorr and τ � τcorr. In the limit τ � τcorr, the
value of w is constant over 0 < t < τ but random for each
molecule. Pwo,σ (τ ) then is

Pwo,σ (τ )=
∫ ∞

0
p(w)Pw(τ) dw=〈Pw(τ)〉 for τ � τcorr.

In the limit τ � τcorr, the value of w is constant by part
over a time period of τcorr. The probability of translocating
during a time interval of τcorr is thus

∫ ∞
0 p(w)Pw(τcorr) dw. It

is constant over each interval τcorr. Let us call P̃wo,σ (τ ) =
1 − Pwo,σ (τ ). Then P̃ is

P̃wo,σ (τ + τcorr) =
[

1 −
∫ ∞

0
p(w)Pw(τcorr) dw

]

× 1

τcorr
P̃wo,σ (τ )τcorr.

where Pw(τ) is the translocation time distribution calculated at
constant w.

In the limit of large τ � τcorr, P̃wo,σ (τ ) satisfies the
equation

∂τ P̃wo,σ (τ ) = − 1

τcorr

∫ ∞

0
p(w)Pw(τcorr) dw

︸ ︷︷ ︸
ν

P̃wo,σ (τ ).

Thus at long time the distribution of first passage times
becomes exponential with a characteristic rate ν that depends
on the sequence and on the correlation time:

Pwo,σ (τ ) = 1 − exp(−ντ) for τ � τcorr.

A.2. Solution of the 1D spring model

The system of equations that determines the deformation of the
molecule in this 1D model is the following.

For base i = 1

ks(u2 − u1) + kb(v1 − u1) = f (6)

ks(v2 − v1) + kb(u1 − v1) = − f (7)

for base 1 < i < N

ks(ui−1 − 2ui + ui+1) + kb(vi − ui ) = 0 (8)

ks(vi−1 − 2vi + vi+1) + kb(ui − vi ) = 0 (9)

for base i = N

− ks(uN − uN−1) + kb(vN − uN ) = 0 (10)

− ks(vN − vN−1) + kb(vN − uN ) = 0. (11)

This system is readily solved using the variable �i = ui − vi

and �i = ui + vi .
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