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We present here a microscopic study of the effect of shear on a dense purely repulsive
colloidal suspension. We use multispeckle diffusing wave spectroscopy to monitor the
transient motions of colloidal particles after being submitted to an oscillatory strain. This
technique proves efficient to record the time evolution of the distribution of relaxation
times. After a high oscillatory shear, we show that this distribution displays full aging
behavior. Conversely, when a moderate shear is applied the distribution is modified in a
non-trivial way. Whereas high shear is able to erase all the sample history and rejuvenate it,
a moderate shear helps it to age. We call this phenomenon overaging. We demonstrate that
overaging can be understood if the complete shape of the relaxation time distribution is
taken into account. We finally report how the soft glassy rheology model accounts for
this effect.

I. Introduction

The study of dense colloidal suspensions still raises many open questions. One interesting feature is
that some of these systems remain out of equilibrium for any accessible experimental time. For
instance, if the pair potential of interaction has an attractive part, the particles can aggregate in an
always evolving physical network.1 If the potential is purely repulsive, an increase of concentration
leads to a jamming transition and the suspension can reach an amorphous state or glassy phase.2

More precisely, in this last case the characteristic relaxation time of the system increases drama-
tically around a critical value of the volume fraction fc . For large enough concentrations, the
relaxation processes rapidly become longer than any experimental time. The system is then mac-
roscopically paste-like and can display non-stationary behavior. A direct consequence of the
extremely long relaxation times is that all the past history of the sample has to be taken into
account. A key trick to obtain reproducible results is to perform experiments on a sample with the
exact same history. As far as rheological measurements are concerned, it is known for long that a
high preshear can erase all past memories in many systems. It is thus often used as a trick to reset
the sample history provided that it does not damage it irreversibly. This procedure is reminiscent of
the process of thermal quenching used to erase the history for other structural or spin glasses.3,4

This similarity let envision a comparable role played by shear and temperature on a microscopic
level. It has recently been shown on different ‘paste-like ’ colloidal suspensions that their macro-
scopic behavior after a rheological quench have the same qualitative feature than other glasses after
a temperature quench.5,6 However, measurements of the effect of shear on the dynamics at a
microscopic level are still lacking. In this paper we study a colloidal glass with multispeckle dif-
fusing wave spectroscopy (MSDWS), monitoring the motions of the colloidal particles after that
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the sample underwent various strain histories. We will show that the mechanical perturbation acts
in a dual fashion on the microscopic dynamics. All the observed effects will be discussed within the
soft glassy rheology (SGR) model.7–9

II. Background

In this section we will recall some general results on glasses. We will mainly focus on results
obtained on spin and structural glasses upon a change of temperature. However, most of these
results are similar to that observed in colloidal glasses if a temperature decrease is substituted by an
increase of concentration.2,10 Spin and molecular glasses display a qualitative change in their
microscopic dynamics when the temperature is lowered around the glass transition temperature.
Actually, the distribution of relaxation times splits into two distinct families when the temperature
is decreased (see e.g. refs. 2 and 11): on the one hand, short distance motions and vibrations of the
particles can be described by fast individual modes called b modes. Their sensitivity to temperature
changes is weak. On the other hand collective motions i.e. structural relaxations, occur through a
broad distribution of very slow modes called a modes. These modes are very sensitive to tem-
perature changes. In general, the characteristic time of the a relaxation exhibits such a huge
increase when the temperature is lowered, that it seems to diverge, up to experimental evidence. For
low enough temperatures, such that the relaxation time is larger than the experiment time by many
orders of magnitude, the systems present some strange non-equilibrium features. One of the most
striking among them is the so-called aging phenomenon. It consists in a drift of the a relaxation
time distribution towards longer and longer relaxation times. This distribution keeps on evolving
for any experimental timescale. The simplest way to characterize this drift is to quench from a high
temperature state where an equilibrium distribution can be achieved to a low temperature state in
the glassy region.3,4 In this case, the age of the system is defined as the time elapsed since the
quench, i.e. the time spent in the glassy phase. In these conditions, it has been proven theoretically
and experimentally alike that some measured quantities depend explicitly on the age of the system.3

More precisely, the response and correlation functions do not only depend on the elapsed time t
since the beginning of the measurement as it would be the case for an equilibrium system but they
also depend on the age of the system tw , at which the measurement started. Consequently, any
correlation function g is written g(tw ,t+ tw). Predictions and experimental results show that,
despite the absence of equilibrium, there is a regime often called the asymptotic regime, where the
only relevant time scale is the age of the system. As a consequence response or correlation functions

can be rescaled with tw . One finds that g(tw ,t+ tw) ¼ g(hðt þ twÞ
hðtwÞ ) where h is a function that depends

on the system.12 When g(tw ,t+ tw) ¼ g( ttw), the scaling is usually called full aging. We point out that
the existence of such a rescaling in this asymptotic regime shows that the distribution of relaxation
times drifts in a self-similar way. Such an asymptotic regime can only be reached if the system is left
at a constant temperature for a sufficiently long time in the glassy phase. However, if some
additional energy is transiently provided to the aging system, the dependence of the relaxation
functions on the age of the system becomes extremely intricate. For example, temperature ramps
with stops lead to the very remarkable ‘‘memory effect ’’ as observed in spin glasses, see e.g. ref. 13,
and recently in polymer glasses.14 The shape of the distribution of relaxation times is then modified
in a non-trivial way during potentially very long transient regimes. The analysis of this behavior
would help to understand the precise modification of the relaxation time distribution by external
parameters, and thus to get an insight into the system’s internal dynamics. That is the scope of this
paper. We have chosen to work on a colloidal glass where it is easy to measure a time-dependent
correlation function.

For colloids, temperature is not a practical parameter. But since it is believed that temperature
and shear may act similarly in these systems,15 we studied the influence of the shear upon the
microscopic dynamics of a colloidal suspension.

In this paper we will focus on the modification of the shape of the distribution of a relaxation
times P(ta). We will show that injecting some mechanical energy transiently into the system
modifies the distribution of relaxation times in a dual fashion. Conversely to what could be
intuitively expected, it can both rejuvenate or overage the system. In practice, we study a dense
suspension of purely repulsive polystyrene beads both electrostatically and sterically stabilized. We
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record the fluctuations of laser light, multiply scattered by the sample. We compute the two-time
intensity autocorrelation function g2(t+ tw ,tw). The variation of g2 is directly related to the mean
square displacement of the scatterers. In order to ‘‘quench’’ the system properly, the sample is first
presheared by a large oscillatory strain. When the shear is stopped we record g2(t+ tw ,tw) for
evenly spaced tw . We show that it displays the properties of full aging. Then the sample is sub-
mitted to a burst of oscillatory strain of different amplitude and frequency. We monitor the change
in the shape of g2 and interpret it in terms of changes in the distribution of relaxation times.

III. Sample preparation and experimental setup

The sample is a commercial suspension of polystyrene spherical beads of diameter 162 nm copo-
lymerized with acrylic acid (1%) that creates a charged corona stabilizing the microspheres. The
corona prevents both aggregation by steric and electrostatic repulsions and crystallization. The
suspension was carefully dialysed to a polymer volume fraction of f ¼ 50%� 0.5%. The volume
fraction was determined by drying and was chosen to fulfil the two following criteria:
(i) The sample has to be concentrated enough that both a and b modes exist. The amplitude of

the b mode must be sufficiently small so that the a mode can be accurately measured. The a modes
must also display some aging behavior over all the experimental timescale.
(ii) The volume fraction has to be low enough that the strain is homogeneous, at least on a

macroscopic length scale throughout the sample. We checked that no effect like shear banding
occurs for the concentrations in use.
Because of the divergence of the viscosity with the volume fraction in the vicinity of the glass

transition, the suitable range of concentration fulfilling these two requirements is narrow (between
50% and 52%).
Fig. 1 shows the experimental setup. The sample is illuminated using polarized light from an

argon-ion laser operating at a wavelength of l ¼ 514 nm. The laser beam is expanded to a diameter
of approximately 1 cm and is incident on the sample cell. Multiply-scattered light is collected by a
50 mm Nikon camera lens and split into two parts. The first part is focused onto an iris diaphragm.

Fig. 1 Experimental set-up. The sample is placed in a shear cell.The emerging light is simultaneously analyzed
by the fast correlator and the camera. The problem of ergodicity is solved by performing a spatial average for
the camera part, and moving a frit glass in front of the PMT detector for the fast detection.
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The lens is set up so that a one-to-one image of the scattered light from the output plane of the
sample cell is formed on the diaphragm. The scattered light emerging from the diaphragm is
detected by a Dalsa CCD camera, model CAD1-128A, which is placed approximately d’ 15 cm
behind the diaphragm. It is an 8-bit camera which we run at 500 frames per second. The images are
transferred to a computer running at 500 MHz using a National Instruments data acquisition
board, model PCI1422. The combined speeds of the computer and data acquisition boards are
sufficiently high to allow data to be analyzed in real time. The accessible times range from 10�3 s
to 104 s.

The second part of the light is shone onto a moving frit. Its motion is controlled by a piezo
actuator. The light emerging from the frit is detected by an optical fiber, amplified by an ALV
photomultiplier tube (PMT) and analyzed by a Flex correlator. The moving frit has the same effect
as the second cell in the two cells technique16 but we found it easier to implement. It allows an exact
determination of the non ergodic correlation function at very short times (10�8 s, 10�1 s). A
complete description of the technique can be found in ref. 17. In the transmitted geometry the
correlation functions calculated with the camera and with the PMT can be overlaid.17,18 The
dynamics of the beads can thus be probed over 12 decades in time. The sample is placed in a
custom-made shear cell consisting of two parallel glass plates with a variable gap. For all presented
experiments, the gap was set to 1.3 mm. Oscillatory straining was realized by moving the bottom
plate thanks to a piezoelectric device. Shear strain from 30% to 0.04% could be possibly applied at
different frequencies ranging from 0.01 Hz to 10 Hz.

IV. Experiments

A. Rheological quench

In order to check whether an oscillatory strain is able to entirely rejuvenate the sample, we sub-
mitted the suspension to a series of shear strain of different amplitudes at a fixed frequency of 1 Hz
for 100 s. The measurement of the correlation function starts when the strain is stopped (see Fig.
2a). The shear cessation is taken as the origin for the age tw of the system. For a strain amplitude
above 20% the correlation functions become insensitive to the strain amplitude and to the past
history. A reproducible state is reached. We have checked that this state does not depend on the
duration of the strain application provided that it is greater than 40 s. Typical curves are plotted on
Fig. 2b for a volume fraction of 51%.

The correlation function shows a characteristic two steps decay as earlier mentioned. A first
decrease happens around tb ¼ 10�6 s. It is insensitive to shear (for sake of clarity only one curve
has been plotted). Then the correlation function plateaus at a value gplat’ 0.5. We use a regular
algorithm to extract the mean square displacement of the beads for this plateau value. It corre-
sponds fluctuation of position over a distance of d’ 9 nm. Finally a second decrease takes place
at a time ta that varies with the age of the system. ta is arbitrarily defined so that
g(tw ,tw+ ta) ¼ 1

2gplat . The inset of Fig. 2 shows that ta evolves proportionally with the sample’s age
tw . All the aging part of the curve can be rescaled by t/tw as displayed on Fig. 3. The aging part
displays thus the characteristic scaling of full aging. It means that P(ta) evolves in a self-similar
manner. The high shear provided enough energy to the system to entirely rejuvenate it. It thus
corroborates the macroscopic observations previously mentioned. It also emphasize the analogy
between temperature and strain as far as quenches are concerned.

B. Effect of a moderate oscillatory shear

We now examine the influence of the strain amplitude upon the microscopic dynamics. All the
following curves are taken in backscattering geometry for a volume fraction f ¼ 50% and a
measured value of d’ 68 nm. As demonstrated in the previous section, a high shear is able to
entirely rejuvenate our system. Hence we first submit the sample to an oscillatory strain of 30% for
100s in order to obtain reproducible results. Secondly, the system is left at rest for 10 s then it is
submitted to a second burst of oscillatory strain of different amplitude g0 and duration du. We set
the frequency to 1 Hz. The strain history is displayed on Fig. 4a. We now take the origin of the
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Fig. 3 a relaxation of the intensity autocorrelation function vs. t/tw . The rescaling of the curves is satis-
factory.

Fig. 2 (a) Shear strain sequence, (b) normalized intensity autocorrelation functions. The fast decrease of the
function corresponds to the b modes and is measured via the correlator. The long time decay corresponds to the
a modes: structural rearrangements. It never reaches any steady state on our experiment time scale. The b
modes are insensitive to shear and are in a steady state. For sake of clarity only one curve was plotted for the
short times. Inset: ta vs. tw . We find that the relaxation time varies linearly with the waiting time.
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system’s age just after the second burst. This convention is purely arbitrary but it allows an easier
representation of our results on a log scale. We record ta(g0 ,tw) as a function of tw for different
amplitudes of g0 . We take the curve for g0 ¼ 0% as the reference curve. On Fig. 3b we plotted the
ratio R ¼ ta(g0 ,tw)/ta(0,tw). If R < 1, then the effect of shear is to rejuvenate the system, that is to
say that the sheared sample has quicker dynamics than the unperturbed one. If R > 1, then the
internal dynamics are slowed down by the shear application. We call this situation ‘‘overaging’’. If
a single oscillation is applied at 1 Hz for 1 s, the sample is partially rejuvenated whatever the strain
amplitude may be. This is shown on Fig. 4b where all the curves lie in the region where R < 1. One
can wonder if the partial rejuvenation corresponds to a simple backward shift of P(ta). In other
words, does the rejuvenation process under shear is the time reversal process of aging? If this would
be the case, one could define an effective age teff such that ta(g0 ,tw+ teff) ¼ ta(0,tw).

Fig. 4 (a) Strain history g(t). We vary both the amplitude and duration of the second burst. (b) Normalized
relaxation time ta(g0 ,tw)/ta(0,tw) vs tw after a burst of duration 1 s at 1 Hz for different amplitudes
g0 ¼ 2.9%(S), g0 ¼ 5.9% (G), g0 ¼ 7.9% (K), g0 ¼ 11.7% (�), g0 ¼ 14.5% (X), and complete rejuvenation (L).
(c) The same curves for a duration of 100 s. Notice that for the lowest shear amplitude overaging occurs.
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Experimentally we could not find such an effective age and time translation proved inefficient to
collapse all the ta(g0 ,tw) onto a master curve. It thus means that P(t) is not modified by the strain in
a self-similar manner. However, at long tw all the curves merges to R ¼ 1, indicating that at long
times the self-similarity is recovered as expected.
However if 100 oscillations are applied for 100 s at 1 Hz, the situation is changed as shown on

Fig. 4c. For the highest shear amplitude the ratio R remains constantly below 1, consistent with the
results of the previous section. However for the smallest strain amplitudes, R is first less than one
but then becomes greater than one as tw increases. The effect of shear for this amplitude is thus
dual. Shortly after the burst the dynamics are accelerated. But after a while they become slower
than those of the unperturbed case. It thus means that the transient shear application has modified
the distribution of the relaxation times not only in a non-self-similar manner but also in a non-
monotonic way.
Notice, however that at very long times all the curves seem to converge to R ¼ 1. It shows that

regular aging is recovered. By considering only ta in the relaxation process we have reduced the
relaxation to a single time. However, the shape of the correlation function is the result of the whole
distribution of relaxation times. It is thus interesting to compare the full correlation function
g2(t,tw ,g0) to the reference g2(t,tw ,0).
Fig. 5 shows the reference curves g2(t,tw ,0) for tw ¼ 0.1 s (dark line) and tw ¼ 60 s (grey line).

We emphasize the fact that tw is now referenced from the cessation of the burst. The symbol
curves represent g2(t,tw ,7.9%) for tw ¼ 0.1 s (X), tw ¼ 1 s (`), and tw ¼ 60 s (K). The com-
parison of the curves for tw ¼ 0.1 s reveals that g2(t,tw ,7.9%) starts decreasing earlier than
g2(t,tw ,0%). It is thus an indication that a faster relaxation process occurs in the sample.
However, at long times, g2(t,tw ,7.9%) crosses and then lies above g2(t,tw ,0%). It thus means that
at long times the relaxation processes in the sheared sample are slower than in the reference
one. This is confirmed by the relative position of g2(t,tw ,7.9%) and g2(t,tw ,0%) for tw ¼ 60
s.g2(t,tw ,7.9%) decreases more slowly than g2(t,tw ,0%). Thus, the fast relaxation times have aged
and the dynamics are dominated by the slower ones. The change in the shape of the correlation
function is the sign that the relaxation time distribution has not been simply shifted backwards in
time by a constant amount, but that its shape has been modified with the addition of short and
long relaxation times.

Fig. 5 Correlation functions obtained after the second burst in the reference case for tw ¼ 10�1 s (bold line)
tw ¼ 60 s (grey line) and in the case g0 ¼ 5.9% for tw ¼ 10�1 s (X), tw ¼ 1 s (`), tw ¼ 60 s (K). Notice the
crossing of the curves occurring around 30 s. The change in the shape of the correlation function is clearly
visible.
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C. Effect of frequency

Up to now, we have only focused on the amplitude and duration of the second burst. However, one
can also expect that its frequency plays a role in the rejuvenation–overaging process. Indeed, one
could expect that not only strain but also strain rate is an important factor in this mechanism. We
set the amplitude to 7.9% and the duration of the burst to 10 s. We varied the frequency from 0.1
Hz to 10 Hz. Hence the sample was submitted to a number of oscillations ranging from 1 to 100.
The results are displayed in Fig. 6. Notice that the overaging effect is all the more pronounced when
the frequency is high. We believe though that the overaging behavior cannot be observed under
steady strain rate as usually performed in rheological measurements. However, we could not check
this hypothesis since our set-up does not allow continuous straining.

D. Experimental conclusion

In conclusion, we have shown that a high shear is able to generate in the system a distribution of
relaxation time P(ta) independent of the sample history and of shear amplitude. We then
demonstrated that a moderate oscillatory strain both partly rejuvenates and overages the system.
We deduced from that point that the rejuvenation process is not a simple backwards time trans-
lation of P(ta). It involves a more sophisticated process during which the shape of the distribution
is modified. However, independently of the imposed perturbation, P(ta) seems to converge to the
same time-dependent distribution at very long times. In addition, if an oscillatory strain is applied
similarly but at a higher frequency the overaging process is amplified.

V. SGR model

In a previous paper19 we emphasized the similarity of this results with the predictions of the simple
trap model20 solved with a step in temperature. This qualitative agreement reinforces the similarity
of shear and temperature on the particles level. We also pointed out that a resolution of the
Sherrington–Kirkpatrick model for spin glasses in the transient regime following a temperature
step gives the same results.12,21 However, the equivalence between shear and temperature increase
remains an hypothesis. We present here some results on a model where the macroscopic shear is
coupled to the microscopic. There are only two such models that we are aware of. One is based on a
mode-coupling approach and has only be solved in the asymptotic regime.22 The other one is

Fig. 6 Normalized a relaxation time for g0 ¼ 7.9% at various frequencies: 0.1 Hz (X), 1 Hz (+), 5 Hz (K), 10
Hz (`). Notice that the importance of the overaging regime increases with the frequency.
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inspired by the trap model and is called the soft glassy rheology (SGR) model.7–9 We will now solve
this model for the transient strain history applied to our system.
The bases of the model are the following: the system is described by fictive independent particles

moving in a fixed energy landscape. Only local minima are considered. The particles are trapped in
wells of depth E from which they escape in a ‘‘ thermal ’’-like fashion. The escaping probability is
proportional to exp(�E/x) where x plays the role of the thermal energy. The macroscopic strain is
introduced as an external field that shifts the minimum energy levels E by an amount �1

2kl
2(t) where

l(t) is the local accumulated strain. Thus straining helps to hop outside the wells. In order to
calculate l(t) the following assumptions are made:
(i) Each time a particle escapes from a trap, it falls into an unconstrained state of depth E with

l ¼ 0. The probability of falling into a trap of depth E is proportional to the density r(E) of trap E.
(ii) The strain rate is homogeneous all over the sample.
(iii) The two preceding hypotheses allow us to define l(t) as the integrated local strain since the

last hopping event tl for the particle: lðtÞ ¼
R t

tl
_ggdt:

(iv) The local elastic modulus k is independent of the trap depth.
(v) r(E) is exponential: r(E) ¼ (1/xg)exp(�E/xg).
A complete description and justification of the model can be found in ref. 7.
We call P(E,l,t) the time-dependent probability for a particle to be in a well of depth E with a

strain l. The evolution of P(E,l,t) in the SGR model reads as:

@PðE; l; tÞ
@t

¼ �PðE; l; tÞe�ðE�1
2kl

2ðtÞÞ=x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
escaping term

þGðtÞrðEÞdðlÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
entering term

� _gg
@PðE; l; tÞ

@l|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
external advection

ð1Þ

where the time unit (tu) has been set to 1, and with

GðtÞ ¼
Z 1

�1

Z 1

0

PðE0;l0;tÞe�ðE� 1
2 kl

02ðtÞÞ=xdE0dl0

Each (E,l) state is thus associated with a relaxation time tE/ exp[(E� 1
2kl

2)/x]. In the absence of
shear, the local strain remains always equal to zero, the model reduces to the Bouchaud’s trap
model: for x > xg and a steady distribution for P(E) exists. Oppositely, for x < xg no steady
distribution exists and P(E) reaches an asymptotic regime with full aging behavior. Subsequently xg
is assimilated to a glass transition temperature. If a constant shear rate is applied, the system
always displays an equilibrium distribution of relaxation times. The model describes qualitatively
well many rheological features of soft glassy systems.7–9

We numerically solve eqn. (1) by discretizing the equation into 100 energy levels and 100 strain
levels. We checked that the obtained results do not depend on the numbers of levels we use. We
take k ¼ 2, xg ¼ 1 and x ¼ 0.5. We remark that the values of g can not be compared to those really
used in the experiments. We use the initial conditions of a deep quench. The system is supposed to
have its equilibrium distribution for T ¼ 1. Hence, P(E,l,0) ¼ r(E)d(l). The external strain is
taken as follows:

gðtÞ ¼
0 if t < tatt
f ðtÞ if tatt � t � tatt þ du
0 if t > tatt þ du

8<
: ð2Þ

f (t) is a function of t that will be specified case by case.
We discuss the effect of shear by computing P(e,t) with e ¼ E�1

2kl
2. Notice that the relaxation

time distribution P(log(tE))/P(e). Hence P(e) and P(tE) have the same physical meaning. For the
sake of clarity, we will use P(e) for which all the described effects are more visible.

A. One step

Firstly, we exemplify the effect of a single square pulse: f (t) ¼ g0 .
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We first let the initial distribution P(E,l,0) ¼ r(E)d(l) evolve between t ¼ 0 and t ¼ tatt . We
chose tatt so that P(E,l,tatt) has nearly its self-similar shape. In this regime, the t/tw scaling leads to
the following property for the distribution function:

PðE � e;l;tÞ ¼ PðE;l;t� teffÞ ð3Þ

with teff ¼ t(1� exp[�e/x]) and e is any positive constant. For t ¼ tatt , the effect of the step is to
shift the states (E,0) to the states (E,g0).

For tatt < t < tatt + du the population is now split into two l levels as the particles always
jump from a (E,g0) state to a (E,0) one. One can show that, because of eqn. (3), the evolution of
P(e,t) during the step is the same as that of the unperturbed case but shifted in time by
teff ¼ tatt(1� exp[�1

2kg
2
0]). However,according to eqn. (1) the states (E,g0) do not age but simply

becomes depopulated. Only states (E,0) have a non-zero entering rate. Hence there is no possible
self-similar regime for P(E,l,t) until P(E,g0) ¼ 0. Hence at t ¼ tatt + du the effect of shear is to shift
backwards all the levels: (E,g0) states are shifted to (E,0) and (E,0) states are shifted to (E,�g0)
states. However, the effect of the strain shift differs from a simple shift in time because P(E,l,t) is
not in its self-similar regime, despite the fact that P(e) has its self similar shape.

Fig. 7 shows that it leads to splitting of P(e) into two bumps. Low energies are mainly populated
by the particles that hopped during the square pulse. Conversely, high energies are mainly
populated by particles that did not hop. But in addition, and as a result of the whole history these
levels become overpopulated by jumps from the low energy levels. Finally, a splitting of the dis-
tribution results from the acceleration of the kinetics of low energy levels and overaging originates
from this splitting of the energy population.

Discretizing the strain history as very short steps, one can solve eqn. (1) for any strain history.
We will see in the following section that an oscillatory strain amplifies deeply the splitting of P(e).

B. Sinusoidal strain

1. Effect of amplitude. In this section we take f (t) ¼ g0 sin(ot) with o ¼ 2p/5. It corresponds to
a burst of 10 cycles. Fig. 8 shows P(e) 0.1 tu after the burst.

The solid line corresponds to the unperturbed case: g0 ¼ 0. The curves lies in increasing order of
strain amplitude g0 from bottom to top on the right hand-side of the figure. It appears that for large
amplitudes, e.g. g0 ¼ 4.5, the system is accelerated. Indeed, the distribution P(e,4.5) lies over the
reference one for small e i.e. small relaxation times, and below the reference one for large e i.e. long
relaxation times. It thus corresponds to a case where the system was rejuvenated. Interestingly, for
moderate amplitudes, the distribution splits into two bumps. Both low and high e lie above the

Fig. 7 Distribution function P(e) when no shear is applied (stray line) and when a square strain pulse (g0) is
applied. The inset is a zoom on the region where the overaging is visible.
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reference curves, whereas the population at moderate e is depleted. In order to better understand
how the splitting of the correlation function influences the dynamics, we calculated:

Cðtw þ t;twÞ ¼
Z Z 1

0

PðE0;l0;twÞexpf�½te�ðE0� 1
2 kl

02Þ=x�gdE0dl0

C(t+ tw ,tw) is the probability that a particle has not changed its position between time tw and
tw+ t. It is actually similar to our measured correlation function g2(t+ tw ,tw). More precisely, g2 is
a monotonic function of C, going from 1 to 0, while C goes from 1 to 0. The detailed shape of g2(C)
depends on the set-up optical characteristics and is of no interest in the following. Optically the
situation is similar to the one of structurally evolving foams and is discussed in ref. 23.
Fig. 9 displays C(t+ tw ,tw) for g0 ¼ 2.5 and tw ¼ 0.01, 6, 50 tu after the burst. The reference

curves for the unperturbed case at tw ¼ 0.01 and 50 tu are plotted in dark and grey solid lines,
respectively. For g0 ¼ 2.5, the correlation function C(t+ tw ,tw) for tw ¼ 0.01 tu (X) starts to
decrease before the unperturbed curve. This is a consequence of the overpopulation of low energy
states. However, the rate of decorrelation is smaller because the depletion of intermediate energy
state. Since the high energies are overpopulated, the two curves cross. At long times, the unper-
turbed curve lies under the perturbed one. For longer tw (K), the low energy states have aged and
the shape of the correlation function is dominated by the population of the high energy. The
correlation function for g0 ¼ 0.06 looks ‘older ’ than the reference one. Notice the excellent qua-
litative agreement between Fig. 9 and Fig. 5.

2. Effect of frequency. In this section we now focus on the effect of the burst frequency upon the
dynamics. We keep the same initial conditions but have o varying from 2p/50 to 2p. It corresponds
to a number of oscillations ranging from 1 to 50. As explained in the previous section we calculated
C(t+ tw ,tw) for different tw after the burst.
Following the analysis procedure we used in the experimental section, we define t0.5(tw ,g0) such

that C(t0.5 + tw ,tw) ¼ 0.5. Fig. 10 displays t0.5(tw ,g0) as a function of tw . One can see that it
qualitatively predicts the same frequency behavior than that displayed by our sample (Fig. 6).
Actually oscillatory shear strain, by mixing in strain and thus in e the population, considerably
accelerates the dynamics of the small energy levels, while it does not affect the high energy levels.
Thus increasing the frequency f (t), for the same duration of application, mainly accelerates the
low energy dynamics, by making the strain mixing more efficient. Thus the oscillatory strain is

Fig. 8 Calculated distribution P(e) at 5Hz for different strain amplitude g0 ¼ 0 (bold line), g0 ¼ 1.7 (X),
g0 ¼ 2.5 (`), g0 ¼ 4.5 (K). Notice the splitting of the distribution and the surpopulation of both the short and
large e compare to the reference case g0 ¼ 0%.
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qualitatively similar to the square pulse strain. But the amplitude of the splitting in the e
distribution and thus of the overaging considerably increases with the frequency.

C. Discussion

We want first to emphasize the following point: overaging is a notion associated with a transient
perturbation and a comparison with a reference case. It requires not only an analysis of the average
relaxation time but of the global shape of P(e,t). Overaging comes from the overpopulation of the
long relaxation times after the shear application. However, the experiments and the model show
that the short relaxation times are simultaneously overpopulated. This is what we called rejuve-
nation. Because of the simultaneous occurrence of these two phenomena on different timescales, an

Fig. 9 Same curve that Fig. 5 but for the calculated C(tw ,t+ tw) for tw ¼ 0.01 tu (X), 6 tu (`), 50 tu (K). The
amplitude of the strain is g0 ¼ 2.5.

Fig. 10 Calculated t0.5(tw ,g0)/t0.5(tw ,0) for different frequencies of oscillation. The amplitude g0 is 10. The
frequencies are 0.1 Hz, 0.2 Hz, 0.3 Hz, 0.4 Hz, 0.5 Hz from bottom to top. Notice that the overaging effect is
more sensitive to the frequency for the model than for the experiment.
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exact analysis can only be performed if the complete distribution P(e) is studied. However, the
experimental time window is limited and the system can thus appear rejuvenated or overaged
depending on the relaxation times that we can probe. We now wonder whether there is a regime
where rejuvenation alone can be achieved for any timescale after a perturbation g0 and a duration
du. The experiment durations are too limited to give a satisfactory answer. However we can make
the following remarks about the SGR model. In this model, aging occurs because for x < xg the
escaping rate Gout(E) is inferior to the entering rate Gin(E) for deep enough energy wells. Gout(E) is
proportional to exp[�E/x] and thus depends only on the well depth. Conversely, Gin(E) is pro-
portional to G(t) and thus depends on the whole distribution P(E). Let us first examine the
population of the level (E,0) before the shear such that E�Ec ¼ 1

2kg
2
0 +xln(du). When a shear is

applied, Gout(E) is simply multiplied by a factor exp[12kl
2/x] during a time du. Hence the escaping

probability of this population will remain nearly zero despite the shear application. These particles
will remain in the states (E,0) after the shear has been applied. However, for these energies, the
entering rate is increased because of the overpopulation of small energies. Overaging comes thus
from the fact that the escaping rate remains unchanged whereas the entering rate is increased for
large energies. Hence overaging in the SGR model occurs for any finite g0 and any finite duration.
In this case a complete rejuvenation is impossible. However, the assumption that the trap stiffness is
independent of the well depth is only a first step assumption. One could imagine that the deeper the
well the stiffer its elastic modulus. One could for instance assume that:

k ¼ k0 þ kE

where k is a constant of proportionality. Making this assumption first changes the instantaneous
elastic modulus hki of the model. It is no longer k0 but now

hki ¼ k0 þ khEi

For x > xg a stationary distribution of P(E) exists and we find hki ¼ k0+ kxgx/(x� xg). In the
limit of infinite temperature hki tends towards k0+kxg . However, when x < xg , the average
energy hEi is proportional to log(tw) in the asymptotic regime. The instantaneous elastic modulus
has thus a logarithmic dependance with the age of the system as observed in many systems.5,6,24,25

Another change affects the escaping rate. Gout is now proportional to exp[�[(1� 1
2kl

2)E/x� k0l
2/

2x]]. The strain now plays a role similar to a temperature change. In this case, the value of Ec now
reads:

Ec ¼
1
2 kg

2
0 þ x lnðduÞ
1� 1

2 kg
2
0

One can thus define a critical strain g0c ¼ (2/k) for which Ec is infinite. Hence a complete reju-
venation can be achieved in a finite amount of time. From an experimental point of view, the
distinction between the two approximations by a rejuvenation experiment are not yet concluding.
Some other experiments are being performed and the consequences of this modification for the
stiffness will be carefully discussed elsewhere.

VI. Conclusion

In conclusion, we have shown that an oscillatory strain can act on a glassy colloidal suspension in a
dual fashion. It can rejuvenate it by erasing all its past memory. It can also overage it by accel-
erating the aging process. Both processes comes from an acceleration of the rearrangement rates
during a transient time. The dominating effect depends on the amplitude and duration of the shear.
We showed that the effect is qualitatively well explained by the SGR model. This model was solved
for a realistic strain history. We showed that the distribution of relaxation time was separated into
two bumps, one corresponding to rejuvenation and the other one to overaging. The influence of
this two bumps on the position autocorrelation function was studied. We showed that the model
and the experiments are highly comparable. We believe that this phenomena is not a special feature
of colloidal systems but can be observed in polymer, as indicated by preliminary results performed
in our lab, or in spin glasses.
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