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Experiments performed on a wide range of glassy materials display many interesting phenomena,
such as aging behavior. In recent years, a large body of experiments probed this nonequilibrium
glassy dynamics through elaborate protocols, in which external parameters are shifted, or cycled
in the course of the experiment. We review here these protocols, as well as experimental and
numerical results. Then, we critically discuss various theoretical approaches put forward in this
context. Emphasis is put more on the generality of the phenomena than on a specific system.
Experiments are also suggested.

I. INTRODUCTION

In this summer school, we were given many examples of glassy systems, glassy dynamics, and glass
transitions, even though a proper definition of the word ‘glassy’ was not really provided. However, all
glassy materials share the property that their relaxation times are extremely large compared to the
time scale of a typical experiment, at least in a part of their phase diagram. For practical purposes,
they are thus out of equilibrium, meaning that in principle the whole sample history is relevant to a
description of their physical properties. This paper is dedicated to the study of some specific histories
applied to various glassy materials.

As physicists, we want to study the simplest histories that allow for an understanding of all the
relevant mechanisms at work. Hopefully, an understanding of simple protocols will also allow for
prediction or calculation of the behavior resulting from increasingly elaborate procedures.

Over the last decades, the experiment most often performed has been the simple aging experiment,
see Fig. 1. The system is quenched from a non-glassy part of the phase diagram, E, into the glassy
phase, A. The system relaxation time is so large that all its physical properties continue to evolve
slowly with time (aging). This phenomenon has been known for a long time in the field of structural
glasses [1] before its rediscovery in the field of spin glasses [2]. Interestingly, aging is observed in
a still increasing number of experimental systems such as soft materials (like pastes [3], colloidal
suspensions [4], or clays [5]), dipolar glasses [6], disordered ferromagnets [7] and ferroelectrics [8],
granular matter [9], superconductors [10], etc. Loss of stationarity is best illustrated by the study of
two-time quantities. One typically computes the correlation between times t and w, C(t, w), or the
response of the system at time t to a perturbation applied at w, or equivalently the time evolution of
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FIG. 1: Schematic view of the phase diagram of a glassy material. The relaxation time of the system in
the shaded area is too large for the system to equilibrate on an experimental time scale. The arrows depict
simple aging (E → A), shifts (E → A → B), or cycling (E → A → B → A) experiments. We do not label
the axis, since the paper deals with an Anderson insulator, a colloidal suspension, a spin glass model, and a
ferromagnet at criticality.
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a susceptibility at frequency ω, χ(ω, t). In most common experimental regimes, two-time quantities
scale as C(t, w) ∼ FC(t/w), χ(ω, t) ∼ Fχ(ωt), where F∗(x) denotes a scaling function. This scaling
indicates that after a time t the only relevant time scale in the system is the time t itself.

In order to probe the dynamics of the glassy phase in greater detail, more elaborate and systematic
experimental protocols have been performed [11], in which some external parameters are shifted, or
cycled, during the experiment, see Fig. 1. Such experiments reveal spectacular new phenomena, such
as rejuvenation and memory effects. Such new effects must be accounted for by any theory of aging,
possibly allowing for discrimination between different theoretical approaches to glasses and aging
phenomena. In addition, more detailed experiments may allow for discrimination between different
families of glassy systems, and thus may help theoreticians refine their description of specific glassy
systems. A large number of recent experimental papers are dedicated to such experiments, on a wide
variety of systems, making the subject a very active one. By contrast, these protocols are barely
mentioned in the classic theoretical review in the field [12] and it is one of this paper’s purpose to fill
this little gap.

In the first part of the paper we review briefly the basic experimental facts. Next we discuss two
mean-field theoretic approaches to the problem. We then formulate the rudiments of a simple, but
fairly robust, phenomenology in terms of length scales which grow with time and discuss realizations
of this scenario. Last, we show that a nice account of both recent experiments performed on an
Anderson insulator and on a colloidal suspension can be given in terms of such growing length scales.

II. EXPERIMENTAL FACTS

In this section, we present the main experimental facts observed when the protocols of Fig. 1 are
actually performed. This will allow us also to define precisely the vocabulary used throughout the pa-
per. We use our own data to describe these phenomena, but emphasize that a similar phenomenology
has been observed in many different systems. Such experiments were first performed on spin glasses
(rejuvenation and memory effects [11, 13, 14, 15]) and polymer glasses (mechanical rejuvenation [16]
and Kovacs effect [1, 17, 18]) in temperature shift or cycling experiments. Thus, we adopt ‘temper-
ature’ as a control parameter, but also discuss the case of other control parameters. The degree to
which different such external parameters are equivalent is a completely open question. It was recently
asked in the present context [19], as a part of a more general research line [20, 21]. Here, we take
a pragmatic approach and elaborate on experimental similarities. Sections II A, II B, and II C deal
with effects encountered in shift experiments, while section II D deals with cycling experiments.

A. Rejuvenation

First consider a shift experiment, see Fig. 1. The system is quenched at initial time t = 0 from a
high temperature to a temperature TA in the glassy phase. For 0 < t < tA, the temperature is kept
constant. Up to this point, this is a simple aging experiment, manifested by the slow evolution of
physical quantities. Such typical slow evolution is shown in the left part of Fig. 2 where a quantity
analogous to a magnetic susceptibility at given frequency is computed in the numerical simulation of
a microscopic spin glass model [22].

At t = tA, the temperature is shifted to TB. As seen in Fig. 2, aging is restarted by a negative shift
(TA > TB) in the sense that the resulting curve is similar to that obtained in a direct quench to TB.
This restart of the dynamics is called rejuvenation effect because the time tA spent at TA—the sample
‘age’—seems to have no influence on the dynamics following the shift. The same effect is obtained if
TB > TA. We note also that the term ‘rejuvenation’ was first employed to describe the effect of large
stresses on the aging of polymers [1, 16].

B. Overaging and underaging

Obviously, if TB = TA, no rejuvenation takes place, meaning that in order for rejuvenation to be
observed in a shift experiment, |TA−TB| must be ‘large enough’. For small or intermediate |TA−TB|,
a phenomenon recently called overaging is observed [19], when TA > TB. This is illustrated in Fig. 3
(left), where results obtained with a polymer are presented [23]. In this figure, two-time linear
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FIG. 2: A temperature cycling experiment performed numerically in a spin glass model. The system is
quenched at t = 0 in the spin glass phase, TA < 1.0. It ages at the temperature TA = 0.9 as demonstrated
by the time evolution of a quantity analogous to a magnetic susceptibility. The temperature is then shifted
at tA = 6450 to TB = 0.4 where rejuvenation takes place. At tB = 12900, the temperature is shifted back to
TA = 0.9, demonstrating, after a very short transient, the memory effect. A second cycle in then performed.
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FIG. 3: Left: overaging observed in a shift experiment with TB < TA. The creep compliance of a polymer
after the shift (triangles) is compared to the curve obtained in a simple aging experiment at TB (circles) and
the same aging time, tA = 5h. The long-time response is clearly slower after the shift. Right: Kovacs effect
observed in a shift experiment with TB > TA. The energy density of a spin glass model recorded after the
shift exhibits a typical nonmonotonic behavior.

response to a stress step (creep compliance) after a shift from TA to TB is compared to that obtained
in a simple aging experiment at TB with the same aging time. The response after the shift is slower
than that obtained in the the simple aging experiment, and the system looks ‘older’, or ‘overaged’.
Similarly, an underaging would be obtained if TA < TB.

These effects were also observed experimentally in a colloidal suspension submitted to a transient
oscillatory shear [19], as well as in temperature shift protocols in experimental [11, 14] and numeri-
cal [22, 24] studies of spin glasses.

C. Memory effect of the first kind, or ‘Kovacs effect’

A memory effect takes place in the shift protocol when TB > TA. It was first observed by Kovacs in
polymers [17]. To distinguish it from a second memory effect (see below), this effect was called Kovacs
effect in Ref. [25]. Kovacs measured the specific volume, V (t), of the polymer during the experiment,
but other physical quantities (index of refraction, energy density,...) can be investigated. The effect
is particularly striking when tA is chosen so that V (tA) = Veq(TB), which means that immediately
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after the quench, the volume has already reached its equilibrium value at the new temperature.
Hence, a naive expectation would be that V (t > tA) = const = Veq(TB). Instead Kovacs observed a
nonmonotonic variation of the volume showing that the system has some memory of its state at the
initial temperature. This experiment is reproduced in Fig. 3 using the energy density of a microscopic
spin glass model in a numerical simulation [22]. Similar results have been obtained in supercooled
liquids [26], granular materials [9], foams [27] or dipolar glasses [6].

D. Memory effect of the second kind

Let us describe the continuation of the experiment shown in Fig. 2. At time tB > tA, T is
shifted backed to its initial value TA. After a very short transient, χ(ω, t) resumes its evolution as
if there had been no aging at TB. The system has a memory of the first stage, despite the strong
rejuvenation observed in the intermediate stage of the cycle. Simultaneous observation of rejuvenation
and memory is spectacularly demonstrated in the ‘dip experiment’ [15]. The protocol is essentially a
cycling experiment in which the temperature is decreased at a fixed, finite rate (instead of at an infinite
rate as in an idealized cycle). The ramp from high temperature stops at TA, where the temperature is
kept constant a time tA after which cooling is resumed. In this context rejuvenation means that the
further evolution of the system is almost the same with or without the stop at TA. The temperature
is then raised back at a constant rate. Memory means that near TA, the system ‘remembers’ its
stop [15, 28] and behaves differently from a system not held at TA. However, this experiment is less
simple to analyze theoretically because it mixes cooling rate effects with rejuvenation and memory.
For this reason, we stick to cycles in what follows.

E. Need for a generic and robust phenomenology

This quick experimental review shows that a number of effects are both highly non-trivial as well
as generically observed in a wide range of materials, suggesting that these phenomena are intrinsic to
nonequilibrium glassy dynamics. This has two immediate consequences. (1) Any phenomenological
theory of aging must account for these effects in addition to the results of simple aging experiments.
(2) The phenomenology should be based upon general considerations, which themselves proscribe the
range of experimental systems to which the theory applies. Ideally this would be the large range of
quite different experimental systems in which glassy dynamics is observed.

III. TWO MEAN-FIELD THEORETICAL APPROACHES

As reviewed in Ref. [12], theoretical approaches to aging phenomena can be classified in three large
families. We analyze two mean-field ones in this subsection in view of the above experimental facts.

A. Trap and multi-trap models

A first approach, made popular through the ‘trap model’ formulated in Ref. [29], considers the
dynamics from the point of view of phase space and describes the dynamics of a point particle
evolving through a given energy landscape. The reduction of a many-body system to a one-particle
problem classifies this approach in the mean-field family. The ‘complexity’ stems from an assumed
large distribution for the free energy of the metastable states, typically chosen to be exponential,
ρ(E) ∼ exp(−E/Tg). If one further assumes that energy barriers are related to the free energy of

the states, one gets the distribution of trapping times ρ(τ) ∼ τ−(1+T/Tg), the first moment of which
diverges for T < Tg. The absence of a mean trapping time then results in the typical t/w scaling of
two-time quantities. Obtaining this scaling in a one-body problem is a remarkable result. The crucial
drawback of the approach is, obviously, the lack of a precise interpretation of what ‘traps’ are.

To account for the effects described above, the model was phenomenologically extended to multi-
trap models [30], each level having its own glass temperature Tg. The phenomenology of cycles is
straightforward. When the temperature is lowered, new levels of the hierarchy start to age (rejuvena-
tion effect), while higher levels are completely frozen and unaffected by the stay at low temperature
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(memory). This ‘hierarchical phase space picture’ has often been invoked by the Saclay group to in-
terpret experiments on spin glasses [14]. Furthermore, numerical simulations of concrete realizations
of multi-trap models confirm that this picture satisfactorily reproduces the experiments [31]. As a
similar realization of this picture, the Sinai model was recently studied in this context [32].

B. Infinite-range models

A more microscopic approach can also be used to describe aging [12]. The aim is to solve exactly
the dynamics starting from the Hamiltonian of a glassy system. This ambitious program has been
successful for systems with infinite-range interactions. They are thus mean-field realizations of realistic
systems. Simple aging experiments can be accounted for, as described in detail in Cugliandolo’s
lectures [33]. These solvable models have proved to be extremely rich, but by construction they are
incomplete descriptions since real space is completely ignored.

Two families of models have emerged. Schematically, the first has the phenomenology of structural
glasses—an example is the p-spin model—and typically exhibits t/w scalings [34]. The second family
is closer to spin glasses—the prototype being the Sherrington-Kirkpatrick model. The behavior of the
latter in simple aging experiments is quite involved, since it displays ‘dynamic ultrametricity’ [35].
Without giving the details [33], this implies a complex scaling of two-time functions, with the presence
of a continuous hierarchy of diverging time scales. When submitted to shifts and cycles, this second
family (but not the first one) was shown to exhibit rejuvenation and memory asymptotically [36]. It
would be useful to have simulations of these models in order to go beyond the asymptotic analysis of
Ref. [36] and to get some comparison to experiment. Within this approach, the glassy effects of the
previous section are explained through the existence of a hierarchy of time scales.

However, as honestly noted in the conclusion of Ref. [36], a strong drawback is that the dynamic
ultrametricity on which the whole interpretation relies is incompatible with experiments. Obviously
this weakens the general validity of these results.

IV. SPATIAL APPROACHES

A. Domain growth

A third family of models describing slow dynamics focuses directly on spatial aspects [12]. Simple
aging experiments are explained with reference to a characteristic length scale, ℓ(t), which grows with
time. The physical content of ℓ(t) is that on scales smaller than ℓ the system appears equilibrated
while on larger scales it does not.

A pure Ising ferromagnet quenched from its paramagnetic to its ferromagnetic phase provides
a simple example of coarsening dynamics. In the low temperature phase, the ferromagnet has two
equilibrium states, with magnetizations + and −. As time passes, spatial domains of these equilibrium
phases develop and coarsen, with a typical associated length scale ℓ(t). This domain growth is driven
by surface tension of domain walls. The dynamic scaling hypothesis is that the only length scale
involved in this process is the domain size ℓ(t) itself. In a pure ferromagnet, the growth law is
temperature independent [37], ℓ(t) ∼ t1/2, and this leads to t/w scaling of two-time correlators.

This phenomenology does not provide for the rejuvenation and memory effects discussed above and
indeed such effects are not observed in ferromagnets. For instance, consider rejuvenation. Thermal
reequilibration within the domains is quasi-instantaneous since thermal fluctuations in the ferromag-
netic phase are short-range, of typical size ξeq(T ) ≪ ℓ(t). Also, since lowering temperature during
domain growth leaves the growth rate unchanged, after a temperature cycle TA → TB → TA, there
cannot be regions initially equilibrated at TA that remain unchanged during the cycle.

However, coarsening in a disordered system cannot be analogous to that in a pure system [38].
Coarsened domains will no longer be simple convex objects with energy decreasing monotonically
with curvature. This can be seen readily by considering a ferromagnet with some added impurities.
Walls separating + and − domains will tend to avoid unusually strong bonds and will tend to be
pinned at unusually weak bonds. In such a disordered system, domain growth will be slower than
it is in a pure ferromagnet. In the case of high disorder, domain growth is likely activated, leading
to a characteristic domain size ℓ(t) ∼ (ln t)p [39]. Secondly, in important contrast to pure systems,
renormalization of a disordered system’s Hamiltonian yields statistically similar Hamiltonians. In
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particular this means that we should not expect that the equilibrium states in the low temperature
phase of a disordered system at temperatures TA and TB are related in any simple way. A simple
example is given by the effective interaction between two spins on the opposite vertices of a square.
Just as the sign of the effective interaction between these two spins can change with a perturbation
in bond strength, so too can it change with a perturbation in temperature [40].

B. A minimal phenomenology

These differences stated, one can ask whether there is a phenomenological coarsening theory for
aging in glassy materials analogous to that in systems like pure ferromagnets. We formulate such a
‘minimal’ phenomenology in terms of a growing length scale. It must contain the following features.

(i) Existence of a growing coherence length ℓ. This coherence length has the same physical content
as described above: objects smaller than ℓ are quasi-equilibrated while larger objects still retain
their nonequilibrium initial conditions. A more precise definition of the ‘objects’ is not necessary at
this point. For clarity we will draw compact domains in our cartoons. Furthermore, the coherence
length must grow slowly with time so that equilibrium domains of size ℓ remain fixed on time scales
associated with objects smaller than ℓ. This first assumption is very natural for some systems, e.g.,
disordered ferromagnets. Yet for other systems it is very non-trivial. For instance, no typical length
scale has been invoked yet to explain the aging of supercooled liquids or colloidal suspensions.

(ii) Sensitivity of equilibrium on all length scales. Obviously, the specific equilibrium state of
the system depends upon the particular values of the control parameters, but sensitivity is required
in order to provide for the rejuvenation effects. Of course, even a simple two-level system has to
readapt its Boltzmann weights upon a temperature change [41]. There remains to be understood
what ‘levels’ are in a realistic system, and how those evolve with temperature. In fact as discussed
above, sensitivity of the equilibrium state to control parameter values is a natural consequence of
a renormalization procedure in a disordered system. Note that there are nevertheless questions
outstanding. In particular, which if any glassy systems be described in terms of a glassy phase fixed
point? And even if some can be, is the sort of ‘chaos’ that one gets automatically in fact responsible
for the observed rejuvenation and memory phenomena in glassy materials? We will return to these
points shortly.

(iii) Separation of length scales. The length at which a system is equilibrated after a given wait
time depends strongly on external parameters. Memory effects are a consequence of such dependence.
This is very natural for the thermally activated domain growth expected in disordered systems [42]:

t(ℓ, T, · · · ) ∼ t0 exp

(

E(ℓ, T, · · · )

kBT

)

, (1)

where t is the time needed to equilibrate the length scale ℓ, t0 a microscopic time scale, and E(ℓ, T, · · · )
an activation energy that in principle can depend on the coherence length itself and on temperature.
The dots stand for possible control parameters in addition to T . If E(ℓ) ∝ ℓ/T , the growth law is
logarithmic and ‘super-Arrhenius’: ℓ ∝ T 2 ln(t/t0). If instead barriers grow logarithmically, E =
kBT0 ln ℓ, one gets a T -dependent power law growth, ℓ ∼ tT/T0 . In either case, thermal activation
(Eq. (1)) implies that the range of length scales ‘active’ in a given time window depends strongly on
T and, more generally, on other external parameters in systems with glassy dynamics [41, 42].

C. Back to experiments

Consider the cycling experiment E → A → B → A of Fig. 1. Again we write the control parameter
as a temperature T . The three above assumptions lead to the cartoon of Fig. 4 which we now explain.

For times 0 < t < tA, this is a simple aging experiment at TA. Feature (i) entails that the system
equilibrates up to a growing coherence length, ℓ(t, TA), leading to a ℓ(t, TA)/ℓ(w, TA) scaling of two-
time functions. This is the usual domain growth picture of aging. Small length scales, ℓs < ℓ(t, TA),
with characteristic times ts ≪ t have reached equilibrium at TA, while big ones, ℓb > ℓ(t, TA) with
characteristic times tb ≫ t still retain their initial nonequilibrium state at TE , see Fig. 4.

Then the temperature is shifted to TB < TA at time tA with |TA − TB| ‘large’. Feature (ii) entails
that all length scales, ℓ ≶ ℓ(tA, TA), must adapt to the new temperature TB. This occurs through the
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FIG. 4: Cartoon suggested by the considerations of section IVB for a temperature cycling experiment. The
related effects are discussed in section IVC.

growth of a new coherence length, ℓ(t − tA, TB), as shown by a dashed line in Fig. 4. Aging is thus
restarted from scratch and rejuvenation due to the reequilibration of small length scales is observed.

At time tB, the system is shifted back to A. Due to (iii), TB < TA implies a much slower growth
of ℓ during the intermediate stage. Hence, for tB − tA ≈ tA, as is often the case in experiments,
one has ℓ(tB − tA, TB) < ℓ(tA, TA) and the behavior for t > tB is due to three types of length
scales. Small length scales, ℓ < ℓ(tB − tA, TB), have to reequilibrate at TA. Intermediate lengths,
ℓ(tB − tA, TB) < ℓ < ℓ(tA, TA), are already equilibrated at TA. It is in these length scales that
the memory resides. Large lengths, ℓ(tA, TA) < ℓ, still have to equilibrate at TA. Hence, after
a short transient of duration τ given by ℓ(τ, TA) ∼ ℓ(tB − tA, TB) < ℓ(tA, TA), aging proceeds as
the continuation of the first stage. Note that under the assumption of activated dynamics, simple
inequality of length scales corresponds to a large degree of inequality in terms of time scales.

If one chooses instead TB > TA, the essential situation should be unchanged, provided that the
condition ℓ(tB− tA, TB) < ℓ(tA, TA) is fulfilled, see Fig. 4. This property is called ‘symmetrical effect’
in the field of spin glasses [11]. Note, however, that this condition on the lengths is extremely difficult
to satisfy due to feature (iii). Therefore, in most experiments with TB > TA the equilibrated length
grown at TB is larger than that grown at TA. All memory is subsequently erased, resulting in an
apparent asymmetry between positive and negative cycles.

Let us finally turn to Kovacs’ experiments. Two types of length scales must be distinguished in order
to understand this effect. Small scales, ℓ < ℓ(tA, TA), are equilibrated at TA but must adapt to a new,
higher, temperature TB. Large lengths, ℓ(tA, TA) < ℓ, in contrast, are still in their nonequilibrium
high temperature initial state and must adapt to a smaller temperature TB. If the energy density e(t)
is computed, as in Fig. 3 (right), small length scales contribute to increase e(t), while large length
scales contribute to decrease e(t). This accounts in simple terms for the Kovacs effect.

Schematic discussions based on (i), (ii), and (iii) like that above allow for qualitative prediction of
the outcome of given experimental protocols. However, while (i), (ii) and (iii) are natural features for
a phenomenological theory of coarsening in a glassy system, in the above they are put in by hand.
Consequently we now discuss models that explicitly realize these properties.

D. Droplets and chaos in spin glasses

The scaling, or droplet, model of spin glasses [43, 44] possesses these three features and provides
quantitative, experimentally testable predictions. These predictions are clearest in the case of Ising
spin glasses, which we discuss here. At a given temperature in the spin glass phase, the assumptions
made by the scaling picture resemble those made in the case of pure ferromagnetic systems, but differ
due to the disorder in a spin glass.

The initial assumption of the droplet model is that Ising spin glasses have two equilibrium states,
related by spin flip symmetry. Spin glass dynamics are then described in terms of ‘droplets’, low
lying excitations about these states [44]. Because of disorder, the boundaries of low lying excitations
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wander in order to take advantage of bonds not satisfied in the ground state and to avoid satisfied
bonds that are particularly strong. Thus droplets are expected to be non-convex with fractal surface
of dimension df > d − 1, where d is the space dimensionality. The droplet model assumes that the
energy of larger droplets is, on average, larger than that of smaller ones and hence that the spin glass
phase is not destroyed by arbitrarily large, arbitrarily low energy, excitations. In particular, it makes
the scaling ansatz that the average free energies of these low lying excitations scales with their size,
Fℓ ∼ Υ(T )ℓθ, θ > 0. As a result of disorder, θ < (d − 1)/2, and the distribution of Fℓ is expected
to be broad, with weight down to zero for all ℓ. Further the droplet model assumes that dynamics
is activated and makes the second scaling assumption that activation barriers scale with droplet size,
Bℓ ∼ ∆(T )ℓψ where the distribution of Bℓ also has weight down to zero. Stiffness modulii Υ(T ) and
∆(T ) go to zero at the critical temperature Tc as (1 − T/Tc)

−νψ, where ν is the standard exponent.
Feature (i) given above follows immediately from the assumptions of the scaling picture. Aging

proceeds by equilibration of droplets in increasingly larger equilibrium domains of size ℓ(t, T ) ∼
( T
∆(T ) ln t)1/ψ. Feature (iii) also follows immediately both from activated dynamics and from the

temperature dependent stiffness coefficients. Thus the droplet picture predicts simple aging behavior
as well as memory effects, at least under certain experimental conditions.

The dynamics provided by the droplet model of spin glasses differs importantly from the dynamics
of a pure ferromagnet in the role of temperature change [44]. A spin glass at 0 < T < Tc is indeed
described in terms of a renormalized Hamiltonian with a renormalized ground state. However, as
mentioned above, this renormalized finite temperature Hamiltonian is only statistically similar to
the zero temperature Hamiltonian. Hence the equilibrium states and droplet excitations thereof at
various temperatures are not related to one another in any simple way. In fact, a straightforward
statistical argument [44, 45] provides an overlap length associated with a small temperature change
from T to T + ∆T , given by ℓo(T, ∆T ) ∝ |∆T |−ζ where ζ = 2

df−2θ . The equilibrium state at

T is unchanged on scales ℓ ≪ ℓo(T, ∆T ) but altered significantly on scales ℓ ≫ ℓo(T, ∆T ). This
‘temperature chaos’ realizes feature (ii) and predicts rejuvenation when ℓo(T, ∆T ) is sufficiently small
compared to ℓ(t, T ) [46].

Remark that the droplet picture makes certain reasonable, but as yet unverified, assumptions.
It assumes that there are equilibrium states with reference to which low lying excitations can be
defined, even as equilibrium domains are growing. Such assumptions are still a matter for debate [47].
Furthermore, the properties of these excitations are given by reasonable but assumed scaling laws.
For work examining the validity these assumptions see Refs. [48].

Even if the assumptions made in the droplet model are valid, it is not clear whether this model is
sufficient to explain observed rejuvenation and memory effects. In order for it to do so, the overlap
length ℓo(T ) must be small enough to affect observations corresponding to experimental length scales.
We note that the characterization of ℓo(T ) in spin glasses is still a very active topic at the theoretical
level [49]. A cautious conclusion is that, if ℓo exists, it certainly is too large to be observed in numerical
simulations of systems like spin glasses. However, because Fℓ and Bℓ are both broadly distributed, the
droplet model anticipates that in rare regions, reorganization with change of temperature will take
place even on unusually small length scales and experimentally viable time scales. If such anomalous
reorganization is common enough, rejuvenation and memory may still be accounted for by the droplet
model even if the characteristic overlap length ℓo(∆T ) itself is not readily obtainable in experimental
wait times [50]. The distribution of length scales about the overlap length ℓo(∆T ) certainly requires
further theoretical investigation.

On an experimental level, rejuvenation effects do not constitute a proof of temperature chaos. They
are simply consistent with its existence. In fact, in the simulational study of Ref. [22] it is argued
that a rejuvenation effect is observed in a regime in which no chaotic effect of the kind described
above can be detected [51]. Hence, it is worth considering other mechanisms that might provide for
rejuvenation and memory effects.

E. Surfing on a critical line

Another mechanism has recently been invoked to account for rejuvenation effects, while retaining
the simplicity of the domain growth approach [25]. We showed in section IVA that the absence of
rejuvenation in standard coarsening comes from the short-range character of thermal fluctuations.
Since the inequality ξeq(T ) ≪ ℓ(t) prevents rejuvenation, the idea of Ref. [25] is simply to consider
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FIG. 5: Fourier transform of the spin autocorrelation function of the 2D XY model computed analytically in
a temperature cycling experiment.

opposite situations where ℓ(t) ≪ ξeq(T ). Away from critical points, ξeq(T ) is usually small. The
suggestion is hence to ‘surf on a critical line’ [52] where ξeq(T ) = ∞.

A simple aging experiments corresponds then to a quench to a critical point. In this case, the
coherence length is equal to the dynamic correlation length ℓ(t) = ξ(t) ∼ t1/zc , where zc is the
dynamic critical exponent. Aging is thus nothing but the successive equilibration of the critical
fluctuations. Similarities between this situation and aging in glassy materials were noted [53].

When the temperature is shifted, all the critical fluctuations have to adapt to a new critical point
with a new set of critical exponents. This is the origin of the rejuvenation effect in this context.
It is now obvious that all the discussion of section IVC applies, with the dictionary “objects” =
“critical fluctuations” and “coherence length” = “dynamic correlation length”. The mechanism for
rejuvenation is subtlely different from temperature chaos, even taken close to the critical point [54].
Here, all length scales are always reshuffled without any ‘overlap length’ [22, 25].

The XY model is a microscopic realization of this picture. It undergoes, in two dimensions, a
Kosterlitz-Thouless transition from a standard paramagnetic state to a non-magnetized state with
power-law correlations. It presents then a ‘line of critical points’, with a continuous variation of the
critical exponents with temperature. As a consequence, the 2D XY model exhibits aging, rejuvenation,
memory and Kovacs effects [25]. The example of a temperature cycle, where rejuvenation and memory
are present, is given in Fig. 5. Note that property (ii) is not naturally present in the model, since

ℓ(t) =
√

ρ(T )t where ρ(T ) is the (renormalized) spin wave stiffness. To build Fig. 5, ρ(T ) was
arbitrarily, but not unreasonably, chosen to ensure the separation of length scales, ρ(TA) = 20ρ(TB).

This analogy raises the question: are glassy systems critical? A possible answer is yes they are, in
which case they should have in common a line of critical points below the glass transition, in analogy
with the 2D XY model. A microscopic mechanism giving rise to such a behavior in, say, spin glasses,
is lacking. Another is no; but they do experimentally behave as if there is a critical line. The second,
more pragmatic solution requires that ℓ(t) is never decoupled from ξeq(T ), even when the latter is
finite. One might argue this if the excitations on length scales exceeding ξeq(T ) are dominated by
activation, and hence give exponentially increasing times for ℓ(t) ≥ ξeq. These conditions may make
it virtually impossible to enter the regime ℓ(t) > ξeq(T ). Slow evolution in the crossover region could
result in effective critical behavior with continuous evolution of the exponents. This is at least fully
consistent with results in spin glasses [22].

V. TWO EXPERIMENTS

A. Anderson insulator

We mention the Anderson insulator, or ‘electron glass’, in this paper since its experimental proper-
ties were discussed at length in this school by Ovadyahu [55, 56]. Hence, we do not present the system
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and directly discuss the results. Also, we only focus here on one of the many measurements performed
on this system, and refer to Refs. [56] for more details. Our aims are (1) to rephrase the “aging ex-
periment” described by Ovadyahu in the present context; (2) to show that the phenomenology of
section IVB might be useful to interpret the data.

The electron glass is first prepared in its ‘glassy phase’. This corresponds to a given low temperature
and a gate voltage V = VA, used as the ‘control parameter’ [55]. This corresponds then to a ‘simple
aging experiment’. Aging manifests itself through a logarithmic time evolution of the conductance
G, used as a probe of the dynamics. Presumably, two-time functions would display in this regime
interesting scaling behaviors, but no such measurements have been performed yet.

After a very large time, typically days, G is almost constant. The gate voltage is then shifted to VB
during a time tw. Experiments show that G restarts to evolve in a logarithmic way. This corresponds
to a ‘rejuvenation effect’, since the days already spent in the glassy phase are apparently forgotten. In
a third stage of the experiment, V is shifted back to its initial value VA. The experiments show that,
after a time of order tw, G reaches its initial value again. This is analogous to what we called the
‘transient’, followed by the ‘memory effect of the second kind’. Furthermore, experiments have shown
that during the third stage of the experiment (‘transient’ and ‘memory’) the conductance satisfies the
scaling law G = G(t/tw) where t is the time counted from the beginning of the third stage [55, 56].
This behavior was called ‘aging’ in Ref. [56], because of the t/tw scaling, although the experiment is
in fact a complete cycle in terms of V .

Can one go beyond words and analogies? If the similarity between these experiments and standard
temperature cycling experiments is assumed, then the cartoon of Fig. 4 can be used. The t/tw scaling
of the conductance tells that the duration of the ‘transient’ has the same magnitude as the duration
of the second stage. This means that there is almost no separation of time scales in the electron glass
for this range of gate voltages, as noted in Ref. [56]. Building further on analogies, one can reproduce
this experiment using the 2D XY model. Stay first a very long (infinite) time at temperature TA,
then do a shift of duration tw at TB and come back at TA at time t = 0. In this case, one can compute
the time dependence of the spin autocorrelation function between times t and 0, noted Ctw (t, 0), as a
function of the duration of the shift tw. One finds, dropping irrelevant factors and using the notations
of section IVE:

Ctw(t, 0) = Ceq(t)

(

1

ℓTA
(t)

)

ηB−ηA
2







(

2ℓ2
TB

(tw) + ℓ2
TA

(t)
)2

4ℓ2
TB

(tw)
(

ℓ2
TA

(t) + ℓ2
TB

(tw)
)







ηB−ηA
4

, (2)

where Ceq(t) is the equilibrium correlation function obtained when tw = 0 (no shift at all) and ηA and
ηB are the usual critical exponents at temperatures TA and TB. The second and third term of the
right hand side respectively account for the ‘transient’ and the ‘memory’. For ℓTA

(t) ≪ ℓTB
(tw), the

transient term is dominant and aging is observed through a power law decay. When ℓTA
(t) ≫ ℓTB

(tw),
both terms combine to restore equilibrium, accounting for the memory. Interestingly, the crossover
time scale tc is given by

ℓTA
(tc) ∼ ℓTB

(tw). (3)

No separation of length scales amounts thus to tc ∼ tw as is observed in the electron glass. Deviations
from t/tw, as observed at higher gate voltages V [55], could be tentatively related via Eq. (1) to a
decrease of an activation energy at high V . This effect could be more systematically investigated
using Eqs. (1) and (3).

B. Colloidal suspension

Overaging was introduced in section II. It is reproduced in Fig. 6 showing a multiple light scattering
experiment on a colloidal suspension [19]. Two interesting points in this experiment are (1) the
control parameter is an external oscillatory shear strain, as opposed to temperature in ‘standard’
shift experiments; (2) no obvious coherence length is known to grow during the aging of colloids.
Therefore, such experiments could possibly be used to characterize length scales in colloidal glasses.

In this context, ‘simple aging experiments’ consist in a ‘quench’ from a shear strain of very large
amplitude (typically more than 20 %) mimicking a ‘high temperature’. Standard t/w scalings have
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FIG. 6: Overaging in a colloidal suspension. The data show two-time intensity correlation functions obtained
with a multiple scattering technique. Full lines refer to a simple aging experiment, squares to a ‘strain-shift’
experiment with an intermediate strain of 5.9%. (a) w = 163s. Overaging is observed as in Fig. 3. (b)
w = 100s. The strain difference is strong enough to partially rejuvenate the system (square curve below the
full line at short times while overaging is still observed at long times. This is the ‘intermediate’ shift described
in the text where both rejuvenation and overaging are mixed.

been observed in many similar soft glassy materials [3, 4, 5, 19]. It is thus natural to start and
investigate more complex protocols, in the spirit of shifts and cycles [19, 57, 58]. A first possibility
is to quench first towards a small, but finite, shear strain during a time tw, after which the shear
is completely stopped. One can then compare the results with a temperature shift experiment,
TE → TA → TB < TA, which are more commonly performed.

In spin glasses, in agreement with the phenomenology developed above, the following results are
known. We already discussed the case of large ∆T = TA − TB: rejuvenation is observed [13]. For
very small ∆T , the relaxation of the system after the shift has the same shape as in a direct quench
to TB, but with an ‘effective age’ teffw > tw [14]. Indeed, a small ∆T means that the objects growing
at TA will be almost unchanged at TB (no rejuvenation). However, due the property (iii), the time
spent at higher temperature is more efficient in growing the coherence length. Hence, the relaxation
is slower after the shift, the system looking ‘older’ or ‘overaged’. This is observed in the colloidal
suspension in a ‘strain-shift’ experiment, see Fig. 6(a). More quantitatively, the effective age teffw can
be estimated in terms of the coherence length as [22, 24, 41]

ℓ(teffw , TB) ∼ ℓ(tw, TA). (4)

Repeating this protocol for various (tw, TA, TB) gives thus quantitative informations on the growth law
of the coherence length [22, 41, 59]. Furthermore, Eq. (1) shows that this protocol allows a quantitative
study of the energy barriers encountered by the system during its nonequilibrium dynamics [41].

For intermediate ∆T , of course, the result will be a combination of rejuvenation and overaging.
This has been observed in spin glasses [14, 22, 24] and in polymers [23]. That this is the case in the
colloidal suspension with oscillatory strain as a control parameter is demonstrated in Fig. 6(b).

Again, systematic studies using Eqs. (1) and (4) could possibly lead to a quantitative characteri-
zation of a coherence length in this and other systems.

VI. CONCLUSION

This paper is the result of a discussion group organized during this summer school. It has become
a kind of a review of what glassy dynamics looks like, as encountered in experiments performed on
different materials using diverse control parameters. Although first observed in spin and structural
glasses, it now is clear that these spectacular effects are quite generic. This points towards the
necessity of having a simple interpretation of these phenomena and we have used the concept of a
coherence length to develop one. Note that all the theoretical interpretations discussed in this paper
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rely on a some sort of hierarchical picture: hierarchy of traps levels, of time scales in infinite-range
glass models, of length scales in spatial approaches. We have focused on the latter because we think it
gives greater physical insight. We note, however, that definition, characterization and measurement
of a coherence length is still largely an open problem for most of the systems discussed here! In this
respect, we mentioned several times that the experimental protocols discussed in this paper and their
interpretation, for instance Eq. (3) and Eq. (4), constitute a promising starting point for progress on
the crucial problem of length scales in glassy materials.
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[13] P. Réfrégier, E. Vincent, J. Hammann, and M. Ocio, J. Phys. (France) 48, 1533 (1987).
[14] J. Hammann, M. Lederman, M.Ocio, R. Orbach and E. Vincent, Physica A 185, 278 (1992).
[15] K. Jonason, E. Vincent, J. Hammann, J.-P. Bouchaud and P. Nordblad, Phys. Rev. Lett. 81, 3243 (1998).
[16] G. B. McKenna and A. J. Kovacs, Polym. Eng. and Sci. 24, 1131 (1984).
[17] A. J. Kovacs, Adv. Polym. Sci. 3, 394 (1963); A. J. Kovacs et al., Journal of Polymer Science 17, 1097

(1979).
[18] C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W. Martin, J. Appl. Phys. 88, 3113

(2000).
[19] V. Viasnoff and F. Lequeux, Phys. Rev. Lett. 89, 065701 (2002).
[20] A. J. Liu and S. R. Nagel, Nature 396, 21 (1998).
[21] M. E. Cates, this volume.
[22] L. Berthier and J.-P. Bouchaud, Phys. Rev. B 66, 054404 (2002).
[23] V. Viasnoff (unpublished).
[24] T. Komori, H. Yoshino, and H. Takayama, J. Phys. Soc. Jpn. 69, Suppl. A 228 (2000).
[25] L. Berthier and P. C. W. Holdsworth, Europhys. Lett. 58, 35 (2002).
[26] R. L. Leheny and S. R. Nagel, Phys. Rev. B 57, 5154 (1998).
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