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A B S T R A C T

We consider a version of the classical Hamiltonian FPU (Fermi–Pasta–Ulam) problem with nonlinear force-
strain relation in which a hardening response is taken over by a softening regime above a critical strain value.
We show that in addition to pulses (solitary waves) this discrete system also supports non-topological and
dissipation-free fronts (kinks). Moreover, we demonstrate that these two types of supersonic traveling wave
solutions belong to the same family. Within this family, solitary waves exist for continuous ranges of velocity
that extend up to a limiting speed corresponding to kinks. As the kink velocity limit is approached from above
or below, the solitary waves become progressively more broad and acquire the structure of a kink–antikink
bundle. Direct numerical simulations and Floquet analysis of linear stability suggest that all of the obtained
solutions are effectively stable. To motivate and support our study of the discrete problem we also analyze a
quasicontinuum approximation with temporal dispersion. We show that this model captures the main effects
observed in the discrete problem both qualitatively and quantitatively.
1. Introduction

Front-shaped kinks and pulse-shaped solitary waves are usually
perceived as two fundamentally different types of traveling waves that
are ubiquitous in nonlinear discrete systems. Both kinks and solitary
waves are localized coherent structures that represent far-from equilib-
rium collective phenomena emerging from the underlying many-body
interactions. They are encountered in integrable and non-integrable
Hamiltonian systems and can be stable or unstable. Together with
breathers, they play an important role as building blocks in complex
dynamic patterns in nonlinear systems and contribute crucially to the
mechanical energy transmission at the microscale [1–4]. Important
applications associated with mechanical kinks and solitary waves are
mitigation of impact loadings, transmission, guiding and encryption
of mechanical information, including enabling logic operations and
activating soft robotics [5,6].

Kinks, originally introduced in the context of sine-Gordon-type
equations, are usually perceived as self-induced topological defects
representing connections between different energy wells of a potential.
The dynamics of discrete kinks is typically dissipative due to radiative
losses which results in a finite driving force needed for such defects
to be spatially displaced [7–9]. Kinks and antikinks correspond to
the discrete spectrum of a nonlinear eigenvalue problem defining
their velocity. They are described by heteroclinic trajectories of the
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corresponding differential equations and move with specific, usually
subsonic speeds [10–13]. Typical mechanical examples of kinks (not
to be confused with shock waves in Burgers-type equations) are phase
boundaries [14] and dislocations [15]. In contrast, solitary waves, often
discussed in the context of KdV-type equations, can be characterized
as localized, non-topological and usually non-dissipative wave packets
whose existence does not require a multiwell structure of the poten-
tial [16–19]. Solitary waves usually move with supersonic speeds and
belong to a continuous spectrum of traveling wave solutions described
by homoclinic trajectories in the phase space [20]. Typical mechan-
ical examples are tidal bores [21] and self-healing pulses imitating
earthquakes [22].

While both kinks and solitary waves first appeared in the context of
integrable, exactly solvable nonlinear models, which describe physical
systems only within a certain approximation, here we consider a more
realistic non-integrable Hamiltonian mechanical system that bears both
kinks and solitary waves. More specifically, we consider the well known
discrete Fermi–Pasta–Ulam (FPU) model [23–25] and in this way ad-
dress the issue of the coexistence of kinks and solitary waves in a
one-dimensional mass–spring chain. Such coexistence was absent in the
𝛼-FPU setting, which relied on quadratic nonlinearity of the force-strain
relation. Here we consider an extension of this prototypical model in
which a hardening response is taken over by a softening regime above
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a critical strain value. Meanwhile, the interaction potential is a convex
unction of strain in the relevant strain interval.

The choice of hardening-softening interactions is inspired by stress–
train laws in a range of soft biological tissues from skin to mus-
les [26]. For instance, in tendons and ligaments the hardening stage of
he mechanical response can be linked to the straightening of crimped
ollagen fibers while the softening stage may be due to the begin-
ing of the distributed microscopic fracturing of these fibers [26,27].
ardening to softening transition is also ubiquitous in elastomeric
olecular composites [28] and can be even mimicked in NiTi mesh

mplants [26]. Note that apparently similar convex material response
ut of softening-hardening type have been studied before in continuum

setting, however, with the dynamic response found to be uneventful
and basically the same as in the other well studied cases with double-
well potentials, where kinks that are topological are fundamentally
different from solitary waves that are non-topological [29,30].

Existence and properties of either kinks or solitary waves in hard-
ening-softening discrete FPU system have been studied before [31–35]
but the unifying perspective on their coexistence and interplay in a
generic setting was missing. Other systems supporting coexisting kinks
and solitary waves include discrete transmission lines [36,37], complex
Ginzburg–Landau equation [38–40] and the Gardner equation [41–
43]. Studies specifically focused on the interrelation between kinks and
solitary waves in these and other related systems include [44–52].

In the present paper we clarify why in addition to conventional
solitary waves, the hardening-softening discrete FPU model also neces-
sarily supports non-topological and dissipation-free kinks. Kinks have
polarity and thus always arrive together with their twins of opposite
polarity, which we call antikinks. Under certain conditions kinks and
antikinks can form a bundle and in this way annihilate their polarity.
Since kink and antikink can move with the same speed, the bundled
compact configurations can also move with a constant speed. The ensu-
ing ‘‘marginal’’ solitary waves lie on the boundary of the solitary-wave
domain in the space of parameters (the kink limit).

More specifically, we show that kinks and solitary waves, viewed
as two types of discrete supersonic traveling wave solutions of the FPU
model, belong to the same family. Within this family, solitary waves
exist for continuous ranges of velocity that extend up to a limiting
speed corresponding to kinks. As the kink velocity limit is approached
from above or below, the solitary waves become progressively more
broad and acquire the structure of a kink-antikink bundle. This scenario
differs from the systems with nonconvex interaction potentials, where
in contrast to non-topological and non-dissipative solitary waves, the
generic kinks are necessarily topological and dissipative (radiative).

In the recent paper [53] we showed that in the Hamiltonian FPU
model there can appear exactly three distinct classes of steady switch-
ing fronts, subkinks, shocks and superkinks, which fundamentally differ
in how (and whether) they produce and transport oscillations. In this
classification subkinks are subsonic and dissipative (radiative), shocks
are supersonic and dissipative and superkinks are supersonic and non-
dissipative. The kinks considered in the present paper are supersonic
and non-dissipative and thus are superkinks in the sense of [53].

After formulating the discrete problem and providing the conditions
ecessary for the coexistence of superkinks and solitary waves, we
onsider a quasicontinuum (QC) approximation of the discrete prob-
em that adds to the conventional continuum elastodynamics a mixed
pace–time higher-order derivative term describing temporal dispersion
nd accounting for microinertia contribution to the kinetic energy [54–
7]. In contrast to the more conventional QC models that involve
urely spatial dispersion term [58–60], this approximation generates a
ounded dispersion relation for a linearized problem, which precludes
hort-wave instabilities. We present a detailed analysis of the QC
roblem and show that it possesses a family of superkink and solitary
ave solutions, which are computed explicitly for a cubic extension
f the 𝛼-FPU interaction force. The analytical transparency of the QC
2

odel allows one to understand in full detail the singular role played (
by superkinks embedded inside the continuous range of solitary waves
and to associate the special kinetic relation, characterizing such kinks,
with their non-dissipative nature.

Using the obtained solutions of the QC problem as a starting point,
we then proceed to compute the corresponding traveling wave solutions
of the discrete problem. To do so, we take advantage of the fact that
traveling waves are periodic modulo shift by one lattice spacing and
thus can be computed as fixed points of the corresponding nonlinear
map [61–63]. We then follow the approach in [62,64,65] and exploit
the periodicity-modulo-shift of the traveling waves to study their linear
stability by computing the Floquet multipliers associated with the cor-
responding linearized problem. Similar to other related problems [65,
66], our Floquet analysis indicates mild oscillatory instabilities that
appear to be a spurious artifact of the chain size in the computations,
since their magnitude decreases for longer chains. Effective stability of
the computed waves is supported by direct numerical simulations that
show their steady propagation. We also present some simulation results
for initial value problems that show formation and steady motion of
superkinks and solitary waves.

Comparison of the computed solutions of the discrete problem with
the corresponding exact solutions of the QC model shows a very good
agreement on both qualitative and quantitative levels. It is important to
mention that the proposed QC framework not only provides a transpar-
ent interpretation of the two types of nonlinear waves, but also helps
to explain in physical terms why kinks are dissipation-free and why at
least some solitary waves can be viewed as nonlinear superpositions of
kinks and antikinks. Previous results for this problem, revealing similar
effects, concern a bilinear version of the model which turns out to be
analytically solvable in both discrete and QC versions [34,35].

The paper is organized as follows. In Section 2 we introduce the
discrete problem and discuss some general properties of superkinks and
solitary waves. In Section 3 we introduce the QC model and present
the phase-plane analysis of the problem for general hardening-softening
nonlinearity. Explicit traveling wave solutions of the QC problem with
a cubic nonlinearity are derived and discussed in Section 4. These
solutions are used in Section 5 to obtain the traveling wave solutions of
the discrete problem as fixed points of the corresponding nonlinear map
and compare the results of the two problems. Stability of the obtained
solutions of the discrete problem is investigated in Section 6 using both
Floquet analysis and direct numerical simulations. Concluding remarks
are presented in the final Section 7.

2. Supersonic kinks and solitary waves: general properties

We consider the basic FPU model, which describes the dynamics
of a one-dimensional chain of identical masses interacting with their
nearest neighbors. The dimensionless governing equations are

̈𝑛 = 𝑓 (𝑢𝑛+1 − 𝑢𝑛) − 𝑓 (𝑢𝑛 − 𝑢𝑛−1), (1)

where 𝑢𝑛(𝑡) is the displacement of 𝑛th particle at time 𝑡, 𝑢̈𝑛(𝑡) = 𝑢′′𝑛 (𝑡),
and 𝑓 (𝑤) = 𝛷′(𝑤) is the nonlinear interaction force obtained from the
interaction potential 𝛷(𝑤). Introducing particle velocities 𝑣𝑛 = 𝑢̇𝑛(𝑡) =
𝑢′𝑛(𝑡) and strain variables 𝑤𝑛 = 𝑢𝑛 − 𝑢𝑛−1, we can rewrite (1) as the
first-order system

𝑤̇𝑛 = 𝑣𝑛 − 𝑣𝑛−1, 𝑣̇𝑛 = 𝑓 (𝑤𝑛+1) − 𝑓 (𝑤𝑛). (2)

Written in terms of strain variables alone, the equations are

𝑤̈𝑛 = 𝑓 (𝑤𝑛+1) − 2𝑓 (𝑤𝑛) + 𝑓 (𝑤𝑛−1). (3)

In what follows, we assume that 𝑓 (0) = 0 and that in an interval (𝛼, 𝛽) of
strains that includes zero, we have 𝑓 ′(𝑤) > 0. Note that this implies that
the corresponding interaction potential 𝛷(𝑤) = ∫ 𝑤

0 𝑓 (𝑠)𝑑𝑠 is convex in
the interval (𝛼, 𝛽). We further assume that there exists 𝑤∗ such that
0 < 𝑤∗ < 𝛽, 𝑓 ′′(𝑤∗) = 0, and we have 𝑓 ′′(𝑤) > 0 for 𝛼 < 𝑤 < 𝑤∗

′′
hardening response) and 𝑓 (𝑤) < 0 for 𝑤∗ < 𝑤 < 𝛽 (softening response),
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Fig. 1. Interaction force 𝑓 (𝑤) (red) and the Rayleigh line (black) connecting
(𝑤+, 𝑓 (𝑤+)) and (𝑤−, 𝑓 (𝑤−)) (black). The strain 𝑤∗ marks the transition from
he hardening (convex) to softening (concave) regime. A superkink transition
ave with limiting states 𝑤± and supersonic velocity 𝑉𝑆𝐾 such that 𝑉 2

𝑆𝐾 >
′(𝑤±) exists when the two shaded areas cut by the Rayleigh line, which has

he slope 𝑉 2, are equal. The associated solitary wave solutions have velocity
such that either 𝑐2+ < 𝑉 2 < 𝑉 2

𝑆𝐾 or 𝑉 2
𝑆𝐾 < 𝑉 2 < 𝑐2−, where 𝑐2+ and 𝑐2− are the

slopes of the blue and green straight lines passing through (𝑤+, 𝑓 (𝑤+)) and
tangent to 𝑓 (𝑤) at 𝑤+ and 𝑤𝑠

−, respectively. See the text for more details.

so that 𝑓 ′(𝑤) has a local maximum at 𝑤 = 𝑤∗. A simple example
of such hardening-softening (convex–concave) interaction force is the
cubic interaction force

𝑓 (𝑤) = 𝑎𝑤3 + 𝑏𝑤2 +𝑤, 𝑎 < 0, 𝑏 > 0, (4)

shown by the red curve in Fig. 1. In this case we have

(𝛼, 𝛽) =

(

−

√

𝑏2 + 3|𝑎| − 𝑏
3|𝑎|

,
𝑏 +

√

𝑏2 + 3|𝑎|
3|𝑎|

)

, 𝑤∗ = 𝑏
3|𝑎|

. (5)

We reiterate that while the convex, hardening part of 𝑓 (𝑤) can be
associated with reorganization of the micro-constituents contributing
to interconnectivity and increasing rigidity, the concave, softening
part can be linked to the loss of interconnectivity associated with the
ultimate emergence of damage [26–28]. In what follows, we restrict our
attention to solutions with strain values in the (𝛼, 𝛽) interval given in
(5), where the corresponding potential 𝛷(𝑤) is convex, thus preventing
the non-physical behavior at large |𝑤|.

We are interested in traveling waves that connect stable equilibrium
states of the system, with constant strains 𝑤± such that 𝑓 ′(𝑤±) > 0 and
constant particle velocities 𝑣±, and propagate with velocity 𝑉 that is
supersonic with respect to both limiting states: 𝑉 2 > 𝑓 ′(𝑤±). Thus, we
seek solutions in the form

𝑤𝑛(𝑡) = 𝑤(𝜉), 𝑣𝑛(𝑡) = 𝑣(𝜉), 𝜉 = 𝑛 − 𝑉 𝑡, (6)

where

lim
𝜉→±∞

𝑤(𝜉) = 𝑤±, lim
𝜉→±∞

𝑣(𝜉) = 𝑣±. (7)

Monotone traveling fronts connecting two different states, 𝑤+ ≠ 𝑤−,
correspond to superkinks. As shown in [31], in the case of smooth
𝑓 (𝑤) small-amplitude superkinks bifurcate from local maxima of 𝑓 ′(𝑤)
connecting convex and concave parts of 𝑓 (𝑤). Global existence of
such fronts in the FPU problem with convex–concave nonlinearity was
established in [32,33] under the area condition discussed below. As we
will show, superkinks are closely related to solitary waves, pulse-like
solutions of (8) connecting identical limiting states, 𝑤 = 𝑤 = 𝑤 ,
3

− + 𝐵
and propagating with supersonic velocities. Existence of such solutions
has been shown in [67]. In what follows, we focus on these two types
of traveling waves.

For both types of solutions, the function 𝑤(𝜉) must satisfy the
advance-delay differential equation

𝑉 2𝑤′′(𝜉) = 𝑓 (𝑤(𝜉 + 1)) − 2𝑓 (𝑤(𝜉)) + 𝑓 (𝑤(𝜉 − 1)) (8)

obtained by substituting (6) into (3). Using (2) instead, we obtain the
equivalent system of first-order equations:

−𝑉 𝑤′(𝜉) = 𝑣(𝜉) − 𝑣(𝜉 − 1), −𝑉 𝑣′(𝜉) = 𝑓 (𝑤(𝜉 + 1)) − 𝑓 (𝑤(𝜉)). (9)

Combining these two equations, we obtain the energy balance law [32]

−𝑉 𝑑
𝑑𝜉

[ 1
2
𝑣2(𝜉) +𝛷(𝑤(𝜉))

]

= 𝑓 (𝑤(𝜉 + 1))𝑣(𝜉) − 𝑓 (𝑤(𝜉))𝑣(𝜉 − 1). (10)

ntegrating the equations in (9) over the finite interval [−𝑁,𝑁] and
aking the limit 𝑁 → ∞ as in [32] (see also [61,68]), we recover the
lassical Rankine–Hugoniot jump conditions

𝑉 (𝑤+ −𝑤−) = 𝑣+ − 𝑣−, −𝑉 (𝑣+ − 𝑣−) = 𝑓 (𝑤+) − 𝑓 (𝑤−), (11)

hich upon the elimination of 𝑣± yield the single condition

(𝑤+) − 𝑓 (𝑤−) = 𝑉 2(𝑤+ −𝑤−). (12)

his condition trivially holds for solitary waves, since 𝑤− = 𝑤+ in
hat case. For superkinks, it states that the slope of the Rayleigh line
onnecting (𝑤+, 𝑓 (𝑤+)) and (𝑤−, 𝑓 (𝑤−)) equals 𝑉 2, as shown in Fig. 1.

Similarly, integrating (10), we obtain

𝑉
( 1
2
𝑣2+ +𝛷(𝑤+) −

1
2
𝑣2− −𝛷(𝑤−)

)

= 𝑓 (𝑤+)𝑣+ − 𝑓 (𝑤−)𝑣−. (13)

simple calculation then shows that (13), (12) and the first of (11)
mply [32,33]

(𝑤+) −𝛷(𝑤−) −
1
2
(𝑤+ −𝑤−)(𝑓 (𝑤+) + 𝑓 (𝑤−)) = 0. (14)

or solitary waves, this condition is again trivially satisfied. For su-
erkinks, however, the condition (14) has an important physical mean-
ng. It is a kinetic relation that states that the driving force 𝐺 = 𝛷(𝑤+) −
(𝑤−)−

1
2 (𝑤+−𝑤−)(𝑓 (𝑤+)+𝑓 (𝑤−)) [69] on the moving front is zero, and

hus there is no dissipation associated with its motion. Geometrically,
his means that the two areas cut by the Rayleigh line from 𝑓 (𝑤) must

be equal, as shown in Fig. 1.
Conditions (12) and (14) are thus necessary for the existence of a

superkink solution. Therefore, they appear in the existence conditions
obtained [32,33] and were also independently obtained in the case
of piecewise linear 𝑓 (𝑤) in [34,35,53], where they were linked to
the absence of elastic radiation of lattice waves which serve as a
Hamiltonian analog of macroscopic dissipation. Importantly, the two
conditions imply that in the case of superkinks, only one of the values
𝑤−, 𝑤+ and 𝑉 can be prescribed independently. In particular, they
determine 𝑤± as a function of 𝑉 .

Note that for each superkink solution propagating with velocity 𝑉 ,
there exists a solution of the same form but velocity −𝑉 . In addition,
for each kink solution with 𝑤− > 𝑤+, i.e., a front with 𝑤′(𝜉) < 0, there
s an antikink solution with the limiting states interchanged, so that
′(𝜉) > 0, and the same velocity. Meanwhile, solitary waves can be

ensile, 𝑤(𝜉) > 𝑤𝐵 , or compressive, 𝑤(𝜉) < 𝑤𝐵 . Similar to the superkinks,
for each solitary wave moving with velocity 𝑉 , there is a wave of
the same form moving with velocity −𝑉 . Properties of solitary waves
associated with a superkink are discussed in detail below.

3. Quasicontinuum model

To motivate and support our study of the discrete problem, we first
consider its quasicontinuum (QC) approximation. To obtain it, we note
that in Fourier space (8) becomes
2 2 2
𝑘 𝑉 𝑊 (𝑘) = 4 sin (𝑘∕2)𝐹 (𝑘),
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Fig. 2. Phase portraits for (17) with 𝑓 (𝑤) given by (4), 𝑤+ = 1 and (a) 𝑉 = 𝑉𝑆𝐾 −0.001; (b) 𝑉 = 𝑉𝑆𝐾 ; (c) 𝑉 = 𝑉𝑆𝐾 +0.005, where 𝑉𝑆𝐾 satisfies the conditions (12),
14) with the corresponding 𝑤−. See the text for details. Here 𝑉𝑆𝐾 = 2

√

65∕3, 𝑤− = 17∕3. The colored trajectories correspond to a tensile solitary waves in (a),
uperkinks in (b) and a compressive solitary wave in (c).
here 𝑘 is the wave number, and 𝑊 (𝑘) and 𝐹 (𝑘) are the Fourier
ransforms of 𝑤(𝜉) and 𝑓 (𝑤(𝜉)), respectively. Using the (2, 2) Padé

approximation, 4 sin2(𝑘∕2) ≈ 𝑘2∕(1 + 𝑘2∕12), of the discrete Laplacian
in Fourier space and taking the inverse Fourier transform, we obtain

𝑉 2𝑤′′ − 𝑉 2

12
𝑤′′′′ = (𝑓 (𝑤))′′. (15)

he same traveling wave equation can be obtained by differentiating
he regularized Boussinesq partial differential equation

𝑡𝑡 −
1
12

𝑢𝑥𝑥𝑡𝑡 = (𝑓 (𝑢𝑥))𝑥,

which describes the QC model derived in [55], with respect to 𝑥 and
seeking solutions in the form 𝑦(𝑥, 𝑡) = 𝑢𝑥(𝑥, 𝑡) = 𝑤(𝜉), 𝜉 = 𝑥 − 𝑉 𝑡. The
above equation can also be derived from the Lagrangian density

 = 1
2

(

𝑢2𝑡 +
1
12

𝑢2𝑡𝑥
)

−𝛷(𝑢𝑥), (16)

which contains a ‘‘microkinetic’’ energy term (1∕24)𝑢2𝑡𝑥 in addition to
the classical kinetic and potential energy terms. Integrating (15) twice
and using the boundary condition for 𝑤(𝜉) at 𝜉 → ∞ in (7), we obtain

−𝑉 2

12
𝑤′′ + 𝑉 2𝑤 − 𝑓 (𝑤) = 𝑉 2𝑤+ − 𝑓 (𝑤+). (17)

Applying the boundary condition for 𝑤(𝜉) at 𝜉 → −∞ in (7) to (17),
we recover the Rankine–Hugoniot condition (12). Integrating (17) and
taking into account the boundary condition for 𝑤(𝜉) at 𝜉 → ∞ in (7)
yields

−𝑉 2

24
(𝑤′)2 = 𝛷(𝑤) −𝛷(𝑤+) − 𝑓 (𝑤+)(𝑤 −𝑤+) −

𝑉 2

2
(𝑤 −𝑤+)2. (18)

Applying the boundary condition for 𝑤(𝜉) at 𝜉 → −∞ in (7) to (18), we
obtain

𝛷(𝑤−) −𝛷(𝑤+) − 𝑓 (𝑤+)(𝑤− −𝑤+) −
𝑉 2

2
(𝑤− −𝑤+)2 = 0,

which together with (12) implies (14).
To construct a superkink solution of (17), it thus suffices to find

𝑤± satisfying (12) and (14) for a given 𝑉 (or, equivalently, 𝑤− and 𝑉
satisfying these conditions for a given 𝑤+) and then solve the first-order
Eq. (18).

Emergence of superkinks and the associated solitary wave solutions
can already be seen from the phase plane analysis of (17) for fixed
𝑤+ < 𝑤∗ and different values of 𝑉 , as illustrated in Fig. 2 for the cubic
case (4). Let 𝑉𝑆𝐾 denote the velocity of the superkink, which satisfies
the conditions (12), (14) with the corresponding 𝑤 . Observe that the
4

−

Rayleigh line 𝑅(𝑤) = 𝑓 (𝑤+) + 𝑉 2(𝑤 −𝑤+) passing through (𝑤+, 𝑓 (𝑤+))
is tangent to 𝑓 (𝑤) at 𝑤 = 𝑤+ when 𝑉 2 = 𝑐2+, where

𝑐+ = (𝑓 ′(𝑤+))1∕2, (19)

and at 𝑤 = 𝑤𝑠
− ≠ 𝑤+ satisfying 𝑓 (𝑤𝑠

−) = 𝑅(𝑤𝑠
−) when

𝑐− = (𝑓 ′(𝑤𝑠
−))

1∕2, (20)

Here 𝑐+ and 𝑐− denote the sound speeds at 𝑤 = 𝑤+ and 𝑤 = 𝑤𝑠
−,

respectively, and the corresponding Rayleigh lines are shown by blue
and green in Fig. 1. The critical points of (17) rewritten as a first-
order system are given by the intersections of 𝑅(𝑤) and 𝑓 (𝑤). A simple
analysis shows that for 𝑐2+ < 𝑉 2 < 𝑐2− there are three such points in
the phase plane (𝑤,𝑤′): saddle points (𝑤+, 0) and (𝑤𝑆 , 0) and a center
point (𝑤𝐶 , 0). Moreover, for 𝑐2+ < 𝑉 2 < 𝑉 2

𝑆𝐾 , (18) describes a homoclinic
trajectory emanating from the saddle point (𝑤+, 0) and corresponding
to a tensile solitary wave solution with the background state 𝑤𝐵 = 𝑤+
at infinity (see the magenta trajectory in Fig. 2(a) for an example).

As 𝑉 2 approaches 𝑉 2
𝑆𝐾 from below, the amplitude of the solitary

wave (determined by the right hand side of (18)) increases. Its tra-
jectory is passing closer to the saddle point (𝑤𝑆 , 0), where 𝑤𝑆 (𝑉 )
approaches 𝑤− from above, causing the wave to become more flat
and wide in the middle. At 𝑉 2 = 𝑉 2

𝑆𝐾 the homoclinic orbit reaches
the saddle point (𝑤−, 0), whereupon two heteroclinic trajectories that
correspond to superkink solutions form, as shown in Fig. 2(b). The
lower trajectory (marked in red) has the strain 𝑤− behind the moving
front and 𝑤+ ahead (a kink), while the upper trajectory (green) has 𝑤−
ahead and 𝑤+ behind (an antikink).

When 𝑉 2 exceeds 𝑉 2
𝑆𝐾 , the heteroclinic orbits are destroyed, and

there is another homoclinic trajectory (an example is shown by ma-
genta in Fig. 2(c)) that emanates from the saddle point (𝑤𝑆 , 0) and
corresponds to a compressive solitary wave with the background state
𝑤𝐵 = 𝑤𝑆 that depends on the velocity 𝑉 of the wave. This trajectory
is described by (18) with 𝑤+ replaced by 𝑤𝑆 . Such compressive waves
exist for 𝑉 2

𝑆𝐾 < 𝑉 2 < 𝑐2−, where 𝑐− is given by (20). As 𝑉 2 → 𝑐2−, 𝑤𝑆
approaches 𝑤𝑠

−, and as 𝑉 2 → 𝑉 2
𝑆𝐾 , it tends to 𝑤−. As 𝑉 2 approaches

𝑉 2
𝑆𝐾 from above, the width and amplitude of the solitary wave grow,

and it becomes more flat in the middle due to its trajectory passing
closer to the saddle point (𝑤+, 0). In the sonic limits both tensile and
compressive waves delocalize to their background states.

In the above discussion, we chose 𝑤+ to be below 𝑤∗, where 𝑓 ′(𝑤)
has a local maximum; recall that this is the strain value associated with
the emergence of small-amplitude kink solutions [31]. The picture is
similar when 𝑤+ > 𝑤∗ but in that case the solitary waves leading to
the emergence of superkinks as 𝑉 2 approaches 𝑉 2 from below are
𝑆𝐾
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compressive, while above 𝑉 2
𝑆𝐾 there are tensile waves. At 𝑤+ = 𝑤∗,

we have 𝑐2+ = 𝑉 2
𝑆𝐾 = 𝑐2−, and both solitary waves and the superkinks

disappear.
To summarize, for a given state 𝑤+ ahead, superkinks arise as the

limit of solitary wave solutions. As the kink velocity is approached,
these solutions grow in amplitude and become wider and more flat
in the middle, with the two boundary layers on the left and on the
right that approximate monotone kink and antikink solutions. Thus,
for velocities just below the kink limit, solitary waves acquire a dipole
structure, where a kink and an antikink move in tandem. This will be
further illustrated by explicit solutions constructed in the next section.

We remark that broad solitary waves the type we see around 𝑉 =
𝑉𝑆𝐾 , are sometimes referred to as ‘‘flat-top solitons’’. They have been
seen in a variety of models, including, for example, the recent analysis
of the continuum nonlinear equations of Gardner-type [41,70] and
of closely related overdamped discrete oscillator chains [42,43]. In
the context of the FPU problem, such solitary wave solutions and the
limiting superkinks were first studied for the special case of bilinear
interactions in [34,35], where the discrete problem could be solved
explicitly.

4. Explicit solutions for the quasicontinuum model

The generic scenario described in the previous section holds for
any smooth hardening-softening 𝑓 (𝑤). In the cubic case (4), we can
integrate (18) to obtain explicit solutions that have a simple form. One
can show that 𝑓 (𝑤) in (4) has the symmetry property

𝑓 (𝑤) = 4𝑏
3
𝑤2

∗ + 2𝑤∗ − 𝑓 (2𝑤∗ −𝑤),

with 𝑤∗ given in (5), so if 𝑤(𝜉) is a traveling wave solution of either
discrete or QC problem with velocity 𝑉 , so is 𝑤̃(𝜉) = 2𝑤∗ − 𝑤(𝜉) with
the corresponding adjustment of the conditions at infinity.

Superkinks. We begin by constructing a superkink solution. Due to the
symmetry it suffices to consider the case 𝑤− > 𝑤+. Note that (4) implies
that

𝛷(𝑤−)−𝛷(𝑤+)−
1
2
(𝑤−−𝑤+)(𝑓 (𝑤+)+𝑓 (𝑤−)) = − 1

2
(𝑤−−𝑤+)3

[

− 𝑎
2
(𝑤+ +𝑤−) −

𝑏
3

]

,

so that (14) yields

𝑤+ +𝑤− = 2𝑏
3|𝑎|

= 2𝑤∗. (21)

Noting that

𝑓 (𝑤−) − 𝑓 (𝑤+) = (𝑤− −𝑤+)
[

𝑎(𝑤2
+ +𝑤+𝑤− +𝑤2

−) + 𝑏(𝑤+ +𝑤−) + 1
]

and using (21), we find that (12) yields

𝑉 2
𝑆𝐾 = 1 + 𝑏2

3|𝑎|
− |𝑎|

(

𝑤+ − 𝑏
3|𝑎|

)2
, (22)

which together with (21) implies that

𝑤± = 𝑏
3|𝑎|

∓

√

𝑏2

3𝑎2
−

𝑉 2
𝑆𝐾 − 1
|𝑎|

. (23)

The expression under the square root must be positive, which yields
the upper velocity bound, 𝑉 2

𝑆𝐾 < 1 + 𝑏2∕(3|𝑎|). It is reached when
𝑤+ = 𝑤− = 𝑤∗ = 𝑏∕(3|𝑎|), the strain value where 𝑓 (𝑤) changes
curvature from convex to concave and the bifurcation point for the
superkink solution.

Substituting (23) in (18) with 𝑓 (𝑤) given by (4), we obtain

𝑉 2
𝑆𝐾
24

(𝑤′(𝜉))2 = −𝑎
4
(𝑤 −𝑤+)2(𝑤 −𝑤−)2, (24)

where we recall that 𝑎 < 0. Note that 𝑏 > 0 then ensures that 𝑤+ and
𝑤− have a positive average 𝑏∕(3|𝑎|), and 𝑓 (𝑤) monotonically increases
in the interval in (5) around this average. Requiring that 𝑤 in (23)
5

±

belong to this interval (so that 𝑓 ′(𝑤±) > 0) gives the lower velocity
bound, which together with the upper bound obtained above yields

2
3

(

1 + 𝑏2

3|𝑎|

)

< 𝑉 2
𝑆𝐾 < 1 + 𝑏2

3|𝑎|
. (25)

Since 𝑤′(𝜉) < 0 along the solution we seek, with 𝑤+ < 𝑤(𝜉) < 𝑤−,
(24) yields the separable ordinary differential equation

𝑑𝑤
𝑑𝜉

= −

√

6|𝑎|
|𝑉𝑆𝐾 |

(𝑤 −𝑤+)(𝑤− −𝑤),

which is readily solved. Assuming 𝑤(0) = (𝑤+ + 𝑤−)∕2 = 𝑤∗ (a choice
e can make due to translational invariance) and using (23), we obtain

(𝜉) =
𝑤+ +𝑤−

2
−

𝑤− −𝑤+
2

tanh(𝑝𝜉),

𝑝 =

√

6|𝑎||𝑤− −𝑤+|

2|𝑉𝑆𝐾 |
=

√

2(𝑏2 − 3|𝑎|(𝑉 2
𝑆𝐾 − 1))

|𝑉𝑆𝐾 |
√

|𝑎|
.

(26)

As 𝑉 2
𝑆𝐾 increases within the interval in (25), the values 𝑤± move

towards each other, while the width of the transition front increases.
This is illustrated in Fig. 3.

In the above construction, we assumed that 𝑤− > 𝑤+. Due to the
ymmetry mentioned above, solutions with 𝑤+ > 𝑤− have the same
orm (26) but ∓ in the right hand side of (23) becomes ±.

olitary waves. We now consider solitary wave solutions associated
ith a superkink that has the state 𝑤+ ≠ 𝑤∗ ahead and velocity 𝑉𝑆𝐾
iven by (22). Recall from Section 3 that such waves have velocity 𝑉
uch that either 𝑐2+ < 𝑉 2 < 𝑉 2

𝑆𝐾 or 𝑉 2
𝑆𝐾 < 𝑉 2 < 𝑐2−, where 𝑐+ and

𝑐− are defined in (19) and (20). Recall also that the waves have the
background state

𝑤𝐵 =

{

𝑤+, 𝑐2+ < 𝑉 2 < 𝑉 2
𝑆𝐾 ,

𝑤𝑆 (𝑉 ), 𝑉 2
𝑆𝐾 < 𝑉 2 < 𝑐2−,

(27)

where 𝑤𝑆 ≠ 𝑤+ is such that 𝑓 (𝑤𝑆 ) − 𝑓 (𝑤+) = 𝑉 2(𝑤𝑆 − 𝑤+) and
𝑉 2 > 𝑓 ′(𝑤𝑆 ), so that (𝑤𝑆 , 0) corresponds to a saddle point in the phase
plane for (17).

In the cubic case (4) we use

𝑓 (𝑤𝑆 ) − 𝑓 (𝑤+) = (𝑤𝑆 −𝑤+)
[

𝑎(𝑤2
+ +𝑤+𝑤𝑆 +𝑤2

𝑆 ) + 𝑏(𝑤+ +𝑤𝑆 ) + 1
]

to obtain

𝑤𝑆 = 1
2|𝑎|

[𝑏 − |𝑎|𝑤+ ∓
√

𝑏2 − 3𝑎2𝑤2
+ + 2|𝑎|𝑏𝑤+ − 4|𝑎|(𝑉 2 − 1)], (28)

with the minus sign if 𝑤+ > 𝑤∗ and plus sign if 𝑤+ < 𝑤∗. To find 𝑐−
in (20), we recall that 𝑓 (𝑤𝑠

−) − 𝑓 (𝑤+) = 𝑓 ′(𝑤2
−)(𝑤

𝑠
− −𝑤+). Substituting

(4), we obtain, after some algebra,

𝑤𝑠
− = 1

2|𝑎|
(𝑏 − |𝑎|𝑤+),

nd hence 𝑐2− = 𝑓 ′(𝑤𝑠
−) = 3𝑎(𝑤𝑠

−)
2 + 2𝑏𝑤𝑠

− + 1 yields

− =

√

1
4
(𝑏 − |𝑎|𝑤+)

(

3𝑤+ + 𝑏
|𝑎|

)

+ 1. (29)

Meanwhile, 𝑐+ = (𝑓 ′(𝑤+))1∕2 = (3𝑎(𝑤+)2 + 2𝑏𝑤+ + 1)1∕2. For 𝑤+ ≠ 𝑤∗
we have 𝑐2+ < 𝑉 2

𝑆𝐾 < 𝑐2−, as illustrated in Fig. 4. At 𝑤+ = 𝑤∗ the three
elocities coincide: 𝑐2+ = 𝑉 2

𝑆𝐾 = 𝑐2− = 1 − 𝑏2∕(3𝑎).
For solitary waves (18) with 𝑓 (𝑤) given by (4) has the form

𝑉 2

24
(𝑤′(𝜉))2 = −𝑎

4
(𝑤 −𝑤𝐵)2(𝑤𝑇 −𝑤)(𝑤𝑀 −𝑤), (30)

here the equilibrium points 𝑤𝑇 and 𝑤𝑀 are given by

𝑇 ,𝑀 = 2𝑏
3|𝑎|

−𝑤𝐵 ±

√

4
(

𝑤𝐵 − 𝑏
3|𝑎|

)2
− 2

|𝑎|
(𝑉 2 − 1) − 6𝑤2

𝐵 + 4𝑏
|𝑎|

𝑤𝐵 ,

(31)
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Fig. 3. (a) The limiting strains 𝑤± of a superkink as functions of 𝑉𝑆𝐾 for the cubic nonlinearity (4) with 𝑎 = −1 and 𝑏 = 10. The figure is symmetric about the
vertical axis. (b) Strain profiles for the QC model at different velocity values.
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Fig. 4. Velocities of the solitary waves for a given state 𝑤+ ahead of the
associated superkink solution. The red curve corresponds to the superkink
limit, while the blue and green curves indicate the sonic limits. Dark shaded
regions correspond to tensile solitary waves (TSW), and light shaded regions
to compressive solitary waves (CSW). The diagram is symmetric about the
horizontal axis. Here 𝑓 (𝑤) is given by (4) with 𝑎 = −1, 𝑏 = 10.

with plus sign in front of the square root for 𝑤𝑇 and minus for 𝑤𝑀
when 𝑤+ < 𝑤∗, 𝑐2+ < 𝑉 2 < 𝑉 2

𝑆𝐾 or 𝑤+ > 𝑤∗, 𝑉 2
𝑆𝐾 < 𝑉 2 < 𝑐2− and vice

versa when 𝑤+ > 𝑤∗, 𝑐2+ < 𝑉 2 < 𝑉 2
𝑆𝐾 or 𝑤+ < 𝑤∗, 𝑉 2

𝑆𝐾 < 𝑉 2 < 𝑐2−, and
we recall that 𝑎 < 0. Solving (30), we obtain the solitary wave

𝑤(𝜉) = 𝑤𝐵 +
2(𝑤𝑀 −𝑤𝐵)(𝑤𝑇 −𝑤𝐵)

𝑤𝑀 − 2𝑤𝐵 +𝑤𝑇 + (𝑤𝑇 −𝑤𝑀 ) cosh(𝛾𝜉)
,

𝛾 =

√

6|𝑎|
|𝑉 |

√

(𝑤𝑀 −𝑤𝐵)(𝑤𝑇 −𝑤𝐵),
(32)

where we recall (27) and (28). As shown in Fig. 4, for 𝑤+ < 𝑤∗, the
olitary waves are tensile when 𝑐2+ < 𝑉 2 < 𝑉 2

𝑆𝐾 and compressive when
2
𝑆𝐾 < 𝑉 2 < 𝑐2−, and the opposite is true for 𝑤+ > 𝑤∗.

The solution (32) satisfies 𝑤(0) = 𝑤𝑀 and 𝑤(𝜉) → 𝑤𝐵 as 𝜉 → ±∞.
he amplitude of the solitary wave is thus given by
𝑄𝐶
𝑎𝑚𝑝 = |𝑤𝑀 −𝑤𝐵| (33)

ote that the amplitude tends to zero (solution delocalizes to the
onstant strain 𝑤𝐵) as 𝑉 tends to the corresponding sonic limit. As the
uperkink velocity limit, 𝑉𝑆𝐾 , is approached, 𝑤𝐵 → 𝑤−, 𝑤𝑇 ,𝑀 → 𝑤+

for 𝑉 2
𝑆𝐾 < 𝑉 2 < 𝑐2−. Meanwhile, for 𝑐2+ < 𝑉 2 < 𝑉 2

𝑆𝐾 we have 𝑤𝐵 = 𝑤+,
and 𝑤𝑇 ,𝑀 → 𝑤− in the superkink limit. Thus

𝑤𝑄𝐶
𝑎𝑚𝑝 → |𝑤− −𝑤+|,

where 𝑤− is the strain behind the superkink front corresponding to 𝑤+,
and we recall (21). Note also that in this limit 𝛾 in (32) tends to 2𝑝,
6

a

with 𝑝 defined in (26). Thus, as the superkink velocity is approached,
the solitary wave (32) becomes wider, with the two boundary layers
on the left and on the right approaching the corresponding superkink
solutions, and the strain in between tending to the constant value given
by 𝑤− for 𝑐2+ < 𝑉 2 < 𝑉 2

𝑆𝐾 and 𝑤+ for 𝑉 2
𝑆𝐾 < 𝑉 2 < 𝑐2−. Just below and

just above the limit, solitary waves have the structure of a kink-antikink
bundle. This is illustrated in Fig. 5.

Since the energy of the waves with nonzero background is infinite,
we renormalize it by subtracting the energy of the background:

𝐸𝑄𝐶
𝑟𝑒𝑛 (𝑉 ) = ∫

∞

−∞

{ 1
2
𝑉 2𝑤2(𝜉) + 1

24
𝑉 2(𝑤′(𝜉))2 +𝛷(𝑤(𝜉)) −𝛷(𝑤𝐵) −

1
2
𝑉 2𝑤2

𝐵

}

𝑑𝜉,

(34)

where we used the fact that for a traveling wave solution with the
strain 𝑤(𝜉) = 𝑤(𝑥 − 𝑉 𝑡) the particle velocity is 𝑣(𝜉) = −𝑉 𝑤(𝜉). Fig. 6
hows the typical dependence of amplitude and renormalized energy of
he waves on their velocity. As discussed above, in the superkink limit
marked by the dashed vertical line) the amplitude reaches the finite
alue |𝑤− −𝑤+| (a corner in Fig. 6(a)), while the renormalized energy
iverges near the limit (see Fig. 6(b)) because the two superkinks
orming such solitary waves undergo an unlimited separation.

Thus, we can see already at the QC level that the superkink and
olitary wave solutions form a single family, with a singular superkink
imit embedded in the continuum range of solitary wave velocities.

. Traveling wave solutions of the discrete problem

Having explored the relation between superkinks and solitary waves
n the QC level, we now consider the corresponding traveling wave
olutions of the discrete problem (3). Due to the symmetry of the
roblem with respect to velocity 𝑉 , it suffices to obtain solutions with
> 0.

uperkinks. To compute the superkink solutions, we follow the ap-
proach in [61–63] and observe that by virtue of the traveling wave
ansatz (6) such solutions are necessarily periodic modulo shift by one
lattice spacing,

𝑤𝑛+1(𝑡 + 𝑇 ) = 𝑤𝑛(𝑡), 𝑇 = 1∕𝑉 , (35)

and thus can be cast as fixed points of the nonlinear map
[

{𝑤𝑛+1(𝑇 )}

{𝑤̇𝑛+1(𝑇 )}

]

= 

([

{𝑤𝑛(0)}

{𝑤̇𝑛(0)}

])

(36)

efined by integration of the governing Eqs. (3) over one period fol-
owed by a shift of indices. To obtain the traveling waves, we follow
n approach used in computing discrete breathers [71] and employ the
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Fig. 5. (a) Tensile solitary waves (TSW) in the QC model with cubic nonlinearity (4) at 𝑐+ < 𝑉 < 𝑉𝑆𝐾 ; (b) compressive solitary waves (CSW) at 𝑉𝑆𝐾 < 𝑉 < 𝑐−;
c) solitary waves just below and just above 𝑉𝑆𝐾 , shown together with kink and antikink fronts. Here 𝑤+ = 1, 𝑎 = −1, 𝑏 = 10, yielding 𝑉𝑆𝐾 = 2

√

65∕3, 𝑤− = 17∕3,

+ = 3
√

2, 𝑐− = 11∕2.
Fig. 6. (a) Amplitude (33) and (b) renormalized energy (34) as functions of velocity 𝑉 for solitary waves in QC model at 𝑤+ = 1. Here 𝑎 = −1, 𝑏 = 10, and the
uperkink (SK) limit 𝑉𝑆𝐾 = 2

√

65∕3 is marked by the dashed vertical line. The sonic limits are 𝑐+ = 3
√

2 and 𝑐− = 11∕2.
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ixed point method. For a large even number 𝑁 (we used 𝑁 = 500 in
typical computation) and given 𝑇 = 1∕𝑉 , we perform the Newton–
aphson iterations with numerically computed finite-difference Jaco-
ian to solve

𝑛+1(𝑇 ) = 𝑤𝑛(0), 𝑛 = −𝑁∕2,… , 𝑁∕2 − 1,

̇ 𝑛+1(𝑇 ) = 𝑤̇𝑛(0), 𝑛 = −𝑁∕2,… , 𝑁∕2 − 2, 𝑤1(𝑇 ) = 𝑤∗
(37)

or {𝑤𝑛(0), 𝑤̇𝑛(0)}, 𝑛 = −𝑁∕2,…𝑁∕2 − 1. To obtain 𝑤𝑛(𝑇 ) and 𝑤̇𝑛(𝑇 )
for given 𝑤𝑛(0) and 𝑤̇𝑛(0) at each iteration, we integrate (3) over one
period using the Dormand–Prince algorithm (Matlab’s ode45 routine)
7

𝑤

with boundary conditions

𝑤−𝑁∕2−1(𝑡) = 𝑤−, 𝑤𝑁∕2(𝑡) = 𝑤+, (38)

here 𝑤± are found from (12), (14). The last equation in (37) repre-
ents a pinning condition. Due to translational invariance of solutions
f (8), such condition is necessary to select a unique traveling wave
olution. The one we select facilitates the comparison with superkink
olutions 𝑤𝑄𝐶 (𝜉) of the QC model in (26), which are also used to obtain
n initial guess for the Newton–Raphson procedure and parameter
ontinuation. Recall that these solutions satisfy 𝑤𝑄𝐶 (0) = 𝑤∗, so that
(0) = 𝑤 (𝑇 ) = 𝑤 (0) and thus the traveling wave 𝑤(𝜉) for the
0 1 𝑄𝐶
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Fig. 7. Superkink solutions 𝑤𝑛(0) = 𝑤(𝑛) of the discrete problem (8) (circles)
with cubic nonlinearity (4) and the corresponding solutions 𝑤(𝑥) for the QC
model (18) (solid curves) evaluated at 𝑡 = 0. Here 𝑎 = −1, 𝑏 = 10.

discrete problem satisfies 𝑤(0) = 𝑤𝑄𝐶 (0). We drop the equation for
𝑤̇𝑁∕2(𝑇 ) in (37) in order to obtain a system of 2𝑁 nonlinear equations
for 2𝑁 unknowns while prescribing the pinning condition. We have
verified that the omitted equation is automatically satisfied up to the
order of 10−13 at most in the computed solutions, due to the large value
of 𝑁 .

The computed superkink profiles 𝑤𝑛(0) = 𝑤(𝑛) for are shown in
Fig. 7, together with the corresponding profiles 𝑤(𝑥) obtained from the
exact solutions (26) of the QC model. One can see that these solutions
are very close, with barely visible difference in the transition layer.

Solitary waves. To compute the solitary wave solutions for given 𝑤+
and velocity 𝑉 in the intervals (𝑐+, 𝑉𝑆𝐾 ) and (𝑉𝑆𝐾 , 𝑐−), we use the same
approach as for the superkinks. In this case the prescribed pinning
condition is 𝑤̇1(𝑇 ) = 0, to ensure that the maximum of a tensile solitary
wave (or the minimum of a compressive one) is at 𝑛 = 0 when 𝑡 = 0,
and the boundary conditions are 𝑤−𝑁∕2−1(𝑡) = 𝑤𝑁∕2(𝑡) = 𝑤𝐵 , where we
recall (27).

The resulting strain profiles are shown in Fig. 8 together with their
QC counterparts (32). For further comparison of solitary waves in the
discrete and QC models, we show the corresponding amplitude–velocity
plots in Fig. 9 and energy–velocity plots in Fig. 10. In the latter, we
compare the renormalized energy (34) for the QC model with the
corresponding values

𝐸𝐷
𝑟𝑒𝑛(𝑉 ) =

∑

𝑛

{1
2
𝑣2𝑛 +

1
2
(

𝛷(𝑤𝑛) +𝛷(𝑤𝑛+1)
)

−𝛷(𝑤𝐵) −
1
2
𝑉 2𝑤2

𝐵

}

(39)

in the discrete case, where we recall that 𝑣𝑛 are the particle velocities,
and all values are evaluated at 𝑡 = 0 due to the energy conservation.

One can see that in the case of solitary waves some discrepancy
between solutions of the discrete and QC problems is visible away from
the sonic and superkink limits. However, the QC model still provides
a very good quantitative approximation of the entire solution family.
Importantly, it captures the singular nature of the superkink limit as
well as near-sonic regimes exceptionally well.

6. Stability of superkinks and solitary waves

To investigate the linear stability of the obtained traveling wave
solutions in the problem with cubic nonlinearity (4), we follow the ap-
proach in [62,64,65] and use Floquet analysis that exploits periodicity-
modulo-shift (35) of the traveling wave solutions. Substituting 𝑤𝑛(𝑡) =
̂ ̂
8

𝑤𝑛(𝑡) + 𝜖𝑦𝑛(𝑡) into (3), where 𝑤𝑛(𝑡) = 𝑤(𝑛 − 𝑉 𝑡) is the traveling
wave solution, and considering 𝑂(𝜖) terms, we obtain the governing
equations for the linearized problem:

𝑦̈𝑛 = 𝑓 ′(𝑤̂𝑛+1)𝑦𝑛+1 − 2𝑓 ′(𝑤̂𝑛)𝑦𝑛 + 𝑓 ′(𝑤̂𝑛−1)𝑦𝑛−1. (40)

The Floquet multipliers 𝜇 for this problem are the eigenvalues of the
monodromy matrix  defined by
[

{𝑦𝑛+1(𝑇 )}

{𝑦̇𝑛+1(𝑇 )}

]

= 

[

{𝑦𝑛(0)}

{𝑦̇𝑛(0)}

]

. (41)

To obtain , we compute the fundamental solution matrix Ψ(𝑇 ),
which maps [{𝑦𝑛(0)}, {𝑦̇𝑛(0)}]𝑇 onto [{𝑦𝑛(𝑇 )}, {𝑦̇𝑛(𝑇 )}]𝑇 , 𝑛 = −𝑁∕2,… ,
𝑁∕2 − 1, for the first-order linear system equivalent to (40). We use
periodic boundary conditions 𝑦𝑁∕2(𝑡) = 𝑦−𝑁∕2(𝑡), 𝑦−𝑁∕2−1(𝑡) = 𝑦𝑁∕2−1(𝑡),

hich is justified by the fact that for both solitary waves and superkinks
n the problem with cubic nonlinearity (4) the values 𝑓 ′(𝑤̂𝑛) at the two
nds of a large chain rapidly approach the same constant value. We
hen shift the rows of Ψ(𝑇 ) up by one row in the two parts of the matrix
orresponding to 𝑦𝑛 and 𝑦̇𝑛, respectively, with the last row in each part
eplaced by the first, obtaining  in (41).

The Floquet multipliers are related to the eigenvalues 𝜆 of the
inearization operator via 𝜇 = 𝑒𝜆∕𝑉 , and thus |𝜇| > 1 (Re(𝜆) > 0)
orresponds to instability. The Hamiltonian nature of the problem
eans that there are quadruples of non-real Floquet multipliers, i.e., if
is a multiplier, than so are 𝜇̄, 1∕𝜇 and 1∕𝜇̄, while the real multipliers

ome in pairs 𝜇 and 1∕𝜇. Linear stability thus requires that all Floquet
ultipliers lie on the unit circle: |𝜇| = 1.

To further explore stability of the waves, we complement the Flo-
uet analysis by direct numerical simulations.

.1. Stability of superkinks

Consider the superkink solutions in the case of cubic nonlinearity
4) with 𝑎 = −1, 𝑏 = 10, which are shown in Fig. 7. In this case the
elocity range (25) for the superkink traveling waves is 4.78423 < 𝑉 <
.85947. The results of our Floquet computation with 𝑁 = 500, shown in
ig. 11, indicate that for 𝑉 ≥ 5.74 within this range the maximum mod-
lus of the Floquet multipliers exceeds 1 by 𝑂(10−8) at most, and thus
he corresponding solutions may be considered linearly stable within
he accuracy of numerical computation. Below this threshold, quartets
f complex multipliers corresponding to oscillatory instability modes
merge from the unit circle for some velocities, as illustrated in Fig. 12,
nd rejoin it for others. However, the associated instabilities remain
mall in magnitude (|𝜇| < 1.0001) for 𝑉 ≥ 5.57, and the maximum
odulus, which exhibits an overall growth as velocity is decreased

owards the lower bound, stays below 1.005 over the entire velocity
ange. It should be noted that the Floquet multipliers associated with
he oscillatory instabilities depend on the chain size; in particular, their
agnitudes decrease as the chain size is increased. This suggests that

imilar to the case of discrete breathers [66] and solitary waves [65],
hese mild instabilities are a spurious artifact of the finite chain size
nd disappear as 𝑁 tends to infinity.

In addition to the Floquet analysis, we tested stability of the su-
erkinks by conducting numerical simulations of (3) on a finite chain
sing the Dormand–Prince algorithm. In the first set of simulations,
e extracted initial conditions from the computed superkink solutions,

.e., set 𝑤𝑛(0) = 𝑤̂𝑛(0) and 𝑤̇𝑛(0) = ̇̂𝑤𝑛(0), and used the corresponding
ixed boundary conditions (38). These simulations resulted in steady
ropagation of the traveling wave with velocity that remained within
(10−8) or less from the prescribed value for the entire range of
elocities, suggesting that the traveling waves are at least long-lived
nd likely stable. Representative examples are shown in Fig. 13.

The second set of simulations was conducted on a chain with 𝐿
articles using free-end boundary conditions and Riemann initial data

𝑛(0) =

{

𝑤𝑙 , 1 ≤ 𝑛 ≤ 𝐿∕2
𝑟

𝑤̇𝑛(0) = 0, 𝑛 = 1,… , 𝐿, (42)

𝑤 , 𝐿∕2 + 1 ≤ 𝑛 ≤ 𝐿,
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Fig. 8. Solitary wave solutions 𝑤𝑛(0) = 𝑤(𝑛) of the discrete problem (8) (circles) with cubic nonlinearity (4) and the corresponding solutions 𝑤(𝑥) for the QC
model (18) (solid curves) evaluated at 𝑡 = 0. The top two panels show (a) tensile waves below the superkink limit and (b) compressive waves above it at 𝑤+ < 𝑤∗.
The two bottom panels show (c) compressive waves below the superkink limit and (d) tensile waves above it at 𝑤+ > 𝑤∗. Here 𝑎 = −1, 𝑏 = 10, and the values
of 𝑤+ and the corresponding superkink velocity 𝑉𝑆𝐾 and sonic speeds 𝑐± are 𝑤+ = 1, 𝑉𝑆𝐾 = 2

√

65∕3, 𝑐+ = 3
√

2, 𝑐− = 11∕2 in (a), (b) and 𝑤+ = 6, 𝑉𝑆𝐾 = 7
√

5∕3,
𝑐+ =

√

13, 𝑐− =
√

29 in (c), (d).

Fig. 9. (a) Amplitude 𝑤𝑎𝑚𝑝 = |𝑤(0) −𝑤+| as a function of velocity 𝑉 for solitary wave solutions of the discrete problem (8) (dots) with cubic nonlinearity (4) and
the corresponding solutions for the QC model (18) (solid curves): (a) 𝑤+ < 𝑤∗; (b) 𝑤+ > 𝑤∗. The superkink limit (SK) is marked by the dashed vertical line, and
tensile and compressive waves are marked by TSW and CSW, respectively. Here 𝑎 = −1, 𝑏 = 10, and the values of 𝑤+ and the corresponding superkink velocity
𝑉𝑆𝐾 and sonic speeds 𝑐± are 𝑤+ = 1, 𝑉𝑆𝐾 = 2

√

65∕3, 𝑐+ = 3
√

2, 𝑐− = 11∕2 in (a) and 𝑤+ = 6, 𝑉𝑆𝐾 = 7
√

5∕3, 𝑐+ =
√

13, 𝑐− =
√

29 in (b). Insets zoom in inside the
rectangles.
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Fig. 10. Renormalized energy 𝐸𝑟𝑒𝑛 given by (39) as a function of velocity 𝑉 for solitary wave solutions of the discrete problem (8) (dots) with cubic nonlinearity
4) and the corresponding energy (34) for the QC model (18) (solid curves): (a) 𝑤+ < 𝑤∗; (b) 𝑤+ > 𝑤∗. The superkink limit (SK) is marked by the dashed vertical
ine, and tensile and compressive waves are marked by TSW and CSW, respectively. Here 𝑎 = −1, 𝑏 = 10, and the values of 𝑤+ and the corresponding superkink
elocity 𝑉𝑆𝐾 and sonic speeds 𝑐± are 𝑤+ = 1, 𝑉𝑆𝐾 = 2

√

65∕3, 𝑐+ = 3
√

2, 𝑐− = 11∕2 in (a) and 𝑤+ = 6, 𝑉𝑆𝐾 = 7
√

5∕3, 𝑐+ =
√

13, 𝑐− =
√

29 in (b). Insets zoom in
inside the rectangles.
Fig. 11. Maximum modulus of Floquet multipliers for superkink solutions in
he discrete problem with cubic nonlinearity (4). Here 𝑎 = −1, 𝑏 = 10.

where the left strain satisfies 𝑤∗ < 𝑤𝑙 < (𝑏 +
√

𝑏2 + 3|𝑎|)∕(3|𝑎|), in
ccordance with the bounds for the limiting strain behind a superkink,
nd we set the right strain to zero: 𝑤𝑟 = 0. The strain values obtained
n the simulations remained within the region where 𝑓 ′(𝑤) > 0. The

size 𝐿 of the chain was chosen sufficiently large to avoid any boundary
effects.

As a representative example, we show the results for 𝑤𝑙 = 4.6
in Fig. 14. One can see that the initial data leads to formation of
two non-stationary (spreading) dispersive shock waves propagating in
opposite directions and a superkink that travels to the left ahead of the
corresponding dispersive shock wave (DSW) [72–76]. The numerically
measured velocity of the superkink, 𝑉 = −5.7209, coincides up to
𝑂(10−8) with the value associated with the prescribed 𝑤𝑙; see also the
comparison of the (appropriately shifted) computed superkink solution
and 𝑤100(𝑡) in panel (c). Formation of the superkink front from generic
initial conditions indicates its effective stability, in agreement with the
results of the Floquet analysis. The velocity of the leading edge of
the weak DSW moving to the left behind the superkink is 𝑉𝐷𝑆𝑊𝑙

=
−5.6159, while the strong DSW moving to the right propagates with
10

𝑉𝐷𝑆𝑊𝑟
= 4.6404. As shown in panels (d) and (e), their leading edges
are well approximated by computed solitary wave solutions with the
corresponding velocities and background strains.

6.2. Stability of solitary waves

We also examined stability of the obtained solitary waves solu-
tions using Floquet analysis and direct numerical simulations. In this
case, the Floquet analysis also shows eventual emergence of spurious
oscillatory instabilities that are similar to the ones we saw in the
case of superkinks. As shown in Fig. 15, these instabilities are very
mild: the maximum modulus, which increases as the superkink limit is
approached, is bounded by 1.0006 and 1.001 in the two cases shown.

Direct numerical simulations initiated by computed solitary waves
show their robust propagation with velocity within 𝑂(10−8) or less
from the prescribed value and suggest that the waves are effectively
stable, or at least long-lived, in the entire velocity range; see Fig. 16
for representative examples.

We also considered generic Gaussian-type initial conditions of the
form

𝑤𝑛(0) = 𝑤𝐵 + 𝐴 exp[−(1∕2)(𝑛 − 𝐿∕2)2], 𝑤̇𝑛(0) = 0, 𝑛 = 1,… , 𝐿. (43)

Using this initial data with various background strain 𝑤𝐵 and signed
amplitude 𝐴 in simulations with free boundary conditions, we observed
formation and steady propagation of both tensile (for 𝐴 > 0) and
compressive (for 𝐴 < 0) solitary waves. Two examples are shown in
Fig. 17. In the first example, shown in Fig. 17(a), we set 𝐴 = 6 and 𝑤𝐵 =
1. One can see formation of two tensile solitary waves of the same form
propagating in opposite directions with velocities 𝑉 = ±5.2494. The
waves are trailed by small-amplitude dispersive waves. In the second
case (Fig. 17(b)), where we set 𝐴 = −6 and 𝑤𝐵 = 6, there are two pairs
of compressive solitary waves, the smaller-amplitude waves moving
with velocities 𝑉 = ±3.811 and the large-amplitude ones propagating
with 𝑉 = ±5.025, with dispersive waves trailing the smaller-amplitude
solitary waves.

7. Conclusions

Classical studies of FPU-type systems involve weak nonlinearity,
where the Hookean force–elongation relation of the linear theory is
replaced by the simplest quadratic relation describing either hardening
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Fig. 12. (a) Floquet multipliers 𝜇 (blue crosses) for the superkink solution of the discrete problem with cubic nonlinearity (4) at 𝑉 = 5.2. (b) Enlarged version
of the region inside the rectangle in (a) showing multipliers with |𝜇| > 1 that correspond to mild oscillatory instabilities. The unit circle is shown in red. Here
𝑎 = −1, 𝑏 = 10.
Fig. 13. Space–time strain evolution initiated by computed superkink solutions with velocities (a) 𝑉 = 4.8; (b) 𝑉 = 5.2. Here 𝑎 = −1, 𝑏 = 10.
or softening of the mechanical response of the springs. The main non-
linear effect in such setting is the emergence of solitary wave solutions
parameterized by their velocities and stretching continuously over a
semi-infinite range of velocities from the weak, strongly continuum
near-sonic waves to the strongly discrete ones moving with arbitrarily
large supersonic velocity. In this setting, a hardening nonlinearity
produces tensile solitary waves while a softening nonlinearity generates
their compressive analogs.

In this paper we considered the synthetic model containing
hardening-softening nonlinearity, which can be represented by the
simplest cubic force-strain relation. In other words, we considered
a version of the classical Hamiltonian FPU problem with peculiar
springs where a hardening response is taken over by a softening
regime above a critical strain value. The resulting dynamic picture is
expectedly more complex, with both tensile and compressive solitary
waves simultaneously present, even if in different parameter ranges.

The proposed version of the FPU model was also shown to demon-
strate a fundamentally new feature emerging as a result of the interplay
between hardening and softening. Thus, in addition to conventional
solitary waves, such discrete system also supports non-topological and
11
dissipation-free kinks. More precisely, we showed that in the proposed
model, instead of growing without bound, the amplitude of both com-
pressive and tensile solitary waves saturates around a velocity value
which can be interpreted as a critical regime. Around this value of
the parameter the compressive and the tensile solitary waves each
converge to a configuration that can be seen as a bundle (or tandem)
of infinitely separated kinks and antikinks. The infinite width of such
a bundle suggests that the effective correlation length diverges and
the increasingly flattening top or bottom of the near-critical solitary
waves points towards the formation of a ‘‘second phase’’, which can
now coexist with the original ground state, or the ‘‘first phase’’.

The emerging picture is rather remarkable given that the elastic
energy density remains convex within the range of strains involved
in these solutions. The emergence of the ‘‘second phase’’ can be thus
interpreted as a purely dynamical phenomenon, requiring a delicate in-
terplay between kinetic and potential energy which are then conspiring
to produce an effectively dynamic double-well structure. In this per-
spective solitary waves can be viewed as crossover features connecting
sonic waves in both phases with the critical waves represented by stable
supersonic kinks and antikinks. While the latter are fully nonlocal, as
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Fig. 14. The results of simulations with Riemann initial data (42) with 𝑤𝑙 = 4.6, 𝑤𝑟 = 0, 𝐿 = 3600 and cubic nonlinearity (4): (a) strain profile at 𝑡 = 300; (b)
enlarged version of the region inside the rectangle in (a); (c) superkink with 𝑉 = −5.7209 (red dashed curve) and 𝑤100(𝑡) (blue curve); (d) solitary wave with
𝑉 = −5.6159, 𝑤𝐵 = 2.0667 (red dashed curve) and 𝑤200(𝑡) (blue curve); (e) solitary wave with 𝑉 = 4.6404, 𝑤𝐵 = 0 (red dashed curve) and 𝑤3000(𝑡) (blue curve).
Here 𝑎 = −1, 𝑏 = 10.
they are conditioned by the limits at plus and minus infinity, they are
non-topological, in contrast to conventional sine-Gordon-type kinks, as
the limiting states are not separated by an elastic energy barrier. A
striking feature of the proposed model is that both nonlocal kinks and
local solitary waves can move in a discrete setting with the same speed
and without radiating lattice waves.
12
An interesting property of our hardening-softening version of the
FPU model is that all the crucial features of the traveling wave solutions
can be already captured by the simplest QC approximation, which,
however, is not of a conventional KdV type and instead involves tempo-
ral dispersion. The analytical transparency of the proposed QC model
allowed us to corroborate and to rationalize theoretically various effects
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Fig. 15. Maximum modulus of Floquet multipliers for solitary waves in the discrete problem with cubic nonlinearity (4): (a) 𝑤+ = 1; (b) 𝑤+ = 6. Here 𝑎 = −1,
𝑏 = 10, and the dashed vertical lines mark corresponding superkink velocity values.

Fig. 16. Space–time strain evolution initiated by computed solitary wave solutions slightly below and slightly above the superkink limit, with velocities (a)
𝑉 = 5.21749194749 (a compressive wave); (b) 𝑉 = 5.2174919476 (a tensile wave). Here 𝑎 = −1, 𝑏 = 10, 𝑤+ = 6, 𝑉𝑆𝐾 = 7

√

5∕3 = 5.21749194749951.

Fig. 17. Initial and final strain profiles in simulations with cubic nonlinearity (4) and initial data (43) with (a) 𝑤𝐵 = 1, 𝐴 = 6, 𝐿 = 2400; (b) 𝑤𝐵 = 6, 𝐴 = −6,
𝐿 = 3000. Insets zoom in on the solitary and dispersive waves. Here 𝑎 = −1, 𝑏 = 10.
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observed in our numerical investigation of the discrete model. Near
superkink limit the observed agreement between the QC and discrete
models was not only qualitative but also quantitative, which is not
surprising in view of the critical nature of such regimes.

Finally, we mention that various localized traveling waves stud-
ied in this paper can be viewed as elementary bits of mechanical
information that can be generated, delivered, and erased in periodic
lattice metamaterials. Due to the presence of stress-sensitive repeating
structural units, such metamaterials can be designed to exhibit complex
mechanical response, in particular, to ensure that the mechanically
triggered switching and actuation takes place at a predefined place and
at a given level of stress.
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