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Abstract
We consider a version of the classical Hamiltonian Fermi–Pasta–Ulam (FPU) prob-
lem with a trilinear force–strain relation of soft–hard–soft type that is in general
non-symmetric. In addition to the classical spatially localized solitary waves, such
hardening–softening model also exhibits supersonic kinks and finite-amplitude, spa-
tially delocalized flat-top solitary waves that acquire the structure of a kink–antikink
bundle when their velocity approaches the kink limit. Exploiting the fact that traveling
waves are periodic modulo shift by a lattice spacing, we compute these solutions as
fixed points of the corresponding nonlinear map and investigate how their properties
depend on the parameter measuring the asymmetry of the problem. In a particularly
interesting case when one of the soft regimes has zero elastic modulus, we obtain
explicit solutions for sufficiently slow solitary waves. In contrast to conventional
delocalization in the sonic limit, the corresponding compact structures mounted on a
constant background become localized at the lattice scale as their velocity tends to
zero. Numerical simulations of Riemann-type initial value problem in this degenerate
limit show the emergence of Whitham shocks that involve periodic trains of solitary
waves. We investigate stability of the obtained solutions using direct numerical sim-
ulations and Floquet analysis. We also obtain explicit solutions for a quasicontinuum
model that captures the most important features of the discrete problem.
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1 Introduction

Pulse-shaped solitary waves constitute an important class of traveling waves in non-
linear systems. These localized dynamic coherent structures emerge in discrete and
continuum mechanical systems due to the interplay of dispersion and nonlinearity.
Stable solitary waves play an important role as building blocks in developing dynam-
ical patterns in various nonlinear mechanical systems, ranging from granular crystals
to metamaterials. They are increasingly used in applications exploiting structural non-
linearities at the scale of the periodicity cell (Yasuda et al. 2020; Raney et al. 2016;
Kochmann and Bertoldi 2017; Zhang et al. 2019). Artificially created materials of
this type can now manipulate localized mechanical signals, and the ensuing control of
solitary waves is used for mechanical energy transmission, encryption of mechanical
information and even activation of mechanical robots (Bertoldi et al. 2017; Yasuda
et al. 2019).

Solitary waves in discrete mechanical systems and their continuum KdV-type
approximations were first discovered in the pioneering work by Zabusky and Kruskal
(1965) that explained the seemingly paradoxical results of the numerical investigations
by Fermi et al. (1955) of the non-integrable Hamiltonian Fermi–Pasta–Ulam (FPU)
lattice, a mass–spring chain with nonlinear nearest-neighbor interactions (Berman
and Izrailev 2005; Gallavotti 2007). In subsequent studies solitary waves emerged
as localized, non-topological and non-dissipative coherent structures that move with
supersonic speeds and form continuous families (Remoissenet 2013; Newell 1985;
Fokas and Zakharov 2012; Vainchtein 2022; Ablowitz 2011). The most well-studied
case of solitary waves in discrete FPU system is when the springs are characterized
by force–strain relation of either hardening or softening type, as, for instance, in the
case of α-FPU system with quadratic nonlinearity. While weak solitary waves in such
systems can be characterized as low-amplitude, completely delocalized and almost
linear waves, very strong solitary waves emerge as maximally localized, lattice-scale
anticontinuum mechanical signals. The most analytically transparent setting in this
class of problems is the bilinear, soft–hard model introduced already in the original
FPU study (Fermi et al. 1955). In the present paper, we consider a trilinear, soft–
hard–soft, generalization of this classical model. Using exact solutions available in
this case, we show that, even without compromising the convexity of the energy, the
resulting hardening–softening system can exhibit non-classical physical effects.

Specifically, we consider the prototypical discrete FPU chain whose mechanical
response is represented by three linear elastic regimes which we characterize as soft,
hard and again soft. This implies that the conventional hardening soft–hard response
is eventually taken over by a softening hard–soft regime. No symmetry is assumed
regarding the two soft regimes which in high-contrast limit would be characterized
by drastically different elastic moduli. Our goal is to take advantage of the fact that
the addition of the second soft regime leads to the emergence in such FPU system
of rather peculiar delocalized finite-amplitude flat-top solitary wave solutions, which
are intimately connected to the non-topological supersonic kink solutions. Due to the
piecewise linear nature of the problem, both kinks and solitary waves can be studied
analytically in a quasicontinuum approximation of the discrete system.
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The choice of soft–hard–soft interactions is inspired by stress–strain laws in a
range of soft biological tissues from skin to muscles (Yasenchuk et al. 2021). For
instance, in tendons and ligaments the hardening stage of the mechanical response
can be linked to the straightening of crimped collagen fibers, while the softening
stage may be due to the beginning of the distributed microscopic fracturing of these
fibers (Yasenchuk et al. 2021; Sensini and Cristofolini 2018). Hardening to softening
transition is also ubiquitous in elastomeric molecular composites (Millereau et al.
2018) and is sometimes mimicked in NiTi mesh implants (Yasenchuk et al. 2021).

The question of existence of traveling waves in a hardening–softening FPU system
has been already addressed in the literature (Iooss 2000; Herrmann and Rademacher
2010; Herrmann 2011; Gorbushin and Truskinovsky 2019). Two recent papers dis-
cussed the relation between solitary waves and non-topological kinks in such systems.
In one of them (Gorbushin and Truskinovsky 2021), the force–elongation relation
was taken in a bilinear, soft–soft form with a degenerate infinitely hard response in
between. In the other (Vainchtein and Truskinovsky 2024), the mechanical response
was chosen to be cubic with symmetric softening and hardening regimes. Both mod-
els produced a coherent description of the families of solitary waves that in a special
velocity limit feature formation of supersonic kinks, or superkinks (Vainchtein and
Truskinovsky 2024; Gorbushin et al. 2022). As this limit is approached, the waves
increase in width and acquire a flat-top finite-amplitude structure of a kink–antikink
bundle.

However, the emerging picture remains incomplete. Thus, the fact that the bilinear
model replaced the hard section of the constitutive response by an infinitely hard one
did not leave any space for the internal degrees of freedom governing the energy trans-
fer inside the core regions of both solitary waves and superkinks. In particular, this
resulted in an unrealistic prediction that such solutions may propagate with arbitrarily
large speeds. In addition, to enable a simple solution procedure based on the Fourier
transform, the two soft regions in the bilinear model considered by Gorbushin and
Truskinovsky (2021) were taken to be fully symmetric. For the same reason of analyt-
ical simplicity, the cubic model studied by Vainchtein and Truskinovsky (2024) was
also chosen to be overly symmetric, which made the repertoire of possible physical
effects somewhat limited while also concealing some interesting special cases such
as the high-contrast case when one of the two soft regimes has zero sound speed (a
“sonic vacuum” (Vainchtein 2022)). Of course, the important advantage of the con-
stitutive choices made by Gorbushin and Truskinovsky (2021) and Vainchtein and
Truskinovsky (2024) was that in the cubic case a quasicontinuum (QC) approxima-
tion of the discrete FPU problem yielded explicit solutions, while in the bilinear case
analytical solutions could be found for both discrete and QC problems.

To complement the existing studies, we present in this paper the still missing dis-
cussion of the non-symmetric trilinear case. First, it allows us to study the case of
radically different soft regimes including the limit when one of them becomes elasti-
cally degenerate. Such limit, which resembles granular response, is of interest as the
model becomes non-linearizable in the corresponding strain range, and nonlinearity
becomes essential. In particular, due to such degeneracy the linear waves disappear,
while the conventional dispersive shockwaves are replaced byWhithamshocks involv-
ing trains of compact solitary waves. The second advantage of the trilinear model is
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the possibility of opening up the core region of both solitary waves and kinks which is
then described by a separate degree of freedom that can have its own evolution. This
allows one to study interaction between the different parts of the traveling wave and
results in a realistic finite velocity limit for its propagation.

We start by considering a QC approximation (Collins 1981; Rosenau 1986;
Kevrekidis et al. 2002; Feng et al. 2004) of the discrete FPU model for which all
of these effects can be demonstrated using explicit traveling wave solutions in the
form of kinks and solitary waves. In particular, we show that asymmetry of the prob-
lem, measured by the non-unit ratio of the elastic moduli in the soft regimes, has a
significant effect on the velocity ranges of the existence of kink solutions, as well as
the values and asymptotic behavior of their limiting strains as functions of the velocity.
This, in turn, affects the limiting amplitudes and velocity ranges of the associated soli-
tary waves. We also discuss the asymptotic behavior of the obtained solutions near the
boundaries of the velocity interval. In particular, we show that in the case when one of
the soft regimes has zero modulus, the compressive solitary waves have a non-trivial
sonic limit.

We then follow the approach of Aubry and Proville (2009); Vainchtein et al. (2020);
James (2021) and Vainchtein and Truskinovsky (2024) and take advantage of the fact
that traveling wave solutions of the discrete problem are periodic modulo shift by one
lattice spacing to obtain such solutions of the discrete problem as fixed points of a
nonlinear map. While this procedure generally requires numerical iterations, in the
important case when one of the soft regimes becomes degenerate, sufficiently slow
discrete solitarywaves can be also computed analytically. This allows us to corroborate
our numerical procedure and reveal the compact (modulo constant background) nature
of the solutions in this limiting case, which is not captured by the QC model. Further
comparison with traveling wave solutions of the discrete problem shows that while the
QC model captures them qualitatively, the quantitative agreement is fairly good for
superkinks but exists primarily near-sonic and kink velocity limits for solitary waves.
The discrepancy between the solutions away from these limits depends on the nature
of the wave (compressive or tensile) and the value of the asymmetry parameter.

Floquet analysis of the linear stability of obtained solitary waves in the non-
degenerate cases, which is enabled by their periodicity modulo shift (Vainchtein et al.
2020; Cuevas-Maraver et al. 2017; Xu et al. 2018) and takes advantage of the piece-
wise linear nature of problem, shows that near-sonic solutions with velocity below a
certain threshold are unstable. Numerical simulations initiated by the unstable waves
perturbed along the corresponding eigenmode show that the instability unfolds through
the system approaching an apparently stable wave above the threshold. Effective sta-
bility of such waves above the threshold is confirmed by direct numerical simulations,
which also show robust propagation of superkinks and solitary waves in the degener-
ate case at the prescribed velocities. This is further corroborated by the Riemann-type
simulations with piecewise constant initial data, which also reveal other interesting
phenomena, such as formation ofWhitham shocks involving periodic trains of solitary
waves in the degenerate case.

The paper is organized as follows. In Sect. 2, we formulate the problem and discuss
the general properties of the two types of travelingwaves. Explicit solutions for the QC
model are constructed and discussed in Sect. 3. In Sect. 4, we describe the procedure
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Fig. 1 a Trilinear soft–hard–soft interaction force f (w) with slopes 1, β and α along the blue (soft), green
(hard) and red (soft) segments, respectively; b Rayleigh line connecting (w+, f (w+)) and (w−, f (w−))

(black) for a superkink transition wave with limiting states w± and supersonic velocity V satisfying
max{1, α} < V 2 < β. The two shaded areas cut by the Rayleigh line at w = wS are equal: S1 = S2
(see the text for details)

for computing traveling wave solutions of the discrete problem, derive explicit solu-
tions for sufficiently slow compressive waves in the degenerate case, and compare the
obtained solutions with their QC counterparts. Stability of kinks and solitary waves
is discussed in Sect. 5 and Sect. 6, respectively. Concluding remarks can be found in
Sect. 7. Some technical results are contained in Appendix A.

2 Problem Formulation

Consider a one-dimensional chain of identical masses interacting with their nearest
neighbors. The dimensionless governing equations are

ün = f (un+1 − un) − f (un − un−1), (1)

where un(t) is the displacement of nth particle at time t , ün(t) = u′′
n(t) and f (w)

is the nonlinear interaction force associated with the interaction potential �(w) =∫ s
0 f (s)ds. Introducing the strain variables wn = un − un−1, we can rewrite (1) in the
form

ẅn = f (wn+1) − 2 f (wn) + f (wn−1). (2)

Our main assumption concerns the choice of the particle interactions in the trilinear
soft–hard–soft form:

f (w) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w, w ≤ wc − δ
2

wc − δ
2 + β(w − wc + δ

2 ), |w − wc| ≤ δ
2{

α(w − b), α > 0

wc − δ
2 + βδ, α = 0

, w ≥ wc + δ
2

, (3)
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where we assume

0 ≤ α < β, β > 1, δ > 0, wc − δ

2
> 0 (4)

and define, for α > 0,

b = wc + δ

2
− 1

α

(

wc − δ

2
+ βδ

)

. (5)

As illustrated in Fig. 1a, f (w) is a continuous piecewise linear function consisting of
three linear segments with slopes 1 (soft, blue segment), β (hard, green segment) and α

(soft, red segment). The width of the intermediate (hard) green segment is controlled
by the parameter δ > 0. In the limit δ → 0, its slope β tends to infinity, and we
obtain a bilinear function with a jump discontinuity atw = wc that was considered by
Gorbushin et al. (2022) for α > 1 and by Gorbushin and Truskinovsky (2019, 2021)
for α = 1.

Note that since β > 1 and α < β, f (w) has a hardening–softening form that
changes from convex to concave at any point along the green segment in Fig. 1a.
In the special case α = 0 the interaction force saturates to a constant value above
wc + δ/2. This inelastic state corresponds to zero sound speed (“sonic vacuum”).

In this paper, we are interested in traveling waves that connect stable equilibrium
states of the system (2), with constant strainsw± such that f ′(w±) ≥ 0, and propagate
with velocity V that is supersonic with respect to both limiting states:

wn(t) = w(ξ), ξ = n − V t, (6)

where

lim
ξ→±∞ w(ξ) = w± (7)

and V 2 > f ′(w±). The function w(ξ)must thus satisfy the advance delay differential
equation

V 2w′′(ξ) = f (w(ξ + 1)) − 2 f (w(ξ)) + f (w(ξ − 1)). (8)

2.1 Superkinks

Suppose the travelingwave (TW) is amonotone front connecting two different limiting
states,w− �= w+ in the blue and red segments, as shown inFig. 1. Such transitionwaves
have been classified by Gorbushin et al. (2022) as supersonic kinks, or superkinks.

One can show (Serre 2007; Aubry and Proville 2009; Herrmann and Rademacher
2010; Herrmann 2011; Gorbushin and Truskinovsky 2019, 2021; Gorbushin et al.
2022) that in addition to the classical Rankine–Hugoniot jump condition

f (w+) − f (w−) = V 2(w+ − w−), (9)
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which states that the slope of the Rayleigh line connecting (w+, f (w+)) and
(w−, f (w−)) equals V 2, as shown in Fig. 1, such solutions must satisfy the condition

�(w+) − �(w−) − 1

2
(w+ − w−)( f (w+) + f (w−)) = 0. (10)

This additional condition constitutes a kinetic relation for a superkink.More precisely,
it states that the driving force G = �(w+)−�(w−)− 1

2 (w+−w−)( f (w+)+ f (w−))

(Truskinovskii 1987) on themoving front is zero, and thus, there is no dissipation asso-
ciated with its motion. Geometrically it means that the two areas cut by the Rayleigh
line from f (w) must be equal, as shown in Fig. 1b. Due to the trilinear form (3) of
f (w), it follows that the superkink velocity V must satisfy

max{1, α} < V 2 < β. (11)

The conditions (9) and (10) imply that in the case of superkinks, only one of the
values w−, w+ and V can be prescribed independently. In particular, they determine
|V | and w− for a given w+. Global existence of superkinks in the FPU problem with
smooth hardening–softening interactions was proved by Herrmann and Rademacher
(2010) and Herrmann (2011) under the area condition (10). Local analysis by Iooss
(2000) has shown that for smooth f (w) small-amplitude superkinks bifurcate from
localmaxima of f ′(w) connecting convex and concave parts of f (w). Exact superkink
solutions in the problem with bilinear interactions (δ = 0 in (3)) were constructed by
Gorbushin and Truskinovsky (2019, 2021) and Gorbushin et al. (2022). Note that for
each superkink solution propagating with velocity V , there exists a solution of the
same form but velocity −V . In addition, for each kink solution with w− > w+, i.e.,
a front with w′(ξ) < 0, there is an antikink solution w̃(ξ) = w(−ξ) with the limiting
states interchanged, so that w̃′(ξ) > 0, and the same velocity. Thus, it suffices to
consider kink solutions with V > 0.

2.2 SolitaryWaves

Asdiscussed byGorbushin andTruskinovsky (2019, 2021) andVainchtein andTruski-
novsky (2024), superkinks are closely related to solitary waves, pulse-like solutions of
(8) connecting identical limiting states, w− = w+, and propagating with supersonic
velocities. Existence of solitary wave (SW) solutions has been shown by Friesecke
and Wattis (1994); see also a recent review by Vainchtein (2022). Note that such solu-
tions automatically satisfy (9) and (10). Solitary waves can be tensile, w(ξ) > w+, or
compressive, w(ξ) < w+. Similar to the superkinks, for each solitary wave moving
with velocity V , there is a wave of the same form moving with velocity −V , so it
suffices to consider positive velocities.

Importantly, the speed of the solitary wave solutions that tend to w+ at plus and
minus infinity is bounded from below by the sonic limit and from above by the
superkink speed: f ′(w+) < V 2 < V 2

SK, where VSK is the velocity of the superkink
with the statew+ ahead. As the superkink limit is approached, solitary wave solutions
increase in amplitude and become wider and more flat in the middle, with the two
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boundary layers on the left and on the right that approximate monotone superkink
solutions. Thus, for velocities just below the superkink limit, solitary waves acquire a
structure where a kink and an antikink move in tandem. This will be further illustrated
by explicit solutions constructed in the next section for a QCmodel. Solitary waves of
this type, sometimes referred to as “flat-top solitons,” have been recently obtained for
first-order nonlinear systems including the extended Gardner-like equations (Rosenau
and Oron 2020, 2022) and oscillator chains (Rosenau and Pikovsky 2020, 2021).
In the context of the FPU problem, such solutions and the limiting superkinks were
obtained by Vainchtein and Truskinovsky (2024) for cubic interactions and by Gor-
bushin and Truskinovsky (2019, 2021) for the special case of bilinear interactions
with equal slopes that enables analytical treatment of the discrete problem.

As shown byGorbushin and Truskinovsky (2019, 2021) andVainchtein and Truski-
novsky (2024), one can also construct solitary wave solutions above the superkink
limit. Such solutions have velocity-dependent background state at infinity and tend to
a bound kink–antikink structure as the superkink limit is approached from above. In
this work, however, we limit our attention to solitary waves below the superkink limit.

3 Exact Solutions for a QuasicontinuumModel

In view of the complexity of the original discrete problem represented by an infinite
system (1) of nonlinear ordinary differential equations, we first turn first to a model
representing its analytically transparent QC approximation that yields exact TW solu-
tions. The QC model we consider is described by the regularized Boussinesq partial
differential equation

utt − 1

12
uxxtt = ( f (ux ))x , (12)

which can be obtained from (1) using the (2, 2) Padé approximation, 4 sin2(k/2) ≈
k2/(1+ k2/12), of the discrete Laplacian in Fourier space (Rosenau 1986). The asso-
ciated Lagrangian density

L = 1

2

(

u2t + 1

12
u2t x

)

− �(ux ), (13)

contains an additional “microkinetic” energy term (1/24)u2t x .
One can show (Vainchtein and Truskinovsky 2024) that in this model the traveling

wave equation for w(ξ) = ux (x, t), ξ = x − V t , reduces to

− V 2

12
w′′ + V 2w − f (w) = V 2w+ − f (w+), (14)

where the boundary condition at ξ → ∞ in (7) was used. Together with the bound-
ary condition at ξ → −∞ in (7), this yields the Rankine–Hugoniot condition (9).
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Integrating (14) results in the first-order ordinary differential equation

− V 2

24
(w′)2 = �(w) − �(w+) − f (w+)(w − w+) − V 2

2
(w − w+)2, (15)

where the boundary condition at ξ → ∞ in (7)was used again. In viewof the boundary
condition at ξ → −∞ in (7), this yields

�(w−) − �(w+) − f (w+)(w− − w+) − V 2

2
(w− − w+)2 = 0,

which together with (9) implies that the equal-area condition (10). For a superkink
solution of (14), the limiting states w± satisfy (9) and (10) for a given V . For soli-
tary waves, we can independently prescribe the background state w+ and supersonic
velocity V with magnitude below the superkink limit.

In the case of trilinear interactions (3), equation (14) can be solved analytically
in each segment (blue, green and red) where the elastic modulus is constant and the
corresponding ordinary differential equation is linear. The obtained solutions can then
be matched using the continuity conditions, as described below.

3.1 Superkinks

Consider first the superkink solutions (14) with f (w) given by (3) that connect the
statesw+ andw− in the blue and red segments in Fig. 1, respectively (w+ < wc −δ/2
and w− > wc + δ/2), and propagate with velocity V > 0 that satisfies (11). Observe
that in this case we have f (w+) = w+, so (14) simplifies to

− V 2

12
w′′ + V 2w − f (w) = (V 2 − 1)w+, (16)

while (9) becomes

w− = (V 2 − 1)w+ − αb

V 2 − α
(17)

for α > 0 and

w− = (V 2 − 1)w+ + wc + βδ − δ/2

V 2 (18)

for α = 0. We seek monotone kink solutions such that w(ξ) > wc + δ/2 (red
linear segment of f (w) in Fig. 1) for ξ < −z, where z > 0 is to be determined,
|w(ξ) − wc| < δ/2 (green segment) for −z < ξ < z and w(ξ) < wc − δ/2 (blue
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segment) for ξ > z. Solving the corresponding linear equations in each interval yields

w(ξ) =

⎧
⎪⎨

⎪⎩

w+ + Ae−rξ , ξ ≥ z,

wS + B cos(qξ) + C sin(qξ), |ξ | ≤ z,

w− + Desξ , ξ ≤ −z,

(19)

where w− is related to w+ via (17) for α > 0 and (18) for α = 0,

wS = (wc − δ/2)(β − 1) − w+(V 2 − 1)

β − V 2 (20)

is the intersection of f (w) and the Rayleigh line in the hard (green) linear regime (see
Fig. 1b), and the roots r , q and s are given by

r =
√
12(V 2 − 1)

V
, q =

√
12(β − V 2)

V
, s =

√
12(V 2 − α)

V
. (21)

Note that at α = 0 we have s = √
12.

Before providing further details about the solution (19), we discuss a physical inter-
pretation of its structure. One can think of the frontal part of the superkink solution
(ξ > a, |a| < z) as a portion of the structured shock wave propagating with velocity
V that has the strain w+ in front and oscillations around the average strain wS with
wave number q. In the non-dispersive continuum limit, the transition layer and the
oscillations disappear from the shock’s structure, and it becomes a moving discontinu-
ity that dissipates energy at the rate V S2, where S2 is the shaded pink area in Fig. 1b.
As discussed by Gorbushin et al. (2022), this energy release rate can equivalently be
computed on the microscopic level by accounting for the energy radiated in form of
the dispersive wave propagating behind the shock. Note, however, that only a portion
of this shock solution is included in (19). Meanwhile, the back part of the superkink
(ξ < a) can be represented by a portion of the structured shock wave that has oscilla-
tions around wS ahead and w− behind. This second wave is not an admissible shock
wave because it is supersonic with respect to the state behind and thus violates the
Lax condition. It absorbs energy at the rate V S1, where S1 is the blue shaded area in
Fig. 1b, which, as we discussed above, equals V S2, the rate at which the energy is
released. A superkink can thus be thought of as a bundle of admissible and inadmis-
sible shock waves, where the energy released in the front is transported to the back,
where it is absorbed, by the mode q. Indeed, observing that the dispersion relation
in the hard linear regime is given by ω2 = βk2/(1 + k2/12) in the QC model, one
can show that the energy is carried with the group velocity ω′(q) = V 3/β, which is
less than the phase velocity V since V 2 < β, and thus, the energy is transported from
front to back. Inside the superkink bundle, the energy sink (inadmissible shock wave)
is stabilized by the elastic radiation from the energy source (admissible shock wave),
which is sometimes called the “feeding wave” (Slepyan 2001; Gorbushin et al. 2020).

To find the six unknown variables in z,w+ and the coefficients A, B,C and D (19),
for given V , we apply the continuity conditions for w(ξ) and w′(ξ) at ξ = ±z (four
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conditions) and the two switch conditions w(±z) = wc ± δ/2. In the generic case,
0 ≤ α �= 1 this yields

w(ξ) = w+ + δe−r(ξ−z)

α − 1

[

β − α −
√

(β − 1)(β − α)(V 2 − α)√
V 2 − 1

]

, ξ ≥ z, (22)

w(ξ) = δ
√

(β − α)(β − 1)
√

(β − α)(V 2 − 1) + √
(β − 1)(V 2 − α)

cos(qξ − φ)

+ (β − 1)(wc − δ/2) − (V 2 − 1)w+
β − V 2 , |ξ | ≤ z,

(23)

where

φ = πθ(α − 1) + arctan

√
(β − α)(V 2 − 1) + √

(β − 1)(V 2 − α)
√

β − V 2(
√

β − 1 − √
β − α)

,

and

w(ξ) = w− + δes(ξ+z)

α − 1

[

β − 1 −
√

(β − 1)(β − α)(V 2 − 1)√
V 2 − α

]

, ξ ≤ −z. (24)

Here

z = V

4
√
3
√

β − V 2

{

arctan

√
β − V 2(

√
V 2 − α + √

V 2 − 1)

β − V 2 − √
(V 2 − α)(V 2 − 1)

+ πθ(
√

(V 2 − α)(V 2 − 1) − β + V 2)

}

,

(25)

where θ(x) = 1 for x > 0 and zero otherwise, and the limiting states are given by

w+ = wc + δ

2(α − 1)

{

1 + α − 2β + 2
√

(β − α)(β − 1)(V 2 − α)√
V 2 − 1

}

(26)

and

w− = wc + δ

2(α − 1)

{

1 + α − 2β + 2
√

(β − α)(β − 1)(V 2 − 1)√
V 2 − α

}

. (27)

Some examples of strain profiles are shown in Fig. 2. The particle velocity is given by
v(ξ) = −Vw(ξ).
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Fig. 2 Strain profiles at different velocities when α = 2, δ = 0.4, b = −0.4, wc = 1. The left panel shows
the superkink traveling with velocity just above the lower limit

√
α ≈ 1.41 and the right panel the one with

velocity slightly below the upper limit
√

β ≈ 2.45. Dashed horizontal lines mark w = wc ± δ/2

In the symmetric case α = 1 (equal slopes of the red and blue segments), we have
s = r , and the solution is given by

w(ξ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w+ + δ(β − V 2)

2(V 2 − 1)
e−r(ξ−z), ξ ≥ z

(β − 1)(wc − δ/2) − (V 2 − 1)w+
β − V 2 − δ

√
β − 1

2
√
V 2 − 1

sin(qξ), |ξ | ≤ z

w− − δ(β − V 2)

2(V 2 − 1)
er(ξ+z), ξ ≤ −z,

(28)

with

z = V

4
√
3
√

β − V 2

{

arctan
2
√

β − V 2
√
V 2 − 1

β − 2V 2 + 1
+ πθ(2V 2 − β − 1)

}

(29)

and

w± = wc ∓ δ(β − 1)

2(V 2 − 1)
= wc ± b

2(V 2 − 1)
, (30)

so that the limiting strains are independent of δ (note that (5) implies that b = δ(1 −
β) < 0 in this case).

The effect of α on z(V ), w+(V ) and the solution profiles is shown in Fig. 3. Recall
that by (11) the upper velocity limit is

√
β in all cases. As this limit is approached, z

tends to infinity:

z ≈ π
√

β

8
√
3
√

β − V 2
as V → √

β, (31)

while the two limiting strains approach the boundaries of the intermediate linear seg-
ment: w± → wc ∓ δ/2. Thus, as the upper velocity limit is approached (V → √

β),
the superkink becomes infinitely wide (z → ∞), while its amplitude w− − w+ tends
to δ. This is illustrated in Fig. 2c. Therefore, in contrast to the case of smooth f (w)

(Vainchtein and Truskinovsky 2024), where solutions delocalize to a constant value
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Fig. 3 a Functions z(V ), which tend to infinity as V → √
β (dashed vertical line), for different α. For α > 1

(blue curve), the lower velocity bound is
√

α. b Plots of w+(V ). Note that w+ tends to −∞ as V → 1 for
α ≤ 1 (black, green and red curves), while for α > 1 (blue curve) it has a finite value at V = √

α. c Strain
profiles at V = 1.55. The legend in panel (a) applies to all four panels. Here β = 6, δ = 0.4 and wc = 1

(a kink of zero amplitude) at the bifurcation point, here they approach a kink of finite
amplitude but infinite width. Thus, in the trilinear case the bifurcation is degenerate.

The lower velocity limits are different for α > 1 and 0 ≤ α ≤ 1. In the case α > 1
(11) yields

√
α < V <

√
β. In the limit V → √

α the half-width z of the transition
region approaches a finite positive value, as illustrated by the blue curve in Fig. 3a:

z →
√

α

4
√
3
√

β − α
arctan

√
α − 1

β − α
as V → √

α. (32)

The limiting strain w+ is finite in the limit (see the blue curve in Fig. 3b), while w−
tends to infinity:

w+ → wc + δ(1 + α − 2β)

2(α − 1)
= αb

α − 1
, w− ≈ δ

√
(β − α)(β − 1)√
α − 1

√
V 2 − α

as V → √
α,

where we used (5) in the first limit. See Fig. 2a for an example of a superkink near the
lower velocity limit.
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In the case 0 ≤ α ≤ 1 we have 1 < V <
√

β. As the lower limit of unit velocity is
approached, we have

z → 1

4
√
3
√

β − 1
arctan

√
1 − α

β − 1
as V → 1, (33)

which yields a finite positive value forα �= 1 (see the black and green curves in Fig. 3a)
and zero at α = 1 (red curve in Fig. 3a). For 0 ≤ α < 1 w+ tends to −∞ (see the
black and green curves in Fig. 3b), while w− is finite in the limit:

w+ ≈ −δ
√

(β − α)(β − 1)√
1 − α

√
V 2 − 1

, w− → wc + δ(1 + α − 2β)

2(α − 1)
as V → 1.

In contrast, in the symmetric case α = 1, illustrated by the red curve in Fig. 3b,
both limiting strains become infinite in the sonic limit (recall (30)). Note also that the
magnitude of strain grows faster in this case (inversely proportional to V 2 − 1, rather
than (V 2 − 1)1/2).

3.2 SolitaryWaves

We now turn to SW solutions in the QC problem (14) with f (w) given by (3). Recall
that such solutions satisfy

w(ξ) → w+ as ξ → ±∞ (34)

and propagate with supersonic velocities V bounded by the superkink velocity
VSK(w+) for given w+. The waves can be tensile or compressive, depending on
whether w+ is in the lower (w+ < wc − δ/2) or the upper (w+ > wc + δ/2) linear
regime.

Tensile waves.We start with tensile solitary waves (w(ξ) > w+), which arise when
w+ < wc − δ/2. In this case 1 < V < VSK(w+), where

VSK(w+) =
√

1 + 4(β − α)(β − 1)δ2

(1 − α)(2(wc − w+) − δ)2 + 8(β − α)δ(wc − w+)
(35)

is obtained by solving (26) for V = VSK as a function of w+. In the symmetric case
α = 1, we have b = −(β − 1)δ, and (35) has the much simpler form

VSK(w+) =
√

1 − b

2(wc − w+)
.

There are two velocity regimes that need to be considered. In the first regime,
we have 1 < V ≤ Vcr(w+), where Vcr(w+) is the critical velocity value such that
w(ξ) ≤ wc + δ/2 for velocities below it, i.e., the solitary wave remains confined to
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the first and second (intermediate) linear regimes, switching from one to another at
ξ = ±z1, where z1 > 0 depends on V . Continuity of w(ξ) and w′(ξ) and the switch
conditions w(±z1) = wc − δ/2 then yield

w(ξ) =

⎧
⎪⎨

⎪⎩

w+ + (wc − δ/2 − w+)e−r(|ξ |−z1), |ξ | ≥ z1,

wS +
√

(β − 1)(V 2 − 1)

β − V 2 (wc − δ/2 − w+) cos(qξ), |ξ | ≤ z1,
(36)

where wS is given by (20), and

z1 = 1

q

(
π − arctan

q

r

)
. (37)

Setting w(0) = wc + δ/2, we obtain the upper velocity bound for this regime:

Vcr(w+) =
√

1 + δ2(β − 1)

(wc − w+ + δ/2)2
. (38)

For Vcr(w+) < V < VSK(w+), the solution involves all three linear regions and
has the form

w(ξ) =

⎧
⎪⎨

⎪⎩

w+ + Ae−r(|ξ |−z1), |ξ | ≥ z1,

wS + B cos(qξ) + C sin(q|ξ |), z2 ≤ |ξ | ≤ z1,

w− + D cosh(sξ), |ξ | ≤ z2,

(39)

where the coefficients A, B,C , D listed in (A.1) in Appendix A are found by imposing
the continuity of the strain and its derivative, w− is given by (17) for α > 0 and
by (18) for α = 0, and wS is given by (20). Imposing w(±z1) = wc − δ/2 and
w(±z2) = wc + δ/2 then yields

z2 = 1

s
arctanh

√
(V 2 − 1)(wc − w+ + δ/2)2 − (β − 1)δ2√

V 2 − α(w− − wc − δ/2)
(40)

and

z1 = z2 + 1

q

(

arccos
(V 2 − 1)(wc + δ/2 − w+) − (β − 1)δ
√

(β − 1)(V 2 − 1)(wc − δ/2 − w+)
− arctan

q

r

)

. (41)

Note that z2 = 0 at V = Vcr(w+) and that z2 → ∞ as V → VSK(w+), which
means that the width of the solitary waves tends to infinity as the upper velocity limit
is approached. One can also verify that in this limit w(0) → w− and z1 − z2 → 2z,
where we recall that z, given by (25) for α �= 1 and (29) for α = 1, is the half-
width of the transition interval for a superkink solution. This is consistent with the
SW solution approaching a kink–antikink bundle, as discussed by Gorbushin and
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Fig. 4 Tensile solitary waves in the trilinear model (3) at different velocities at w+ = 0.5 and (a) α = 0.5;
(b) α = 2. Here β = 6, wc = 1, δ = 0.4

Truskinovsky (2019, 2021) and Vainchtein and Truskinovsky (2024), at velocities
just below the superkink limit. Examples of tensile solitary waves illustrating this are
shown in Fig. 4. Observe also that the near-sonic solutions, which are given by (36)
and are independent of α, delocalize to the constant strainw(ξ) = wc−δ/2 as V → 1
because r → 0 in (21) tends to zero in this limit.

Compressive waves. Similarly, we can obtain compressive SW solutions, which
arise when w+ > wc + δ/2 and

√
α < V < VSK(w+), where

VSK(w+) =
√

α + 4(β − α)(β − 1)δ2

(α − 1)(2(w+ − wc) − δ)2 + 8(β − 1)δ(w+ − wc)
(42)

is obtained by setting the right hand side of (27) equal to w+ and solving the resulting
equation for V = VSK as a function of w+. The superkink velocity simplifies to

VSK(w+) =
√

1 − b

2(w+ − wc)

in the case α = 1.
In this case, we also have two velocity regimes. In the first,

√
α < V ≤ Vcr(w+),

where

Vcr(w+) =
√

α + δ2(β − α)

(w+ − wc + δ/2)2
, (43)

and we have

w(ξ) =

⎧
⎪⎨

⎪⎩

w+ − (w+ − wc − δ/2)e−s(|ξ |−z1), |ξ | ≥ z1,

wS −
√

(β − α)(V 2 − α)

β − V 2 (w+ − wc − δ/2) cos(qξ), |ξ | ≤ z1,
(44)
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with

wS = (β − 1)(wc − δ/2) − (V 2 − 1)w−
β − V 2 , (45)

z1 = 1

q

(
π − arctan

q

s

)
(46)

and

w− = (V 2 − α)w+ + αb

V 2 − 1
.

In the second regime, Vcr(w+) < V < VSK(w+), the solution has the form

w(ξ) =

⎧
⎪⎨

⎪⎩

w+ + Ae−s(|ξ |−z1), |ξ | ≥ z1,

wS + B cos(qξ) + C sin(q|ξ |), z2 ≤ |ξ | ≤ z1,

w− + D cosh(rξ), |ξ | ≤ z2,

(47)

where wS is provided in (45), the coefficients A, B, C and D are given by (A.2), and
we have

z2 = 1

r
arctanh

√
(V 2 − α)(w+ − wc + δ/2)2 − (β − α)δ2√

V 2 − 1(wc − δ/2 − w−)
(48)

and

z1= z2+ 1

q

(

π−arctan
q

s
−arccos

(V 2 − 1)(wc − δ/2 − w−)
√

(β − α)(V 2 − α)(w+ − wc − δ/2)

)

.

(49)

Similar to the tensile SW solutions, we have z2 → ∞, z1− z2 → 2z andw(0) → w−
in the limit V → VSK(w+), with solutions just below the limit have the kink–antikink
structure, as illustrated in Fig. 5.

Sonic limit and the singular α = 0 case. In the case of compressive solitary waves
the near-sonic behavior depends on α. When α > 0, solutions (44) delocalize to the
constant strain w(ξ) = wc + δ/2 in the sonic limit, Indeed, observe that s → 0 as
V → √

α, so that w(ξ) → wc + δ/2 for |ξ | ≥ z1, while (V 2 − 1)w− → αb, which
together with (5) yields the limit w(ξ) → wc + δ/2 for |ξ | ≤ z1. Note that in this case
z1 in (46) is nonzero in the sonic limit.

However, when α = 0, the exponent s = √
12 in (44) is independent of V . Note

also that in this case z1 → 0 in (46) as V → 0 because q in (21) tends to infinity in
this limit. Thus, in this case we have a non-trivial sonic limit: as V → 0, and thus,
ξ = x − V t → x , the solution approaches

w(x) = w+ − (w+ − wc − δ/2) exp(−√
12|x |). (50)
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Fig. 5 Compressive solitary waves in the trilinear model (3) at different velocities at w+ = 1.66 and a
α = 0; b α = 0.5; c α = 2. Here β = 6, wc = 1, δ = 0.4

This is a manifestation of the fact that in the case α = 0 the sound speed is zero, and
slowly moving solitary waves are effectively replacing the conventional linear elastic
waves as a elementary “quanta” of mechanical information. Similar effects were first
discovered in Hertzian granular chains without precompression (Nesterenko 2001;
Sen et al. 2008; Chong et al. 2017).

4 TravelingWave Solutions of the Discrete Problem

We now turn our attention to traveling wave solutions of the discrete problem (2). As
in the QC case, it suffices to consider V > 0. To compute these solutions, we follow
the approach of Aubry and Proville (2009); Vainchtein et al. (2020); James (2021) and
Vainchtein and Truskinovsky (2024) that exploits the fact that traveling waves satisfy
(6) and hence are periodic modulo shift:

wn+1(t + T ) = wn(t), T = 1/V . (51)

This implies that such solutions are fixed points of the nonlinear map

[ {wn+1(T )}
{ẇn+1(T )}

]

= N
([ {wn(0)}

{ẇn(0)}
])

, (52)
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where N is defined by integrating (2) over one period for given initial data over the
period T and then shifting the obtained solution by one lattice space. This nonlinear
map approach dates back to computation of discrete breathers (Marín and Aubry
1996).

4.1 Superkinks

To compute the superkink solutions of the discrete problem (2) propagating with
given velocity V , we use Newton–Raphson iteration procedure with finite difference
Jacobian to solve

wn+1(T ) = wn(0), n = −N/2, . . . , N/2 − 1,

ẇn+1(T ) = ẇn(0), n = −N/2, . . . , N/2 − 2, w1(T ) = w∗,
(53)

where T = 1/V and N ≥ 400 is an even number, for {wn(0), ẇn(0)}, n =
−N/2, . . . , N/2 − 1. At each iteration, wn(T ) and ẇn(T ) are obtained for given
wn(0) and ẇn(0) by using Dormand–Prince algorithm (MATLAB’s ode45 routine) to
integrate (2) on the finite chain with the boundary conditions

w−N/2−1(t) = w−, wN/2(t) = w+,

where w± are given by (26), (27) for 0 ≤ α �= 1 and (30) for α = 1. The last equation
in (53) is a pinning condition, which is necessary to eliminate the non-uniqueness due
to the time-translational invariance. To enable the comparisonwith superkink solutions
wQC (ξ) of theQCmodel,which are also used to obtain an initial guess for theNewton–
Raphson procedure, we set w∗ = wQC (0), so that w0(0) = w1(T ) = wQC (0), and
thus, the traveling wave w(ξ) for the discrete problem satisfies w(0) = wQC (0). To
obtain a system of 2N nonlinear equations for 2N unknowns while prescribing the
pinning condition, we drop the equation for ẇN/2(T ) in (53). Due to the large size
of the computational domain, the equation is automatically satisfied for the computed
solutions within the numerical tolerance of 10−13.

The computed strain profiles wn(0) = w(n) for are shown in Fig. 6 together with
the corresponding profiles w(x) obtained from the exact solutions of the QC model.
One can see that in the cases shown superkink solutions there is a very good agreement
between the discrete and QC models, particularly near the sonic limits (panels (a) and
(b)), where the solutions largely involve the long-wave contributions that are well
captured by the QC model. Closer inspection of panel (c), however, reveals some
discrepancies between solutions of the twomodels inside the transition layer (x = ±1).

4.2 SolitaryWaves

To compute SW solutions with prescribed far-field strain w+ and velocity V , we
use the approach we employed in the case of superkinks, except that in this case the
boundary conditions are w−N/2−1(t) = wN/2(t) = w+, and the pinning condition
is ẇ1(T ) = 0. The latter ensures that the maximum of a tensile solitary wave (or
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Fig. 6 Superkink solutions wn(0) = w(n) of the discrete problem (8) (circles) with trilinear f (w) and the
corresponding solutions w(x) for the QC model (14) (solid curves) evaluated at t = 0 for a V = 1.42,
α = 2; b V = 2.4, α = 2; c V = 1.55 at different values of α, as indicated in the legend. Here β = 6,
δ = 0.4, wc = 1

the minimum of a compressive one) is at n = 0 when t = 0. We use parameter
continuation in V to compute solutions in the entire velocity range.

The results for tensile waves at α = 0.5 and α = 2 are shown in Figs. 7, 8, 9, while
the corresponding results for the compressive waves are shown in Figs. 10, 11, 12. In
addition to direct comparison of the discrete and QC solitary waves in Figs. 7 and 10,
we show amplitude–velocity plots in Figs. 8 and 11, as well as energy–velocity plots
in Figs. 9 and 12. Since the energy of the waves with nonzero background is infinite,
we renormalize it by subtracting the energy of the background, as in Vainchtein and
Truskinovsky (2024). For the discrete model, this yields

ED
ren(V ) =

∑

n

{
1

2
v2n + 1

2
(�(wn) + �(wn+1)) − �(w+) − 1

2
V 2w2+

}

(54)
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in the discrete case, where vn are the particle velocities, and all values are evaluated
at t = 0 due to the energy conservation. For the QC model, we have

EQC
ren (V ) =

∫ ∞

−∞

{
1

2
V 2w2(ξ) + 1

24
V 2(w′(ξ))2 + �(w(ξ)) − �(w+) − 1

2
V 2w2+

}

dξ,

(55)

where we used the fact that for a traveling wave solution w(ξ) = w(x − V t) we have
v(ξ) = −Vw(ξ).

One can see that the discrepancy between discrete and QC solutions is much more
pronounced in the case of solitary waves. For tensile waves, the disagreement between
the two models is greater for α = 0.5, while for compressive waves there is more
discrepancy at α = 2. In addition to overestimating the amplitude of solitary waves
away from the superkink limit, the QC model does not correctly predict their width.
Nevertheless, the QC model captures the evolution of the SW solutions of the discrete
problem qualitatively, and one can see quantitative agreement near the sonic and
superkink limits.

To gain some insight into the origin of the parameter-dependent quantitative dif-
ferences between SW solutions of the discrete problem and their QC counterparts,
we observe that the QC solutions depend in a rather non-trivial way on the approxi-
mations of the characteristic roots of the discrete problem in the three linear regimes.
More precisely, the V -dependent roots r , q and s defined in (21) approximate nonzero
roots rD , qD and sD of the characteristic equations 4 sinh2(rD/2) − r2DV

2 = 0,
4β sin2(qD/2) − q2DV

2 = 0 and 4α sinh2(sD/2) − s2DV
2 = 0 for the discrete prob-

lem in the first, second and third linear regime, respectively, that are closest to zero.
These characteristic equations can be obtained by taking the Fourier transform of (8)
in each linear regime and setting the wave number k to k = irD , k = qD and k = isD ,
respectively. The approximations of their near-zero roots by (21) become progressively
worse away from the corresponding sonic limits 1,

√
β and

√
α. Figure 13a-b shows

the roots r , q and s contributing to the QC tensile SW solutions (35)-(41) presented
in Fig. 7, 8, 9 along with their discrete counterparts rD , qD and sD . For 1 < V ≤ Vcr,
only the roots r and q contribute to these solutions, while for Vcr < V < VSK all three
roots r , q and s are involved. In particular, we note that in the second velocity regime
the width of the solutions is controlled by z2 in (40), which depends in an essential
way on 1/s. As shown in Fig. 13a-b, the roots s and sD are significantly further apart
at α = 0.5 in panel (a) compared to the case α = 2 in panel (b). Thus, we expect larger
differences between the widths of discrete and QC solutions at α = 0.5, as observed
above. The roots for the compressive waves (42)-(49) presented in Fig. 10, 11, 12 are
shown in Fig. 13c-d. In this case, it is 1/r that contributes in an essential way to z2 in
(48), and one can see that the roots r and rD are further apart at α = 2 in panel (d),
which is consistent with the larger width discrepancy at this parameter value reported
above. In all four cases shown in Fig. 13 q significantly deviates from qD in the
first velocity regime, contributing to the observed amplitude and width discrepancies
between discrete and QC profiles.
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Fig. 7 Tensile SW solutions wn(0) = w(n) of the discrete problem (8) (circles) with trilinear f (w) and the
corresponding solutions w(x) for the QC model (14) (solid curves) evaluated at t = 0 for (a) α = 0.5; b
α = 2. Here β = 6, δ = 0.4,wc = 1. The background strain isw+ = 0.5, and the corresponding superkink
velocity is VSK = 1.72044 in (a) and VSK = 1.76613 in (b)

Fig. 8 Amplitude wamp = |w(0)−w+| as a function of velocity V for tensile SW solutions of the discrete
problem (8) (circles) with trilinear f (w) and the corresponding solutions for the QC model (14) (solid
curves) evaluated for (a) α = 0.5; b α = 2. Here β = 6, δ = 0.4, wc = 1. The background strain is
w+ = 0.5, and the corresponding superkink velocity is VSK = 1.72044 in (a) and VSK = 1.76613 in (b)

Fig. 9 Renormalized energy Eren given by (54) as a function of velocity V for tensile SW solutions of the
discrete problem (8) (circles) with trilinear f (w) and the corresponding energy (55) for the QC model (14)
(solid curves) evaluated for (a) α = 0.5; b α = 2. Here β = 6, δ = 0.4, wc = 1. The background strain is
w+ = 0.5, and the corresponding superkink velocity is VSK = 1.72044 in (a) and VSK = 1.76613 in (b)
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Fig. 10 Compressive SW solutions wn(0) = w(n) of the discrete problem (8) (circles) with trilinear f (w)

and the corresponding solutions w(x) for the QC model (14) (solid curves) evaluated at t = 0 for (a)
α = 0.5; b α = 2. Here β = 6, δ = 0.4, wc = 1. The background strain is w+ = 1.66, and the
corresponding superkink velocity is VSK = 1.49541 in (a) and VSK = 1.76697 in (b)

Fig. 11 Amplitude as a function of velocity V for compressive SW solutions of the discrete problem (8)
(circles) with trilinear f (w) and the corresponding solutions for the QC model (14) (solid curves) for
(a) α = 0.5; b α = 2. Here β = 6, δ = 0.4, wc = 1. The background strain is w+ = 1.66, and the
corresponding superkink velocity is VSK = 1.49541 in (a) and VSK = 1.76697 in (b)

Fig. 12 Renormalized energy as a function of velocity V for compressive SW solutions of the discrete
problem (8) (circles) with trilinear f (w) and the corresponding solutions of the QC model (14) (solid
curves) for (a) α = 0.5; b α = 2. The inset in (b) zooms in on the upper energy range. Here β = 6, δ = 0.4,
wc = 1. The background strain isw+ = 1.66, and the corresponding superkink velocity is VSK = 1.49541
in (a) and VSK = 1.76697 in (b)
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Fig. 13 Roots r , q, s (dashed curves) contributing to the QC SW solutions and the corresponding char-
acteristic roots rD , qD , sD (solid curves) for the discrete problem (see the main text for details), in the
respective velocity ranges at (a) α = 0.5, w+ = 0.5; b α = 2, w+ = 0.5; c α = 0.5, w+ = 1.66; d α = 2,
w+ = 1.66. The vertical lines mark the corresponding Vcr and VSK. Here β = 6, δ = 0.4, wc = 1. Tensile
SW solutions corresponding to panels (a) and (b) are shown in Fig. 7-9, and compressive SW solutions
corresponding to panels (c) and (d) are shown in Fig. 10-12

Compressive solitary waves at α = 0. Of particular interest are compressive
solitary waves at α = 0. The results for this singular limit are shown in Figs. 14
and 15.

In this case,we canobtain exact solutions for small enoughvelocities.Byperiodicity
modulo shift it suffices to consider the time interval [0, T ], where we recall that
T = 1/V . Suppose at t = 0 the strain wn has even symmetry about n = 0, and
|w0−wc| < δ/2, while all other strains satisfywn > wc +δ/2. Let t = T1 be the time
whenw0(t) switches to the (degenerate) upper linear regime,w0(T1) = wc+δ/2. Then
by symmetry w1(t) switches to the intermediate linear regime at t = T2 = T − T1. In
what follows, we assume that T1 < T2, i.e., T1 < T /2. Under these assumptions we
find that for 0 ≤ t < T1 (2) with (3) at α = 0 reduce to

ẅ0 + 2βw0 = β(2wc + δ), ẅ±1 = β(w0(t) − wc) − βδ/2, ẅn = 0, |n| ≥ 2.
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Fig. 14 a Compressive SW solutions wn(0) = w(n) of the discrete problem (8) (circles) with trilinear
f (w) and the corresponding solutions w(x) for the QC model (14) (solid curves) evaluated at t = 0 for
α = 0, β = 6, δ = 0.4, wc = 1. b The solutions at V = 0.01. The background strain is w+ = 1.66, and
the corresponding superkink velocity is VSK = 1.40592

Fig. 15 a Amplitude and b renormalized energy as functions of velocity V for compressive SW solutions
of the discrete problem (8) (circles) with trilinear f (w) and the corresponding solutions for the QC model
(14) (solid curves) for α = 0. The dashed green curves correspond to the exact small-velocity solution
(56)–(58). Insets zoom in around smaller velocity values. Here β = 6, δ = 0.4, wc = 1. The background
strain is w+ = 1.66, and the corresponding superkink velocity is VSK = 1.40592

Solving these and imposing the symmetry conditions ẅ0(0) = 0, w1(0) = w−1(0),
ẇ1(0) = −ẇ−1(0) and the boundary condition wn → w+ as |n| → ∞, we obtain

w0 = A cos(
√
2βt) + wc + δ/2, w±1 = −(A/2) cos(

√
2βt) ± Bt + C,

wn = w+, n ≤ −2, n ≥ 2
(56)

for t ≤ T1. The condition w0(T1) = wc + δ/2 then yields A cos(
√
2βT1) = 0, and

since A must be nonzero, we deduce that
√
2βT1 = π/2, which yields

T1 = π

2
√
2β

.
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Since T1 < T /2, we have

0 < V <

√
2β

π
.

For T1 < t < T2, all strains are in the upper linear regime and satisfy ẅn = 0. Together
with continuity of wn and ẇn at t = T1 this yields

w0 = wc + δ/2 − √
2βA(t − T1), w±1 = C ± Bt + √

β/2A(t − T1),

wn = w+, n ≤ −2, n ≥ 2
(57)

for T1 ≤ t ≤ T − T1. For T2 < t ≤ T , we have

ẅ1 + 2βw1 = β(2wc + δ),

ẅ0,2 = β(w1(t) − wc) − βδ/2, ẅn = 0, n ≤ −1, n ≥ 3.

Solving these and recalling thatwn(0) = wn+1(T ) and ẇn(0) = ẇn+1(T ), we obtain

w1 = A cos(
√
2β(t − T )) + wc + δ/2,

w0,2 = −(A/2) cos(
√
2β(t − T )) ∓ B(t − T ) + C,

wn = w+, n ≤ −1, n ≥ 3

(58)

for T −T1 ≤ t ≤ T . Continuity ofwn and ẇn at t = T2 then leads to three independent
conditions

C + B(T − T1) + √
β/2A(T − 2T1) = wc + δ/2,

C − B(T − T1) + √
β/2A(T − 2T1) = w+,

√
β/2A − B = 0,

which yield

B = −w+ − wc − δ/2

2(T − T1)
=

√
β

2
A, C = w+ − w+ − wc − δ/2

2(T − T1)
T1.

In particular, at t = 0 we obtain

w0 = wc + δ

2
− w+ − wc − δ/2√

2β(T − T1)
,

w±1 = w+ − w+ − wc − δ/2

2
√
2β(T − T1)

(π

2
− 1

)
, wn = w+, |n| ≥ 2 (59)

and

ẇ±1 = ∓w+ − wc − δ/2

2(T − T1)
, ẇ0 = 0, ẇn = 0, |n| ≥ 2.
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Together with vn = −Vw+ + ∑n
k=−∞ ẇk the latter yield

v−1 = v0 = −Vw+ + w+ − wc − δ/2

2(T − T1)
, vn = −Vw+, n ≤ −2, n ≥ 1. (60)

Using (59) and (60), we obtain the renormalized energy (54) given by

ED
ren(V ) =

(
w+ − wc − δ/2

2(T − T1)
− Vw+

)2

− V 2w2+ + �(w0) + 2�(w1) − 3�(w+).

The amplitude and renormalized energy of the obtained solution are shown by the
dashed green curves in Fig. 15. One can see that this solution differs from the one for
the QC model even at very small velocities, as illustrated in Fig. 14b. Indeed, in the
limit V → 0 (T → ∞), we have w0 → wc + δ/2, wn → w+, n �= 0, vn → 0 for all
n, and thus,

ED
ren(0) = �(w0) − �(w+) = −(wc − δ/2 + βδ)(w+ − wc − δ/2).

For comparison, we recall in the QC model the zero-velocity limit is given by (50).
Thus the limiting renormalized energy (55) is given by

EQC
ren (0) =

∫ ∞

−∞
(�(w(x)) − �(w+)) dx

= − 1√
3
(wc − δ/2 + βδ)(w+ − wc − δ/2) = 1√

3
ED
ren(0).

In addition to the quantitative difference between discrete and QC solutions that per-
sists to the sonic limit, it is important to note that for the discrete solution w(ξ) − w+
is compact, while its QC counterpart features exponential decay to the background
strain.

5 Stability of Superkink Solutions

We tested stability of the superkinks by conducting numerical simulations of (2) on
a finite chain. In the first set of simulations, we extracted initial conditions from the
computed superkink solutions and used the corresponding fixed boundary conditions.
These simulations resulted in steady propagation of the traveling wave with velocity
that remained within O(10−8) or less from the prescribed value for the entire range of
velocities, suggesting that the traveling waves are at least long-lived and likely stable.

The second set of simulations was conducted on a chain with L particles using
free-end boundary conditions and Riemann initial data

wn(0) =
{

wl , 1 ≤ n ≤ L/2

wr , L/2 + 1 ≤ n ≤ L
, ẇn(0) = 0, n = 1, . . . , L. (61)
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Fig. 16 Snapshots of strain profiles in simulations with Riemann initial data (61): a α = 2, wl = 4,
wr = 0.7, L = 2000, t = 450; b α = 0.5, wl = 6, wr = 0.3, L = 2600, t = 600; c α = 0.5, wl = 6,
wr = 0, L = 2600, t = 800; d α = 0.5, wl = 8, wr = −1, L = 2600, t = 800. Here β = 6, δ = 0.4,
wc = 1

The size L of the chain was chosen sufficiently large to avoid any boundary effects.
Some results of simulations with Riemann data (61) are shown in Figs. 16 and 17,

where we fix β = 6, δ = 0.4, wc = 1 and vary α, wl and wr . Typical scenario,
where a superkink propagating to the right is trailed by linear dispersive shock waves
moving in opposite directions with velocities ±√

α, is shown in Fig. 16a (α = 2,
wl = 4, wr = 0.7) and Fig. 16b (α = 0.5, wl = 6, wr = 0.3). The velocity of the
superkink is VSK = 2.0901 in Fig. 16a and VSK = 1.5404 in Fig. 16b, in agreement
with (35) when w+ = wr , V = VSK for each case. A more complex dynamics is
observed in Fig. 16c (α = 0.5, wl = 6, wr = 0). In this case two solitary waves form
behind the left dispersive shock wave and eventually move to the left with velocities
V1 = −0.8092 and V2 = −0.792, while a superkink moves to the right (ahead of
another dispersive shock wave) with velocity V = 1.39, again consistent with (35).
At α = 0.5, wl = 8, wr = −1, the dynamics, shown in Fig. 16(d), is similar
but there are four solitary waves moving to the left, with velocities V1 = −0.7913,
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Fig. 17 a Snapshot of strain profiles in simulations with Riemann initial data (61) and α = 0, wl = 6,
wr = 0.3, L = 1000, t = 250; b time evolution of w800(t) for the simulation in (a); c snapshot of strain
profiles in simulations with Riemann initial data (61) and α = 0,wl = 6,wr = −0.75, L = 1000, t = 350;
d time evolution of w850(t) for the simulation in (c). Here β = 6, δ = 0.4, wc = 1

V2 = −0.7891, V3 = −0.792, V4 = −0.7514 near the end of the simulation, while a
superkink propagates to the right with VSK = 1.1926.

The most interesting dynamics takes place in the case α = 0, as illustrated in
Fig. 17a,b, where wl = 6 and wr = 0.3. In this case of inelastic red linear regime,
we see a superkink propagating with VSK = 1.5263, in agreement with (35). Behind
the superkink there is another transition front that moves to the left and connects the
constant strain wl to a periodic train of solitary waves. The solitary wave train in this
dispersive structure, knownas aWhithamshock (Sprenger andHoefer 2020), is spread-
ing,with the left edge (the transition front)movingwith velocity VL = −0.3415,while
its right edge propagates with VR = 1.5022, trailing the superkink. Similar dynamics
is observed when we set wl = −0.75, while keeping all other parameters the same;
see Fig. 17c,d. In this case we have VL = −0.5003, VR = 1.1797, VSK = 1.2018. The
corresponding space-time evolution is shown in Fig. 18. While supporting stability of

123



  113 Page 30 of 38 J Nonlinear Sci           (2024) 34:113 

Fig. 18 Space-time evolution of strain in simulations with Riemann initial data (61): a formation of the
superkink front and SW train early in the simulation; b evolution near the end of the simulation, zoomed in
around the superkink front. Here α = 0, β = 6, δ = 0.4, wc = 1, wl = 6, wr = −0.75, L = 1000

superkinks, these results also reveal the interesting phenomenon of Whitham shocks
that, to our knowledge, have not been previously observed for the FPU system.

6 Stability of SolitaryWave Solutions

To investigate the linear stability of the obtained SW solutions in the case α > 0, we
follow the approach of Cuevas-Maraver et al. (2017); Xu et al. (2018) and Vainchtein
et al. (2020) and use Floquet analysis that exploits periodicity modulo shift (51) of
the traveling wave solutions. Substituting wn(t) = ŵn(t) + εyn(t) into (2), where
ŵn(t) = w(n − V t) is the traveling wave solution, and considering O(ε) terms, we
obtain the governing equations for the linearized problem:

ÿn = f ′(ŵn+1)yn+1 − 2 f ′(ŵn)yn + f ′(ŵn−1)yn−1. (62)

The Floquet multipliers μ for this problem are the eigenvalues of the monodromy
matrixM defined by

[ {yn+1(T )}
{ẏn+1(T )}

]

= M
[ {yn(0)}

{ẏn(0)}
]

. (63)

To obtain M, we compute the fundamental solution matrix �(T ), which maps
[{yn(0)}, {ẏn(0)}]T onto [{yn(T )}, {ẏn(T )}]T , n = −N/2, . . . , N/2 − 1, for the
first-order linear system equivalent to (62). We use periodic boundary conditions
yN/2(t) = y−N/2(t), y−N/2−1(t) = yN/2−1(t), which is justified by the fact that
for solitary waves the values f ′(ŵn) at the two ends of the chain have the same con-
stant value (note, however, that this is not the case for superkinks unless α = 1). Due to
the piecewise linear nature of (3), the computation of the fundamental solution matrix
�(T ) involves determining the times instances Ti , i = 1, . . . , k, at which one of the
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nodes switches from one linear regime to another over the time interval [0, T ]. This
yields

�(T ) = eCk+1(T−Tk )eCk (Tk−Tk−1) . . . eC2(T2−T1)eC1T1 ,

where Ci has the block form

Ci =
[
O I
Ai O

]

, i = 1, . . . , k + 1

involving the N×N identitymatrix I, the N×N zeromatrixO and N×N matricesAi

that contain the coefficients for the corresponding linear system and have a tridiagonal
structure extended to the upper right and lower left corner entries according to the
periodic boundary conditions. We then shift the rows of �(T ) up by one row in the
two parts of the matrix corresponding to yn and ẏn , respectively, with the last row
in each part replaced by the first, obtaining M in (63). We note that this procedure
relies on the periodic boundary conditions, which, as mentioned above, are justified
for solitary waves but in general not for superkinks.

The Floquet multipliers are related to the eigenvalues λ of the linearization oper-
ator via μ = eλ/V , and thus, |μ| > 1 (Re(λ) > 0) corresponds to instability. The
Hamiltonian nature of the problem means that there are quadruples of non-real Flo-
quet multipliers, i.e., if μ is a multiplier, than so are μ̄, 1/μ and 1/μ̄, while the real
multipliers come in pairs μ and 1/μ. Linear stability thus requires that all Floquet
multipliers lie on the unit circle: |μ| = 1.

The resulting maximummodulus of Floquet multipliers as a function of V is shown
in Fig. 19. In each case, for sufficiently small velocities the maximum modulus multi-
plier is realμ > 1 (red segments in Fig. 19) and corresponds to exponential instability
mode. As velocity increases, the real multiplier μ outside the unit circle and the com-
panion real multiplier 1/μ inside the unit circle move toward the unit circle and join
it at the threshold velocity V = V∗. This is illustrated in Fig. 20 for the case α = 2,
w+ = 0.5, where we see the two real multipliers approach the unit circle as velocity is
increased from 1.01 (panel (a)) to 1.05 (panel (b)), slightly below V∗ ≈ 1.064. Starting
with velocities slightly below V∗, the maximum modulus multipliers are complex and
correspond to mild instability modes similar to those observed by Marín and Aubry
(1998); Xu et al. (2018) and Vainchtein and Truskinovsky (2024). Since their mag-
nitude decreases as the chain size is increased, these mild instabilities appear to be a
spurious artifact due to the finite chain size. An example is shown in Fig. 20c,d. Direct
numerical simulations initiated by solitary waves with velocities V > V∗ show steady
propagation of the waves and suggest their effective stability, as illustrated in Fig. 21.

For solitary waves that tend to zero at infinity, the onset of exponential instability
associated with μ > 1 typically corresponds to threshold velocities at which their
energy changes monotonicity (Friesecke and Pego 2004; Cuevas-Maraver et al. 2017;
Xu et al. 2018). In this case, the onset of instability occurs prior to the change in
monotonicity of the renormalized energy (54), which takes place at V > V∗, as shown
in Figs. 9 and 12. It is possible that another relevant quantity changes monotonicity at
V = V∗.
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Fig. 19 Maximum modulus of Floquet multipliers for (a) tensile waves with w+ = 0.5, α = 0.5; b tensile
waves with w+ = 0.5, α = 2; c compressive waves with w+ = 1.66, α = 0.5; d compressive waves with
w+ = 1.66, α = 2. The red segments correspond to real multiplier μ > 1. Here β = 6, δ = 0.4, wc = 1,
and the corresponding values of the superkink velocity are VSK = 1.72044 in (a), VSK = 1.76613 in (b),
VSK = 1.49541 in (c) and VSK = 1.76697 in (d). Mild oscillatory instabilities (max|μ| > 1) along the
black portion of the curves appear to be an artifact due to the finite chain size

To explore the consequences of the instability at V < V∗, we ran numerical sim-
ulations initiated by an unstable solitary waves perturbed along the corresponding
eigenmode. A typical scenario for ensuing dynamic evolution is shown in Fig. 22,
where the simulation was initiated by the perturbed unstable compressive wave with
velocity V = 0.72 below the threshold value V∗ ≈ 0.7685 at α = 0.5,w+ = 1.66 (see
Fig. 19c for the corresponding maximum-modulus Floquet multipliers). One can see
formation of an apparently stable solitary wave with V = 0.8288 above the threshold
followed by dispersive wave that propagates with lower (sonic) speed.

Stability of compressive waves in the degenerate case α = 0, shown in Fig. 14,
was investigated numerically. Simulation results suggest stable propagation of solitary
waves in the entire velocity range 0 < V < VSK.
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Fig. 20 Floquet multipliers (blue crosses) for tensile solitary waves at a V = 1.01; b V = 1.05; c
V = 1.14; d V = 1.14, zooming inside the rectangle in panel (c). The unit circle is marked in red. Here
α = 2, w+ = 0.5, β = 6, δ = 0.4, wc = 1

Fig. 21 Strain evolution in numerical simulations initiated by computed solitary waves with a V = 1.14;
b V = 1.7661272. Here α = 2, w+ = 0.5, β = 6, δ = 0.4, wc = 1
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Fig. 22 a Snapshots of strain profiles and b wn(t) at different fixed n for the dynamic evolution initiated
by an unstable compressive wave propagating with velocity V = 0.72 < V∗ at α = 0.5 and w+ = 1.66,
perturbed along the eigenmode corresponding to the real Floquet multiplier μ = 1.20795. The dynamic
evolution leads to the formation of compressive solitary wave with V = 0.8288 > V∗ followed by a sonic
dispersive wave. Here V∗ ≈ 0.7685, δ = 0.4, β = 6, wc = 1

7 Concluding Remarks

In this paper, we considered the FPU system with trilinear force–elongation relation.
It was chosen to be of generally asymmetric soft–hard–soft type, and the resulting
mechanical behavior can be classified as hardening–softening. We showed that in
addition to the classical finite-amplitude, spatially localized solitary waves, this model
exhibits supersonic kinks (superkinks) and finite-amplitude, spatially delocalized flat-
top solitary waves which acquire the structure of a kink–antikink bundle when their
velocity tends to the kink limit. Exploiting the periodic-modulo-shift property of travel-
ing waves, we computed these solutions as fixed points of the corresponding nonlinear
map. In a particularly interesting degenerate case when the elastic modulus of one of
the soft regimes is zero, we obtained exact solutions for sufficiently slow solitary
waves.

Floquet analysis of solitary waves in the non-degenerate case shows that near-
sonic waves are unstable when their velocity is below a certain threshold. Perturbation
along the corresponding eigenmode led to the formation of a stable wave with velocity
above the threshold. Stability of these and other solutions was also confirmed by direct
numerical simulations initiated by the computed traveling waves and piecewise con-
stant Riemann data. In the degenerate case, Riemann simulations revealed emergence
of Whitham shocks involving periodic train of solitary waves.

To complement this picture, we analyzed in detail a QC approximation of the FPU
problem, which introduces into the continuum model mixed space-time higher-order
derivative termdescribingmicroinertia.Using thismodel,we derived explicit solutions
for both solitary waves and superkinks. The analytical transparency of the QC model
allowed us to examine in full detail the properties of the waves and the effect of
asymmetry of the interaction force. Comparison of the obtained solutions with their
discrete counterparts showed that theQCmodel captures themain effects qualitatively,
and quantitative agreement exists near the superkink and, for the non-degenerate case,
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sonic limit. In the degenerate case the discrepancy between the discrete and QCmodel
persists to the sonic limit of zero velocity.

Finally, we mention a potential application of the obtained results. It is known
that persistent “particle-like” wave packets can be generated in mechanical meta-
materials to transfer mechanical energy and communicate mechanical information
(Bertoldi et al. 2017). An important class of applications of such metamaterials
involves autonomous locomotion. In particular, wave-driven robots, utilizing geo-
metric phase transitions as internal mechanisms, are becoming a subject of intense
research due to their adaptability to complex environments (Deng et al. 2020). More-
over, a new paradigm in robotics is emerging in the form of a transition from movable
machines to movable materials with self-propulsion interpreted as dynamics of uni-
form regions (or domains) bounded by coherently moving interfaces (domain walls)
(Yasuda et al. 2020). The idea is that constructive interplay between material nonlin-
earity and dispersion can lead to the emergence of such robust disturbances which
would propagate with constant velocity and fixed profile. The corresponding non-
linear wave would be then associated with some functionality, as, for instance, in
the case of peristaltic motion (Gorbushin and Truskinovsky 2021). The advantage of
soft mechanical alternatives to rigid controlling actuators in otherwise soft crawling
robots is obvious, and the main challenge is to learn to generate such programmable
dynamic regimes. The delocalized flat-top solitary waves discussed in this work offer
an example of stable nonlinear pulses which can be used to make the corresponding
metamaterial crawl. In this respect our conclusion that the resulting delocalized active
pulses are necessarily supersonic is still realistic because in biologically relevant soft
solids the acoustic speeds may be arbitrarily small. Note also that in this perspective
our trilinear model can be interpreted as describing a material capable of generating
active stresses (Gorbushin and Truskinovsky 2019). In the same sense, the flat-top
solitary waves would imply dynamic passive-to-active transformations taking place
in the front of a steadily moving pulse with the corresponding reverse transformation
taking place in its rear.

A Some Technical Results

The coefficients in (39) are found by imposing continuity of w(ξ) and w′(ξ). This
yields

A = (q(q(wS − w+) cosh(sz2) sin(q(z1 − z2)) + s(wS − w−
+(w+ − wS) cos(q(z1 − z2))) sinh(sz2)))/D,

B = (qr(wS − w+) cos(qz2) cosh(sz2) + s((wS − w−)(q cos(qz1) + r sin(qz1))

−r(wS − w+) sin(qz2)) sinh(sz2))/D,

C = (qr(wS − w+) cosh(sz2) sin(qz2) + s(r(wS − w+) cos(qz2)

−(wS − w−)(r cos(qz1) − q sin(qz1))) sinh(sz2))/D,

D = (q(r(wS − w+) + (w− − wS)(r cos[q(z1 − z2)) − q sin(q(z1 − z2)))))/D,

(A.1)
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where

D = sin(q(z1 − z2))(q
2 cosh(sz2) − rs sinh(sz2))

−q cos(q(z1 − z2))(r cosh(sz2) + s sinh(sz2)).

Similarly, we find the coefficients in (47):

A = q(q(wS − w+) cosh(r z2) sin(q(z1 − z2)) + r(wS − w−
+(w+ − wS) cos(q(z1 − z2))) sinh(r z2)))/D

B = (qs(wS − w+) cos(qz2) cosh(r z2) + r(wS − w−)(q cos(qz1) + s sin(qz1))

+s(w+ − wS) sin(qz2)) sinh(r z2))/D
C = (qs(wS − w+) cosh(r z2) sin(qz2) + r(s(wS − w+) cos(qz2)

+(w− − wS)(s cos(qz1) − q sin(qz1))) sinh(r z2))/D
D = (q(s(wS − w+) + (w− − wS)(s cos(q(z1 − z2)) − q sin(q(z1 − z2)))))/D,

(A.2)

where

D = sin(q(z1 − z2))(q
2 cosh(r z2) − rs sinh(r z2))

−q cos(q(z1 − z2))(s cosh(r z2) + r sinh(r z2)).
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