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Optimal crawling: From mechanical to chemical actuation
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Taking inspiration from the crawling motion of biological cells on a substrate, we consider a physical model
of self-propulsion where the spatiotemporal driving can involve both a mechanical actuation by active force
couples and a chemical actuation through controlled mass turnover. When the material turnover is slow and the
mechanical driving dominates, we find that the highest velocity at a given energetic cost is reached when the
actuation takes the form of an active force configuration propagating as a traveling wave. As the rate of material
turnover increases, and the chemical driving starts to dominate the mechanical one, such a peristalsis-type
control progressively loses its efficacy, yielding to a standing-wave-type driving which involves an interplay
between the mechanical and chemical actuation. Our analysis suggests a paradigm for the optimal design of
crawling biomimetic robots where the conventional purely mechanical driving through distributed force actuators
is complemented by a distributed chemical control of the material remodeling inside the force-transmitting
machinery.
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I. INTRODUCTION

In living systems the crawling mode of motility is ubiq-
uitous and its thorough understanding on both mechanical
and biochemical levels constitutes an important fundamental
challenge [1–4]. The parallel problem of the design of soft
robots that can efficiently crawl by themselves is an equally
important engineering problem [5–10] which has been mostly
studied from the perspective of a purely mechanical driving
in the form of distributed actuators generating “active” force
couples [11–18]. In this paper, taking inspiration from the
importance of chemical processes in the crawling motion of
biological cells, we consider the situation where, in addition
to a mechanical actuation, the crawler material can turn over
through a process driven by an out-of-equilibrium chemical
reaction.

There exist two fundamentally different paradigms to rep-
resent the overdamped crawling motion of an active object on
a solid substrate. One of them, which builds on older swim-
ming theories [19–21], assumes that the shape of a deformable
object is dynamically actuated to harvest friction forces with
its environment. The motion is supported by the breaking of
the time-reversal symmetry of each periodic stroke [22]. As
initially formulated by Purcell in the context of swimming at
a low Reynolds number, this necessary condition to obtain
a net motion over a stroke is known as the scallop theorem
[23–25]. The optimality of such motion as a function of the
actuation can be quantified by the Stokes efficiency, which
compares how much energy is dissipated during each stroke
with the power to move the crawler center of mass at a certain
velocity against the frictional background [26–29]. Limbless
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animals such as millipedes, caterpillars, or earthworms are
good natural representatives of this category of crawlers.

The development of active gel theories allowing one to
model the motility of various types of biological cells [30]
has paved the way for an alternative paradigm where the
crawler is constituted of a mechanical skeleton (scaffold)
which can chemically turn over through its polymerization
and depolymerization. The fundamental point here is that
while the skeleton is in frictional contact with the external
environment, its depolymerized building blocks are not, in the
same manner as the lower part of the belt of a rolling tank
tread transmits tractions to the ground while the upper part of
the belt does not. The mechanical actuation of the skeleton
by distributed contractile forces then creates a steady-state
flow [31]. The spatial analog of the scallop theorem would
then state that to ensure self-propulsion the flow of skeleton
must be asymmetric with respect to the crawler center. As
a result, the friction forces on the background will also lose
their symmetry, leading to directional motion [32,33]. The
fact that the skeleton is being permanently advected in a
particular direction requires to “close the stroke.” This means
that there must be sources and sinks allowing material renewal
and depletion where necessary, through an implicit chemical
reaction [34]. Again, the Stokes efficiency for such type of
motion has been introduced and the corresponding optimal
regimes were identified [35]. While the implied modeling
approach is most simply formulated in the context of an
object crawling on a stiff substrate, it was also shown to be
fully capable of explaining various regimes of swimming in a
liquid [36].

The goal of the present paper is to bring together these
two paradigms within a single simple prototypical framework.
Specifically, we consider a one-dimensional (1D) soft elastic
body with free boundaries, whose material can be chemically
driven to undergo internal mass redistribution. In addition,
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it can be mechanically driven through a distributed field of
active stresses. Such a system may then be actuated both
mechanically and chemically. It can be seen as representing
in a very simplified way the propulsion machinery of a cell. It
is then implied that the active mechanical stress is controlled
by a distribution of internally driven molecular motors cross-
linking skeleton filaments, while the active mass redistribution
is governed by a chemical potential representing an internal
out-of-equilibrium chemical reservoir of monomers that can
be polymerized into filament form. In this respect, it is worth
mentioning that the chemical pathways regulating both the
cytoskeleton contractility and its turnover can now be exter-
nally controlled with light in both space and time using two
different optogenetics constructions [37,38].

One of our main results is the realization that the in-
terplay between the chemical and mechanical modalities of
active control crucially depends on the relative rate of the
corresponding kinetic processes. We characterize the relative
importance of chemical versus mechanical activity by a single
dimensionless parameter λ, and study its role in the choice
of the optimal crawling gait. More precisely, we ask how the
optimal actuation strategy adjusts as λ increases from zero
to infinity and whether one can identify transitions between
different crawling gaits triggered by the variation of λ.

In particular, we show that in order to ensure optimal
efficacy, our two modalities of external driving, mechanical
and chemical, must cooperate. In other words, the two con-
trolling agents must conspire if the goal is to achieve the
best performance at a fixed total metabolic cost. How the
corresponding mechanical and biochemical pathways are or-
ganized to reach the necessary level of coherency is beyond
the scope of this work, where we neglect the chemomechan-
ical feedbacks between the active agents and the dynamical
variables representing, for instance, the flow or the density of
material.

To formulate the optimal control problem we assume
that our driving mechanisms arrive with an energetic cost.
We show how the latter can be specified based on some
basic thermodynamic arguments. We then use a simple
close-to-equilibrium Onsager formalism to introduce the cor-
responding kinetic processes. This allows us to specify the
two timescales characterizing the mechanical and chemical
drivings and formally define the parameter λ as a ratio of these
timescales.

As the most basic assumption, we associate the perfor-
mance of the propulsion with the average velocity of the
crawler and solve in two limiting cases the mathematical
optimization problem delivering the best actuation strategy
at a fixed energetic cost. In agreement with previous inves-
tigations [14,39,40], we find that, in the case of slow material
turnover, the most effective time-periodic actuation strategy is
a traveling wave propagating along the body. In the opposite
limit, when turnover is fast and both mechanical and chemical
actuators are relevant, the optimal driving is represented by
a standing wave. In the latter case, the combined chemome-
chanical actuation and the associated cooperation between
chemistry and mechanics in driving the internal dynamics
allow the system to reach a higher performance than in the
absence of turnover at the same energetic cost.

Using a simple analytical expression linking the two limit-
ing cases, where either mechanics or chemistry dominates, we
study the crossover between the traveling-wave-type and the
standing-wave-type modalities of crawling as the parameter λ

varies continuously. We show that such a crossover is accom-
panied by a switch in the allocation of the energetic resources
from the purely mechanical driving towards an optimal bal-
ance between mechanical and chemical energy inputs. More
specifically, we show that, as the rate of material turnover
increases, and the chemical driving starts to dominate the me-
chanical one, the commonly accepted peristalsis-type control
progressively loses its efficacy, yielding to a standing-wave-
type driving which now involves a constructive interplay
between the mechanical and chemical actuation.

In addition to offering insights regarding the different fun-
damental modalities of the functioning of living matter, our
analysis can be viewed as providing an alternative paradigm
for the design of soft robots that crawl on rigid surfaces.
The main difference is in the replacement of the conventional
purely mechanical driving through distributed force actuators
by a chemomechanical driving, involving the possibility to
chemically activate or deactivate the dynamic renewal of the
internal force-transmitting scaffold.

The paper is organized as follows. In Sec. II we derive a
thermodynamically consistent chemomechanical model of a
driven one-dimensional crawling segment with free bound-
aries. In Sec. III, we introduce the main nondimensional
parameter. The time-periodic chemomechanical actuation
fields that control the dynamics are introduced in Sec. IV.
In Sec. V, based on the energy balance discussed in Sec. II,
we formulate the optimization problem whose solution al-
lows one to specify the optimal chemomechanical control.
Such a general problem is formulated in the weak actuation
regime in Sec. VI, where the controls are considered to trig-
ger only small deformations of the material. We then study
two limiting cases where the optimal actuation protocol can
be found explicitly. Specifically, in Sec. VII we assume that
material turnover is slow compared to mechanical relaxation
while in Sec. VIII we consider the opposite limit. Finally, we
introduce in Sec. IX a specific form for the actuation fields
that interpolates the two above limits. It enables us to study
the interplay between the chemical and mechanical actuation
when the relative rate of turnover varies continuously and to
identify a transition between the two major gaits of chemo-
mechanical crawling. Our conclusions are summarized in
Sec. X.

II. THE MODEL

We consider a prototypical model of a biomimetic object
crawling along a one-dimensional track on a rigid substrate.
The skeleton of this one-dimensional crawler is effectively
represented as a continuum segment with material points in-
dexed by the actual spatial coordinate x ∈ [l−(t ), l+(t )]. Here
the two moving boundaries representing the front and rear
edges of the crawler are l−(t ) and l+(t ) with t � 0 denoting
the time. The deformed state of the system is described by the
time-dependent mapping x(X, t ), where by X we denote the
reference positions of the actual points.
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In view of the anticipated role of the chemically driven
mass turnover of the skeleton, we describe the mechanical
response of the system using the framework of morphoelastic-
ity [41,42]. We start by introducing the deformation gradient
F (x, t ) = ∂x/∂X and decompose F multiplicatively into

F = AG.

Here A(x, t ) is the 1D analog of the elastic distortion which
can be considered in this setting as purely volumetric. We
suppose that such a distortion is counted from an unstressed
configuration with a fixed density ρm. Then the actual (cur-
rent) density of the material is ρ(x, t ) = ρm/A(x, t ). The
scalar function G(x, t ) describes the stress-free swelling
due to the arrival or departure of the material “building
blocks” needed to assemble the configuration with the density
ρm. Such a configuration can be interpreted as intermedi-
ate because the primordial configuration of the “building
blocks” would be characterized by another density ρ0(x, t ) =
G(x, t )ρm. The function G(x, t ) is a 1D analog of the growth
tensor in morphoelasticity describing the swelling of the ma-
terial from density ρ0(x, t ) to the density ρm while the scalar A
is the deformation gradient necessary to accommodate such a
swelling into the actual stressed configuration. The thermody-
namical configuration of the resulting material capable of both
elastic deformation and inelastic renewal is described by two
mechanical (dynamic) variables which may be either A(x, t )
and G(x, t ) or ρ(x, t ) and ρ0(x, t ).

Mass balance. In the Eulerian coordinate system, the equa-
tion of mass balance can be rewritten in the form

∂tρ + ∂x(ρv) = r, (1)

where v = ∂t x(X, t ) is the velocity of material points, and the
mass supply is

r = ρ

(
1

G

dG

dt

)
,

where d/dt = ∂t + v∂x denotes the total derivative. The
derivation of Eq. (1) is based on the mass conservation be-
tween the unstressed configuration and the current one: ρ =
ρm/A = ρmG/F . Taking the total differential of this relation,
we obtain dρ/dt = ρm(dG/dt/F − G/F 2dF/dt ), so that

dρ

dt
+ ρm

G

F 2

dF

dt
= ρ

G

dG

dt
.

Since by a time differentiation of the deformation gradient
∂xv = (dF/dt )/F , we obtain Eq. (1). See, e.g., Ref. [43].

It is clear from Eq. (1) that it is the temporal variation of G
which brings the local sources and sinks of mass. For instance,
in the context of living cells, this term represents the polymer-
ization and depolymerization of the cytoskeleton filaments,
which is controlled by a monomer reservoir [44]. As we do
not consider any flux of mass through the boundaries, we will
also assume that

l̇± = v(l±(t ), t ).

Momentum balance. Since inertia is negligible in our set-
ting, we can write force balance in the form

∂xσ = f f , (2)

where σ (x, t ) is the axial stress and f f is the bulk force de-
scribing the interaction of the skeleton with the rigid substrate
in a thin-film limit. We further assume that

σ (x, t ) = σe(x, t ) + σa(x, t ), (3)

where σe(x, t ) is the elastic stress and σa(x, t ) is an active
stress, representing the mechanical driving and effectively de-
scribing the momentum exchange with an out-of-equilibrium
reservoir. One can also think directly in terms of the driving
bulk force and the elastic restoring force:

fa(x, t ) = ∂xσa and fe = −∂xσe.

The former can be exogenous (say, originating from external
actuators such as an applied magnetic field affecting embed-
ded beads) or endogenous (say, describing myosin molecular
motors cross-linking actin filaments). The boundary condition
associated with Eq. (2) is

σ (l−(t ), t ) = σ (l+(t ), t ),

which implies the existence of a stiff spring representing a
constraint which connects the two edges of the crawling sys-
tem l+, l− and ensures that its total length

L = l+(t ) − l−(t )

remains constant.
Energy balance. We consider that the system is isothermal

and introduce its free energy in the form

� =
∫ l+

l−
ρψ (A, G)dx, (4)

where we assume that elasticity and turnover are uncoupled
material properties of the skeleton:

ψ (A, G) = ψe(A) + ψc(G).

For simplicity, we consider as variable only the mechanical
contribution ψe(A) while the chemical contribution ψc(G) =
ψ̃ is assumed constant. This reflects the fact that only vari-
ations of the elastic strain change the stored internal energy
while the amount of stress-free swelling due to material
turnover does not impact the chemical free energy as it is often
formulated in classical morphoelastic theories [45]. In view of
the local mass conservation (1), we obtain

d�

dt
=

∫ l+

l−

(
rψ + ρ

dψ

dt

)
dx =

∫ l+

l−
(σe∂xv + rμc)dx,

where we introduced the elastic stress in the skeleton,

σe = ρm
∂ψe

∂A
,

and the chemical potential of the skeleton,

μc = ψ − A
∂ψe

∂A
.

Next we need to introduce the exerted power �. Since we
assumed for simplicity that there are no boundary traction
forces (no cargo to carry), such a power is delivered only in the
bulk, through both active stresses and active mass exchange.
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The power of active forces acting on the system has the stan-
dard form of mechanical work per unit time,

�m =
∫ l+

l−
favdx.

Similarly, the power of generalized forces performing the
regulation of mass exchange and acting at the chemical level
can be written as

�c =
∫ l+

l−
μardx.

The external mass reservoir is characterized by the chemi-
cal potential μa(x, t ), which is a direct chemical analog of
fa(x, t ), while the rate of the exchange reaction r(x, t ) is the
analog of the local velocity v(x, t ).

Due to the fact that our system is active, the integral energy
inequality representing the second law of thermodynamics can
be interpreted in two equivalent forms.

First, considering fa and μa as internal drivings, we can
write the integral energy balance as −d�/dt = R̂, where the
function R̂ = R − (�m + �c) describes all energy exchanges
due to the interaction between the material system described
by the energy [Eq. (4)] and the machinery operating to main-
tain the active terms. The latter includes the rate of supply
of mechanical and chemical energy due to the microscopic
active agents �m + �c and the irreversible dissipation R � 0
characterizing the interaction of the system with a thermal
reservoir. Note that if the active agents are designed to always
operate in the regime where �m + �c � 0, as will be the case
in the rest of the paper, the corresponding entry in R̂ can be
considered as representing “antidissipation.”

The second approach, which we effectively use in what
follows, is based on the assumption that the power �m + �c

represents an external work. We can then write the integral
energy balance in the form

R = �m + �c − d�

dt

=
∫ l+

l−
[( fa − fe)v + (μa − μc)r]. (5)

Here the dissipation,

R � 0,

is interpreted as the difference between the work done per
unit time by the macroscopic active agents �m + �c and the
concurrent rate of change of the macroscopic free energy of
the system, d�/dt (see, e.g., Refs. [35,46]).

To ensure that the term R representing the dissipated energy
is non-negative as required by the second law of thermo-
dynamics, we make the simple assumption that the linear
Onsager close-to-equilibrium theory [47] is operative. Specif-
ically, we assume that the thermodynamic fluxes and forces
are linearly related so that

v = 	 f /ξ + λ12	μ,

r = λ21	 f + 	μ/ν, (6)

where 	 f = fa − fe and 	μ = μa − μc. Note that in a more
general tensorial framework, the cross term should involve a

director field corresponding to the preferred direction of the
material turnover. In the rest of the paper, we will neglect this
chemomechanical cross term as it is usually done in the con-
text of cell motility [30,49–57]. While it is in fact a possibility
in view of the presence of various interconnecting pathways,
to our knowledge, a direct material coupling between the dy-
namics of the cell adhesion and that of cytoskeleton turnover
has not been so far well documented [58].

In Eqs. (6), we have introduced the purely mechanical
friction coefficient ξ > 0 and the purely chemical kinetic
coefficient ν > 0. Under these assumptions, friction with
the substrate, mimicking the interaction with the mechanical
reservoir, and kinetic turnover of the material, mimicking the
interaction with the chemical reservoir, represent two sources
of the quadratic dissipation in the system. As we show below,
the two parameters, ξ and ν, set the timescales of the corre-
sponding mechanical and chemical relaxation processes and
their dimensionless ratio is an important control parameter of
the problem.

In Eqs. (6), we have also implicitly assumed only weak
deviation from equilibrium, which implies a weak level of
activation. This is a common assumption in similar conceptual
studies (see, for instance, the assumptions behind the theory
of active gels [59] and some elementary models of molecular
motors [60]). While such choice mainly aims at achieving
analytical transparency, it is also motivated by the fact that it
is still not clear how strong activation leading to considerable
deviation from equilibrium should be modeled.

Specification of the model. We further impose for simplicity
that the free energy represents only entropic elasticity and set

ψe(A) = ψ0(A log(A) − A), (7)

where ψ0 characterizes the elastic stiffness of the material.
The chosen expression (7) can be viewed as reflecting a
skeleton containing almost ideal polymer chains. Note that
∂Aψ (1) = 0, which agrees with our assumption that after the
mass exchange the reference configuration with density ρm

remains stress-free. Under assumption (7), the elastic stress-
strain relation takes the form

σe = −E log

(
ρ

ρm

)
, (8)

where E = ρmψ0 is the Young modulus at the stress-free
state. Expression (8) penalizes both infinite polymer chains
compression and extension. The resulting Eq. (6)1 can be
written as

fa − E
∂xρ

ρ
= ξv. (9)

Analogously we can now write an explicit expression for the
thermodynamic chemical potential

μc = ψ̃ + E

ρ
, (10)

which allows us to rewrite the resulting Eq. (6)2 in the form

μa − ψ̃ + E

ρ
= νr. (11)

Equation (9) effectively describes the kinetics of the me-
chanical relaxation of the internal flow v while Eq. (11)
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describes the kinetics of the chemical relaxation of the mate-
rial turnover; the two equations are coupled through the mass
balance equation (1).

III. NONDIMENSIONALIZATION

To analyze the resulting system of equations, it is conve-
nient to introduce the change of variable:

y = x − S(t )

L
∈

[
− 1

2
,

1

2

]
, where S(t ) = l−(t ) + l+(t )

2

is the geometric center of the segment. We use L to nondi-
mensionalize space, ξL2/E to nondimensionalize time, ρm

to nondimensionalize density, and E/L to nondimensionalize
force. Note that to normalize the density we could have also
used the natural scale ξ 2L2/E . In this case our system acquires
an additional dimensionless parameter K = (Eρm)/(ξ 2L2),
which, however, can be completely eliminated by simply
renormalizing the density ρ to ρ/K . The parameter K would,
of course, have remained essential if we had taken inertia into
account.

Combining Eqs. (1), (9), and (11), the problem reduces to a
single dimensionless reaction-drift-diffusion equation for the
skeleton density field ρ(x, t ):

∂tρ + ∂y(ρ( f − V ) − ∂yρ) = 1

τ

(
1

ρ
− 1

ρ̃
+ μ

)
, (12)

with the boundary conditions

ρ|−1/2 = ρ|1/2 and V (t ) =
(

f − ∂yρ

ρ

)
|±1/2. (13)

In Eqs. (12) and (13),

V = l̇±

is the macroscopic velocity of the crawler, while f =
fa/(E/L) and μ = μa/(E/ρm) are dimensionless active spa-
tiotemporal controls.

We also introduced two nondimensional parameters. The
first one

τ = νρ2
m

ξL2
, (14)

represents the ratio of the two characteristic timescales:
the one characterizing the chemical reaction controlling the
skeleton turnover and the other one describing mechanical
relaxation due to the sliding friction against the rigid back-
ground. The second dimensionless parameter compares the
stored elastic energy compared to the chemical stored energy:

ρ̃ = E

ρmψ̃
. (15)

In Sec. VI, we show that, as we will be interested in small
material density variations only, the only important dimen-
sionless parameter, controlling the choice of the optimal
crawling strategy, will be the combination of the two parame-
ters (14) and (15):

λ = 1

τ ρ̃2
= ξψ̃2L2

νE2
. (16)

Thus, when λ = 0, material turnover is absent and sliding
friction with the substrate is the only source of dissipation
and therefore the main rate-limiting process. Instead, when
λ � 1, turnover is much faster than frictional relaxation and
the energy entering the system is predominantly dissipating
due to the chemical reaction.

IV. ACTUATION

The free boundary problem (12), with the boundary con-
ditions (13), also contains two dimensionless active fields,
which are still not specified. One is the active force distribu-
tion f (y, t ) and the other one is the active chemical potential
distribution μ(y, t ). Both of them represent nonequilibrium
reservoirs driving the system, a mechanical one and a chemi-
cal one, respectively.

Given that intrinsic mechanical action is exerted by force
couples, it can be convenient to write

f = −∂ys,

where the potential s(y, t ) is the active stress [48]. In the
context of ATP-driven actomyosin systems, it describes the
field of force dipoles generating mechanical contraction. In-
stead, the field μ(y, t ) represents the dynamic target of an
out-of-equilibrium chemical reaction responsible for the in-
ternal turnover of matter.

Observe that when both fields vanish and, therefore, the
driving is absent, the solution of Eqs. (12) and (13) is ρ ≡ ρ̃

and V ≡ 0. Two nonequilibrium limiting cases are of interest:
μ = 0, corresponding to a purely mechanical driving, and
s = 0, when the actuation is purely chemical.

One possibility to set s(y, t ) and μ(y, t ) is to impose that
they are controlled by the presence of chemomechanical feed-
backs so that the driving “follows” the responding system as
the two are described by a coupled system of equations. For
instance, in some models of contraction-driven cell motility,
the actuation process is coupled with the dynamics of molecu-
lar motors which, in turn, is linked to the flow of cytoskeleton
[35]. Other types of coupling involving a feedback relating
material flow with the active stress describing various regu-
latory pathways have been considered, for instance, in Refs.
[61–63]. Physically motivated systems involving the coupling
between active turnover and an intracellular chemical mes-
senger affected by the material flow have been considered as
well [56].

V. OPTIMAL DRIVING

In this paper we are not assuming any of the aforemen-
tioned feedbacks and instead ask the question of how to
reverse engineer the crawling machinery to reach an optimal
performance. One can think of our system as describing a soft
crawling body driven either by internal (cell motility) or exter-
nal (robotics) agents. The task is to understand how an optimal
performance can be achieved when it can be driven using both
mechanical— f (y, t )—and chemical—μ(y, t )—actuation. We
leave the question of whether such controls can be indeed
implemented in a self-consistent and physically meaningful
manner to a separate study.
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Some works have previously addressed the issue of cell
motility in the framework of control theory by resorting to
chemomechanical controls in specific situations [33,51] but
without considering the energetic cost of such actuation. The
present paper complements and further develops this previous
work.

The first step is to restrict the class of admissible controls
f (y, t ) and μ(y, t ). To reflect a cyclic nature of the actuation,
we assume that these controls are T -periodic in time where
T is a positive number to be found in the process of finding
the solution of the optimization problem. Since we do not
take into account any resultant part in either mechanical and
chemical drive, it is natural to assume that the time and space
averages of the controls f (y, t ) and μ(y, t ) are equal to zero:

〈 f 〉 = 〈μ〉 = f̄ = μ̄ = 0. (17)

Here

〈(·)〉 = lim
T →∞

1

T

∫ T

0
(·)dt and (·) =

∫ 1/2

−1/2
(·)dy

denote the time averaging and the space averaging,
respectively.

First recall that the total time-averaged power injected
into the system as a result of both mechanical and chemical
activity is

C = 〈�m + �c〉 = 〈 f v + μr〉. (18)

By averaging Eq. (5) over time, we obtain that C � 0, showing
that the total actuation cost, expressed in this way, is always
non-negative. This also shows that the power of the active
driving is indeed antidissipative over each stroke. Substituting
the expressions for v and r from the Onsager constitutive
relations (9)–(11) into Eq. (18), we can rewrite the expression
for the measure of the energetic cost in the form

C =
〈

f

(
f − ∂yρ

ρ

)〉
+ 1

τ

〈
μ

(
μ + 1

ρ
− 1

ρ̃

)〉
.

The definition of the functional performance is less straight-
forward since the system can move even in the absence of
cargo. Naturally, in this case one would like to associate a
nonzero functionality even if the resultant applied force is
equal to zero. To circumvent this classical problem, several
proposals have been made. Among them we consider the
Stokes performance [64]. In our case this means choosing
the rate of frictional dissipation ξL〈V 〉2 necessary to advance
the system as a rigid object as the functionality measure.
When both the length L of the system and the sliding friction
coefficient ξ are fixed, this choice is equivalent to associating
the performance of the crawling mechanism with the averaged
velocity:

P = 〈V 〉.
Other choices are possible as well, accounting, for instance,
for the metabolic expenses required to maintain at a certain
level the distributed active stresses (see, for instance, the dis-
cussion in Ref. [65]).

In this paper we have chosen to set the problem of max-
imizing the performance P at a fixed energetic cost C. This
optimal control problem, also considered in Refs. [14,40],

reflects the desire to compare crawler designs with an imposed
availability of metabolic resources and to select the design
that achieves the best performance. Other choices would be
possible such as minimizing the cost at a fixed performance,
which would correspond to selecting, among the crawlers that
achieve a given performance, the design that consumes the
less resources. It is also possible to maximize the efficiency
P/C (see Ref. [35]), which corresponds to an optimal trade-off
between the cost and the performance. The choice between
these and other seemingly arbitrary options is ultimately dic-
tated by the targeted functionality of the crawler.

VI. WEAK ACTUATION

To get analytic results, we only consider the case where the
spatial and temporal inhomogeneities of the driving forces are
small. Then if ε is a small parameter characterizing the scale
of activation, we can write

s(y, t ) = εs1(y, t ) + ε2s2(y, t ) + · · · ,

μ(y, t ) = εμ1(y, t ) + ε2μ2(y, t ) + · · · . (19)

The smallness of the parameter ε reflects the fact that the
actuation is assumed to be sufficiently weak to produce only
small deformations (i.e., density variations) of the material.
To quantify the precise range of values of ε where the linear
regime is operative, one needs to solve numerically the full
nonlinear optimization problem, assuming that the actuation
fields can be large. This considerable task is beyond the scope
of our exploratory paper and is left for a separate study.

To assess the cost C and the performance P, we will need
to compute the first two terms in both expansions. To this end,
it will be convenient to introduce the new auxiliary variables

u = μρ̃,

characterizing chemical control, and

w = s + log (ρ/ρ̃ ),

mixing the mechanical control with the mechanical response.
We can then also write the associated expansions:

u(y, t ) = εu1(y, t ) + ε2u2(y, t ) + · · · ,

w(y, t ) = εw1(y, t ) + ε2w2(y, t ) + · · · . (20)

Inserting Eqs. (20) in Eqs. (12) and (13), the first-order prob-
lem takes the form

∂tw1 − ∂yyw1 + λw1 = ∂t s1 + λ(s1 + u1) (21)

with the periodic boundary conditions

w1|−1/2 = w1|1/2 and V1(t ) = −∂yw1|±1/2. (22)

In the context of weak actuation, our choice of the auxiliary
variables u and w leads to the appearance in Eq. (21) of only
one nondimensional parameter λ introduced in Eq. (16). Since
〈u1〉 = 〈s1〉 = 0, the first nonvanishing contribution to the cost
is of second order, C = ε2C2 + · · · , where

C2 = 〈∂yw1∂ys1〉 + λ〈u1(s1 + u1 − w1)〉. (23)

As it involves only first-order terms, C2 can be computed from
the solution of Eqs. (21) and (22).
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Similarly, since 〈V1〉 = 0, the first nonvanishing contribu-
tion to the performance is also second order, P = ε2P2 + · · · ,
where

P2 = 〈V2〉. (24)

To compute this contribution we need to consider the
second-order expansion for w2:

∂tw2 − ∂yyw2 + λw2 = ∂t s2 + λ(s2 + u2)

+ (∂yw1 + V1)(∂yw1 − ∂ys1)

+ λ(s1 − w1)(2u1 − 3w1 + 3s1)/2,

(25)

with the periodic boundary conditions

w2|−1/2 = w2|1/2 and V2(t ) = −∂yw2|±1/2.

Then, after performing the temporal averaging of these equa-
tions over time, we obtain

−∂yy〈w2〉 + λ〈w2〉 = 〈(∂yw1 + V1)(∂yw1 − ∂ys1)〉

+ λ

2
〈(s1 − w1)(2u1 − 3w1 + 3s1)〉,

(26)

with P2 entering the periodic boundary conditions:

〈w2〉|−1/2 = 〈w2〉|1/2 and P2 = −∂y〈w2〉|±1/2. (27)

Again, as the right-hand side of Eq. (26) only involves
first-order terms, it is sufficient to consider the first-order
contributions of the controls s1 and u1 in order to obtain both
C2 and P2.

Our problem is to maximize the functional P2 at a given
value of the functional C2. To identify admissible solutions of
this problem we also need to impose that〈

f 2
1 + u2

1

〉
� 1, (28)

which ensures that the spatiotemporal variations of the
obtained solutions are in agreement with the asymptotic ex-
pansion (19). The upper bound in Eq. (28), which we chose
to be equal to 1, controls the magnitude of the active fields f1

and u1, up to a renormalization of ε.
Note that since we maximize P2, we focus exclusively

on positive values of the velocity V2. In view of the spatial
symmetry of the system of Eqs. (21) and (22), in addition to
an actuation protocol (u1(y), s1(y)) that gives the performance
P2, there is always an actuation protocol (u1(−y), s1(−y)) de-
livering the performance −P2 at the same cost. So the solution
for the negative velocity corresponding to minimization of P2

can be obtained from our results.
As we have already mentioned, our main goal is to inves-

tigate the role of the parameter λ, characterizing the relative
importance of the chemical versus the mechanical activity, in
the choice of the optimal crawling gait. More precisely, we
ask how the optimal actuation strategy adjusts as λ increases
from zero to infinity.

VII. PURELY MECHANICAL DRIVING

Our starting point is the purely mechanical (elastic) limit
where the mass exchange with the chemical reservoir main-

taining the turnover is absent. In other words, we assume
that λ → 0 and study the limit when the reaction regulating
material turnover is much slower than the mechanical flow of
matter. In this approximation the chemical driving u1 becomes
irrelevant.

We will use this limiting case as a benchmark for the rest of
the analysis: we will not consider any energetic cost constraint
in this section and only maximize the performance regardless
of the cost. The obtained maximal performance will then be
associated as a benchmark to a certain cost value which will
be maintained constant when we study the other cases where
λ > 0. In this way, all the actuation protocols considered in
this paper will be comparable as they will be characterized by
the same level of injected power.

Using the convenient variables j1 = −∂yw1 and f1 =
−∂ys1 we can rewrite Eqs. (21) and (22) in the form

∂t j1 − ∂yy j1 = ∂t f1,

V1 = j1|±1/2 and ∂y j1|−1/2 = ∂y j1|1/2. (29)

The corresponding expressions for the cost [Eq. (23)] and the
performance [Eq. (24)] simplify accordingly:

C0
2 = 〈 j1 f1〉, P0

2 = 〈ρ1 j1〉, (30)

where ∂yρ1 = f1 − j1 and ρ1 = 0. To justify the expression
for P0

2 in Eq. (30), we introduce the variable j2 = −∂yw2 and
write

∂y〈 j2〉 = −〈∂yρ1( j1 − V1)〉 = −〈∂y(ρ1( j1 − V1))〉,
where we used that, in view of Eqs. (29), ∂tρ1 = −∂y j1.
Hence, given that P0

2 = 〈 j2〉|±1/2, the expression in Eq. (30)
follows.

To solve the linear heat equation (29) we use a standard
approach and represent the mechanical driving f1 in Fourier
series,

f1(y, t ) =
∞∑

l=1

f 2l
1 (t )v2l (y) + f 2l−1

1 (t )v2l−1(y), (31)

where we separated the terms containing spatially even and
spatially odd modes, v2l (y) = √

2 cos(2lπy) and v2l−1(y) =√
2 sin(2lπy), respectively. In view of the time-periodic na-

ture of the driving, the time-dependent coefficients f 2l,2l−1
1 are

T periodic. We can also write a similar representation for the
solution of Eqs. (29),

j1(y, t ) =
∞∑

l=1

j2l
1 (t )v2l (y) + j2l−1

1 (t )v2l−1(y),

whose time-dependent coefficients satisfy the equation

∂t j2l,2l−1
1 (t ) + αl j2l,2l−1

1 (t ) = ∂t f 2l,2l−1
1 (t ),

where αl = 4π2l2.
At large times, the solution of the above ordinary differen-

tial equation takes the form

j2l,2l−1
1 (t ) = f 2l,2l−1

1 (t ) −
∫ ∞

0
Kl (t − u) f 2l,2l−1

1 (u)du,

where the kernel is Kl (t ) = αl exp(−αl t )H(t ) while H (t ) is
the standard Heaviside function. In terms of physical variables
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it means that

ρ2l,2l−1
1 (t ) = −(−1)2l,2l−1

2lπ

∫ ∞

0
Kl (t − u) f 2l−1,2l

1 (u)du.

We can now compute the spatial average of interest:

ρ1 j1 =
∞∑

l=1

1

2lπ

∫ ∞

0

∫ ∞

0

Gl (t, u, v)
[

f 2l
1 (u) f 2l−1

1 (v) − f 2l−1
1 (u) f 2l

1 (v)
]
du dv,

where Gl (t, u, v) = Kl (t − u)[δ(t − v) − Kl (t − v))].
Finally, performing the time averaging of Gl , we obtain

P0
2 = lim

M→∞

∞∑
l=1

∫ M

0

∫ M

0
Ql (u − v)

f 2l
1 (u) f 2l−1

1 (v)

Mlπ
du dv,

(32)

where Ql (t ) = −αl sign(t ) exp(−αl |t |)/2. Using the same ap-
proach we can also compute the cost:

C0
2 = lim

M→∞

∞∑
l=1

[∫ M

0
( f2l (u)2 + f2l−1(u)2)du

−
∫ M

0

∫ M

0
Ll (u − v)( f2l (u) f2l (v)

+ f2l−1(u) f2l−1(v))du dv

]
, (33)

where Ll (t ) = αl exp(−αl |t |)/2.
The next step is to express the time-dependent coefficients

f 2l,2l−1
1 in temporal Fourier series:

f 2l,2l−1
1 (t ) =

∞∑
k=1

Ak
2l,2l−1v2k

(
t

T

)
+ Bk

2l,2l−1v2k−1

(
t

T

)
.

(34)

Substituting these expressions into Eqs. (32) and (33) and
performing integration, we finally obtain

P0
2 =

∞∑
l=1

∞∑
k=1

2kT αl
(
Ak

2lB
k
2l−1 − Ak

2l−1Bk
2l

)
l
(
αk + α2

l T 2
) (35)

and

C0
2 =

∞∑
l=1

∞∑
k=1

αk
[(

Ak
2l

)2 + (
Ak

2l−1

)2 + (
Bk

2l

)2 + (
Bk

2l−1

)2]
αk + α2

l T 2
.

(36)

The constraint (28) reduces to
∞∑

l=1

∞∑
k=1

(
Ak

2l

)2 + (
Ak

2l−1

)2 + (
Bk

2l

)2 + (
Bk

2l−1

)2 � 1. (37)

Note that, as a result of these manipulations, our original
partial differential equation control problem has been reduced
to an algebraic optimization problem.

Before moving to the solution of this algebraic problem,
we observe that for actuation with time-reversal symmetry
f1(t ) = f1(−t ) all coefficients Bk = 0 and therefore we have
from Eq. (35) that P0

2 = 0. This observation can be viewed
as a variant of the scallop theorem [23] in our system: the

time-reversal symmetry of the actuation must be broken for
self-propulsion to become possible.

We now focus on the maximization of the performance
P0

2 subjected to the inequality constraint (37). To this end we
introduce the matrix

Q =

⎛
⎜⎜⎝

0 0 0 1/2
0 0 −1/2 0
0 −1/2 0 0

1/2 0 0 0

⎞
⎟⎟⎠

and the vector

Uk,l =

⎛
⎜⎜⎜⎜⎜⎝

Ak
2l

Ak
2l−1

Bk
2l

Bk
2l−1

⎞
⎟⎟⎟⎟⎟⎠.

In these notations, the problem is to maximize at each k and l
the quadratic form

U T
k,lQUk,l = Ak

2lB
k
2l−1 − Ak

2l−1Bk
2l ,

under the constraint that
∞∑

l=1

∞∑
k=1

mk,l � 1, (38)

where mk,l = U T
k,lUk,l . The eigenspace of Q corresponding to

its largest eigenvalue is two dimensional. With the inequality
constraint (38) taken into account, this eigenspace, containing
the optimal actuation modes, can be parametrized by the two
sets of coefficients ak,l and mk,l and written in the form

Uk,l =
√

mk,l√
2

⎛
⎜⎜⎝

cos(ak,l )
− sin(ak,l )
sin(ak,l )
cos(ak,l )

⎞
⎟⎟⎠.

Substituting this expression of Uk,l into Eq. (35), we obtain

P0
2 =

∞∑
l=1

∞∑
k=1

klmk,l T

k2 + αl (lT )2
,

which does not involve the coefficients ak,l . The remaining
problem of maximizing P0

2 in k, l can be viewed as a problem
of allocating the weights mk,l at integer points (k, l ) where
the expression kl/(k2 + αl (lT )2) reaches its largest value.
There is actually only a single point (k0, l0) where such an
expression reaches its maximal value and it is then natu-
ral to set mk0,l0 = 1. Finding the maximum of the function
(k, l ) → kl/(k2 + αl (lT )2) when k and l are considered to be
continuous variables and setting γ = T/(2π ), we find

k0 = ⌈
1
2 (

√
4γ 2 + 1 − 1)

⌉
and

l0 =

⎡
⎢⎢⎢⎢

√
3
√

γ (γ + 2
√

γ 2 + 12) − 3γ

6γ

⎤
⎥⎥⎥⎥,

where 
·� is the ceiling function. This choice delivers the
maximum of P0

2 at a given T .
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Finally, maximizing P0
2 with respect to this remaining pa-

rameter, we find that T = k/(2π ), where k � 1 is an arbitrary
integer. This means that all such actuation protocols (with k/T
fixed) give the same optimal performance value P0

2 = 1/(4π )
while the corresponding spatial mode is always the same one
with l = 1. The optimal actuation protocol is then

f1(y, t ) =
√

2 cos(2π (2πt − y + a)), (39)

where a is an arbitrary phase. Using Eq. (36), we find that
such performance level is reached at the cost C0

2 = 1/2.
The resulting optimal actuation can be characterized as a

traveling wave propagating from the rear to the front. This
actuation strategy is in fact often observed in the motion of
limbless crawlers. It has already been analytically shown
to be optimal in a similar framework in Refs. [14,40]. In
these previous works, which also adopted a one-dimensional
setting, the definition of the cost and performance are the
same as ours and the authors also consider the maximization
of the performance at a fixed imposed cost. However, the
friction law is more general, allowing for a strain-dependent
dissipation (which would involve the dependence of our
parameter ξ on the dynamic variable ρ). An important
difference with Ref. [14] is that there the active control is
imposed on a discretized reference strain rather than our
control of active stress. In this sense the approach of Ref.
[40], also adopting that actuation is performed by internal
forces, is closer to ours. The results in Ref. [40] can be also
considered more general since no a priori assumption of time
periodicity of the mechanical actuation is made.

Instead of focusing on these already investigated issues,
in the rest of the paper we move away from the purely me-
chanical problem and engage chemical activation while fixing
the cost at C2 = C0

2 = 1/2. Thus, we restrict the available
power of actuation based on the cost which emerged from
the maximal performance reachable in the purely mechanical
problem. This will allow us to compare chemical and mechan-
ical activation strategies at the same level of power delivery.

VIII. PRIMARILY CHEMICAL DRIVING

We now turn to the opposite limit λ → ∞ when the re-
action regulating material turnover is much faster than the
mechanical flow of matter. In this limit, the reaction source
term in Eq. (12) dominates the mechanical drift diffusion.
However, mechanics is still playing a role by affecting the
chemical potential μc through its strain dependence which
makes both s1 and u1 operative in the optimization problem.

In order to avoid the formation of boundary layers, we
further assume that both the mechanical driving s1 and the
chemical driving u1 satisfy periodic boundary conditions. In
this case, we obtain from Eq. (21) that w1 − s1 + u1 → 0,
physically corresponding to the equilibrium condition μc =
μa (in dimensional form).

Under these assumptions we can write

C∞
2 = 〈∂yw1∂ys1〉 + λ〈u1(s1 + u1 − w1)〉

= 〈∂y(u1 + s1)∂ys1〉 + 〈u1(∂tw1 − ∂yyw1 − ∂t s1)〉
= 〈∂y(u1 + s1)2〉. (40)

For the performance, Eq. (26) reduces to 〈r2〉 → 〈u2
1〉/2;

hence,

P∞
2 = − 1

2∂y
〈
u2

1

〉|±1/2. (41)

The goal now is to maximize P∞
2 with the constraint C∞

2 =
1/2 while respecting the small perturbation inequality (28).

The problem is explicitly expressed in terms of the controls
without the use of the auxiliary function w1. Note also that
time is playing a transparent role in this problem since it is
involved only in the final averaging operation. It is therefore
possible to first solve the optimization problem with controls
that are only space dependent and then multiply the obtained
solutions by any T -periodic function whose square average is
equal to 1 (in order to fulfill the constraints). In other words,
time and space variables can be separated in the optimal
actuation protocols.

We thus expand u1 and s1 in Fourier series using the v2l,2l−1

basis

u1(y) =
∞∑

l=1

u2l
1 v2l (y) + u2l−1

1 v2l−1(y),

s1(y) =
∞∑

l=1

s2l
1 v2l (y) + s2l−1

1 v2l−1(y), (42)

which gives

P∞
2 = −4π

∞∑
l=1

l
〈
u2l

1 u2l−1
1

〉
,

C∞
2 = 4π2

∞∑
l=1

l2
〈(

u2l
1 + s2l

1

)2 + (
u2l−1

1 + s2l−1
1

)2〉
. (43)

The inequality constraint (28) takes the form
∞∑

l=1

4π2l2
〈(

s2l
1

)2 + (
s2l−1

1

)2〉 + 〈(
u2l

1

)2 + (
u2l−1

1

)2〉 � 1. (44)

In the above formulation, all the spatial modes can be multi-
plied by a time-dependent function φ(t ), leaving the problem
unchanged as soon as 〈φ2〉 = 1.

Following the same approach as in Sec. VII, we first max-
imize the term u2l

1 u2l−1
1 under the constraints

4π2l2
[(

u2l
1 + s2l

1

)2 + (
u2l−1

1 + s2l−1
1

)2] = cl

and

4π2l2
[(

s2l
1

)2 + (
s2l−1

1

)2] + (
u2l

1

)2 + (
u2l−1

1

)2 = ml ,

where cl is a non-negative sequence of numbers that sums to
1/2 and ml is a similar sequence whose sum is smaller than 1.

The resulting mathematical problem can be again qual-
ified as the maximization of a quadratic form under two
quadratic constraints. Maximizing the associated Lagrangian
function with two Lagrange multipliers corresponding to the
two constraints, we obtain that at given cl and ml , the maximal
performance is

P∞
2 (l, cl , ml ) = 2π l

(4π2l2 + 1)2 [cl (4π2l2 − 1) + ml

+ 4π l (
√

cl (−cl + 4π2l2ml + ml ) + π lml )].

(45)
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As P∞
2 is decreasing as a function of l (with other variables

fixed) and increasing as a function of both cl and ml (also
with other variables fixed), expression (45) is made maximal
when the weights c1 = 1/2 and m1 = 1 are allocated to the
first spatial mode at l = 1.

We then obtain that the optimal performance is

P∞
2 = 1

1/π + 12π − 4
√

1 + 8π2
(46)

and the corresponding optimal actuation protocols are

u∞
1 = φ(t )

√
1 + 4π (π + 8π3 − √

1 + 8π2)
√

2(1 + 4π2)(4π − √
1 + 8π2)

× sin

(
π

(
1

4
− 2y

))
,

s∞
1 = φ(t )

√
1 + 4π (π + 8π3 − √

1 + 8π2)

−2
√

2π (1 + 4π2)

× sin

(
π

(
1

4
− 2y

))
. (47)

One can see that the control strategy maximizing the per-
formance while maintaining the cost fixed is in this case
a standing wave where chemical and mechanical drivings
effectively conspire. Note that the maximal performance in
the presence of such cooperativity is actually larger than in
the case where only mechanical driving is present (P∞

2 �
0.44 > P0

2 � 0.08). The reason is that the possibility of
fast chemically driven mass redistribution (material turnover)
complements mechanical deformation in driving the internal
flow, which can be then facilitated chemically even in the
presence of large frictional forces.

IX. CHEMOMECHANICAL CROSSOVER

Depending on the relative importance of chemical versus
mechanical pathways there may be two very different optimal
strategies of actively driving the steady crawling on a rigid
substrate. If the kinetics of turnover is much slower than that
of sliding friction with the substrate, crawling is optimally
driven by a control in the form of a traveling wave. If, instead,
mechanics is much slower than chemistry, the optimal control
takes the form of a standing wave. In this section we study
the crossover between these limiting control strategies by
considering the case when the parameter λ � 0 is finite.

Our approach in this section does not address the implied
infinite-dimensional optimal control problem in its full gener-
ality. Instead, we only consider a finite-dimensional version of
the problem by restricting the space of admissible controls to
an eight-parameter subspace generated by a particular subset
of the possible controls. The motivation behind such a choice
is simple: the chosen subset of controls interpolates between
the optimal solutions of the general optimization problem in
the two limiting cases when turnover is absent (λ → 0; see
Sec. VII) and when turnover is infinitely fast (λ → ∞; see
Sec. VIII). This choice allows one, after an appropriate finite-
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FIG. 1. Optimal performance as a function of turnover (logarth-
mic scale). The dashed lines indicate the analytic limits λ → 0 and
λ → ∞ computed in Secs. VII and VIII.

dimensional optimization, to analytically find the intermediate
optimal regimes.

More specifically, we now consider the following paramet-
ric form of the controls:

s1(y, t ) = scc cos(4π2t ) cos(2πy) + scs cos(4π2t ) sin(2πy)

+ ssc sin(4π2t ) cos(2πy) + sss sin(4π2t ) sin(2πy),

u1(y, t ) = ucc cos(4π2t ) cos(2πy) + ucs cos(4π2t ) sin(2πy)

+ usc sin(4π2t ) cos(2πy)+uss sin(4π2t ) sin(2πy).

(48)

The goal now is to find the optimal set of coefficients si, j and
ui, j where the indices take the values either c or s.

We use this specific form of the controls (48) to analytically
solve the linear problem of Eqs. (21) and (22) and compute
the function w1(y, t ). With this information at hand we can
directly express the cost (23) and also the performance (24)
by explicitly solving Eqs. (26) and (27). We do not include the
corresponding straightforward but cumbersome derivations
here. The remaining Karush-Kuhn-Tucker problem of max-
imizing P2 under the constraint C2 = 1/2 (while respecting
the inequality constraint (28)) becomes finite dimensional in
terms of the height coefficients si, j and ui, j . The structure of
the optimal solution can then be studied as a function of the
remaining parameter λ.

In Fig. 1 we show the optimal performance P2(λ) com-
puted by numerically solving the optimization problem with
an interior-point method for each value of λ. We observe a
gradual transition between the two limiting regimes. Thus,
as λ → 0 the function P2(λ) reaches the value P0

2 = 1/(4π )
computed analytically in the λ  1 limit. The corresponding
optimal actuation strategy is the purely mechanical driving

s0
1 = −π

√
2 sin(2π (2πt − y + a))/2 (49)

without any chemical driving: u0
1 = 0 found in Eq. (39). Note

that the optimal performance first decays to reach a mini-
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FIG. 2. Evolution of the mechanical (black) and chemical (red)
costs as a function of the turnover (logarithmic scale). The sum of
the two costs is maintained at the fixed value C2 = 1/2.

mum, but then finally starts to increase, reaching eventually
the plateau P∞

2 = 1/(1/π + 12π − 4
√

1 + 8π2) computed
analytically in the λ � 1 limit. The corresponding optimal
actuation agrees with Eq. (47), but now, in view of the par-
ticular structure of the form (48) , with an explicitly specified
time-dependent multiplier φ(t ) = √

2 sin(4π2t + a). In both
limits a is an arbitrary phase.

In Fig. 2 we show the contributions of the mechanical
〈�m

2 〉 and the chemical 〈�c
2〉 activity to the total energetic cost

of self-propulsion C2 = 〈�m
2 〉 + 〈�c

2〉 = 1/2. We see that in
the regimes with λ  1 the main energy supply comes from
the mechanical source and is represented by the work of the
active stresses. Instead, in the regimes with λ � 1 the main
energy supply comes from the chemical “pumps” ensuring the
appropriate target density of the turnover. Moreover, in those
regimes the flux of mechanical energy even changes sign such
that mechanical actuators actually work to extract energy from
the system (effectively corresponding to a brake on the global
motion in the absence of chemical activity). In this way more
chemical energy can be injected in. This is a consequence
of the constraint fixing the total chemomechanical energy
input and leaving the system the freedom to self-organize to
optimally use this cost.

Another observable feature of the interaction between the
mechanical and the chemical actuation is the dip in the per-
formance P2(λ) at small to finite values of λ with respect
to the performance P0

2 achieved at λ = 0 (see Fig. 1). This
means that, when first activated, the chemical machinery is
detrimental as it interferes with the traveling wave mechanical
activation and effectively works as a brake. As the corre-
sponding “chemical engine” gets sufficiently strong, it starts
to modify the very regime of actuation from a traveling to
a standing wave type, and the performance starts to grow,
reaching eventually the limit P∞

2 .
To corroborate this explanation, we show in Fig. 3 the

evolution of the optimal performance when we use a restricted

100 102 104
0

0.02

0.04

0.06

0.08

FIG. 3. Optimal performances as a function of the turnover with
a mechanical driving only (red curve) and with a chemical driving
only (blue curve). The cost is maintained at the fixed value C2 = 1/2.
The dashed line indicates the value of P0

2 .

actuation form with either u1 = 0 (purely mechanical actua-
tion) or s1 = 0 (purely chemical actuation). As expected, the
purely mechanical actuation performance only deteriorates
with growing λ. Indeed, the increase of material turnover still
triggers the transition from a traveling to a standing wave for
the optimal actuation protocol. But the latter is associated
with a decrease of performance in the absence of any ac-
tive chemical recycling. Instead, the purely chemical optimal
actuation, which always takes the form of a standing wave,
can take advantage of fast turnover while it is less effective
than the purely mechanical actuation for slow turnover. The
nonmonotony of the optimal performance at small to interme-
diate values of λ of the purely chemical driving is due to a
switch of the form (in terms of coefficients ucc, ucs, usc, uss)
of the optimal stationary wave at a threshold value λ = 8π2.
It is interesting that, in the limit λ � 1, the purely chemical
actuation achieves exactly the same level of performance P0

2 as
the purely mechanical actuation achieves at λ  1 even with
a fundamentally different spatiotemporal pattern: a traveling
wave for the mechanical actuation and a standing wave for
the chemical actuation.

Another illustration of the progressive transition from a
traveling-wave-type to a standing-wave-type actuation can be
provided if we use Eq. (48) to construct an “order parameter”-
type variable θ , normalized to vanish in the standing wave
regime. To this end we first rewrite Eq. (48) in the form

s1 = 2s0 cos

(
4π2t − ψ− + ψ+

2

)
cos

(
2πy − ψ+ − ψ−

2

)

+ (s+ − s0) cos (2π (2πt − y) − ψ−)

+ (s− − s0) cos (2π (2πt + y) − ψ+),

where s0 = √
s2

cc + s2
ss + s2

cs + s2
sc/2, 	s = (sccsss −

scsssc)/2, s+ =
√

s2
0 + 	s, s− =

√
s2

0 − 	s, tan(ψ+) =
(sss + scc)/(ssc + scs), and tan(ψ−) = (scc − sss)/(ssc − scs).
This representation splits the terms representing a standing
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FIG. 4. Transition from a traveling wave optimal actuation to a
standing wave as λ increases. (a) The decay of the order parameter θ

to zero (logarithmic scale). (b) The spatiotemporal density variations
w1 − s1 in the system at specific values of λ.

wave contribution from the two traveling waves moving,
respectively, prograde and retrograde. Note that at 	s = 0,
or equivalently s+ = s− = s0, the traveling wave contribution
vanishes. Therefore, with the above definitions of s− and s+,
the indicator

θ = (s− − s0)2 + (s+ − s0)2

4s2
0

= 1 − s+ + s−
2s0

compares the magnitude of the traveling-wave-type con-
tributions with the standing-wave-type contribution while
being normalized to vanish in the purely standing-wave-type
regime. The same type of “order parameter” can be con-
structed using the u1 part of the form (48) or indeed any linear
combination between u1 and s1.

In Fig. 4 we show the behavior of the function θ (λ) in the
regimes when both mechanical and chemical actuations are
present. In the same figure we illustrate how the spatiotem-
poral density profile evolves as the parameter λ changes from
zero to infinity and the traveling wave becomes progressively
arrested, opening the way to the formation of quiescent nodes
separating periodically “breathing” sectors.

As we are dealing only with the simple form (48), the
exact evolution of the optimal actuation regime at a finite
timescale of the mechanical friction vis-à-vis the timescale
of the chemical relaxation would still have to be obtained
for general time-periodic controls. For instance, it cannot be
excluded that the optimal transition between the two limiting
regimes is abrupt rather than continuous, as it is suggested
by our finite-dimensional approximation. Also, some other
spatiotemporal patterns may emerge along the way as one
moves from one limiting regime to another. The rigorous
clarification of all these issues which require more intense
numerical approaches is left for future studies.

X. CONCLUSIONS

We have proposed a 1D prototypical model of a chemome-
chanically driven system which can crawl on a solid substrate.
While it can be interpreted as a paradigmatic approach to the
understanding of how active stress and meshwork remodeling
can conspire in living cells, it can also be used as a set of guid-
ing principles for the design of biomimetic self-propelling soft
robots.

The motion is actuated by two time-periodic active controls
which are fully intrinsic as they exert zero average action
on the system. Those two controls are physically funda-
mentally different, with one being mechanical and the other
chemical. The active mechanical force field is deforming the
elastic scaffold while the out-of-equilibrium mass reservoir
actively controls the availability of building blocks of the
scaffold.

For our analysis we have chosen a simple close-to-
equilibrium framework which enabled us to introduce the
turnover kinetic timescale and the characteristic timescale of
mechanical relaxation. When the turnover kinetics is slow, the
best performance at a fixed energetic cost is achieved by a
purely mechanical actuation represented by a traveling wave
deformation propagating from the rear to the front of the
crawler. Instead, when the turnover kinetics is fast, the best
performance is reached when both mechanical and chemical
drivings cooperate and form a standing wave.

Our approach also allowed us to study the continuous
crossover between the limiting “mechanics-dominated” and
“chemistry-dominated” regimes for a specific actuation form.
In fact, one can expect that in more elaborate models various
other intermediate regimes of actuation, characterizing
alternative optimal crawling gaits, can become possible with
continuous as well as discontinuous transitions between them.
The potential complexity of this issue is already suggested
by our observation that when the activity of the chemical
reservoir is still weak, the associated material turnover
represents itself only as a dissipative process which lowers the
performance. However, when the chemical activity becomes
sufficiently strong, the turnover enhances the performance
by offering the possibility to recycle matter without creating
a frictional counterflow. This simple example shows that
the optimization of the metabolic actuation may involve
a complex interplay between mechanical and chemical
active agents and suggests that it is cooperativity of these
two mechanisms that ultimately ensures optimality of the
self-propulsion machinery.

An important remaining open question is the very possi-
bility to separate the active controls, operating in real living
systems, into a purely mechanical actuation and a purely
chemical actuation, that are only connected to each other
by the constraint that they should operate at a fixed total
metabolic cost. In crawling cells both the mechanical activity
of molecular motors exerting contractile forces on the polymer
network and the chemical activity regulating the turnover of
the meshwork through its polymerization and depolymeriza-
tion are ultimately driven by the same chemical process: the
out-of-equilibrium reaction of ATP hydrolysis. The chemical
and mechanical actuations are also tightly dynamically cross-
regulated through enzyme-coupled receptors [58]. In this way
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the internal driving mechanisms are then coupled to the dy-
namics through a system of feedback loops. While all these
important processes are left outside the present study, they
should become a subject of future work.
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