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We argue that nucleation of brittle cracks in initially flawless soft elastic solids is preceded by a nonlinear
elastic instability, which cannot be captured without accounting for geometrically precise description of
finite elastic deformation. As a prototypical problem we consider a homogeneous elastic body subjected to
tension and assume that it is weakened by the presence of a free surface which then serves as a location of
cracks nucleation. We show that in this maximally simplified setting, brittle fracture emerges from a
symmetry breaking elastic instability activated by softening and involving large elastic rotations. The
implied bifurcation of the homogeneous elastic equilibrium is highly unconventional for nonlinear
elasticity as it exhibits strong sensitivity to geometry, reminiscent of the transition to turbulence in fluids.
We trace the postbifurcational development of this instability beyond the limits of applicability of scale-free
continuum elasticity and use a phase-field approach to capture the scale dependent subcontinuum strain
localization, signaling the formation of actual cracks.
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While linearized elasticity theory is usually sufficient in
problems involving propagation of preexisting cracks
[1–3], we present evidence that, at least for some classes
of soft materials, the description of crack nucleation requires
an account of both geometric and physical elastic non-
linearities [4,5]. To elucidate the physical origin of the failure
of linear theory, we build a continuous path from surface
instability in tension to fracture.
The phenomenon of surface fracture is of considerable

recent interest because the submicron parts employed in
many modern applications are effectively defect-free and
their fracture usually originates on unconstrained external
surfaces [6]. Crack nucleation at the surface is also of
importance for the understanding of the fragmentation of
various brittle surface layers [7–10]. More generally, the
emergence of surface fracture patterns [11,12] is an
example of a symmetry breaking instability which is at
the heart of complexity development in soft matter physics
[13,14] and biophysics [15,16].
Nonlinear elastic instabilities were studied extensively in

the context of compressive buckling [17–25]. Elastic
instabilities can also take place under tension, with necking,
wrinkling, and shear banding, as the most prominent
examples [26–30]. However, the potential relation of
tensile instabilities to fracture has been largely overlooked.
Several studies attempted to develop conceptual links
between the bulk crack nucleation and material softening
and used them to advance various phenomenological
nucleation criteria [11,31–38]. Still, an understanding of
how such criteria relate to the subtle interplay between

geometric and physical nonlinearities along the crack
nucleation path remains obscure.
Brittle cracking of soft solids is not uncommon, as it is

exemplified by an abrupt failure of an elastic rubber band
under tension. In particular, brittle-soft behavior is char-
acteristic for hydrogels [39–42], where the diverging stress
at the crack tip is typically accompanied not only by large
stretches but also by large rotations and several candidate
mechanisms are debated as potential regulators of the
underlying material failure at the microscale [43].
In this Letter we use the geometrically simplest setting to

explore both linear and nonlinear stages of the tensile
instability in a soft solid which culminates in the formation
of a brittle crack. The implied instability is of spinodal type
[39–41] but with a peculiarity that it is associated with the
surface rather than with the bulk [42–46]. The degenerate
nature of this instability in the purely elastic setting [47]
leads to a high sensitivity of the emerging patterns to
sample geometry. Such sensitivity is typical for nonlinear
systems without an internal length scale and the ensuing
crack nucleation scenario is reminiscent, for instance, of a
transition to turbulence. Regularization of the problem,
bringing a fixed internal length scale, naturally simplifies
the picture, as it is already known from the study of the
prototypical one-dimensional models [48,49].
Our first goal is to show in detail how the elastic

instability serves as a precursor of the ultimate strain
localization. Then, since the emerging strain singularity
renders the continuum elasticity inadequate, the modeling
paradigm is changed and the goal now is to capture the
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formation of sharp cracks. To describe the role of micro-
scales in such a sharpening process we resort to a phase-
field-type extension of the continuum theory [34,48,50,51].
We show that such a hybrid approach allows one to model
seamlessly the whole process from a continuum elastic
instability to a subcontinuum evolution of developed
cracks.
Consider a 2D rectangular body Ω ¼ ½−L;L� × ½0; H�.

Denote by x∈Ω points in the reference configuration and
by yðxÞ their deformed positions, see Fig. 1. Working
directly with the deformation gradient F ¼ ∇y we account
for geometric nonlinearities. In such an approach, not only
the principal stretches λ1;2 (the square roots of the eigen-
values of FTF) can be large, but also the description of
rotations is geometrically exact [18].
Assume that the material is incompressible, so that

detF ¼ λ1λ2 ¼ 1, and isotropic, so that the elastic energy
density can be written as ŵðλ1Þ ¼ wðλ1; λ−11 Þ. We can then
write the force balance in the form ∇ · P ¼ 0, where Pij

are the components of the first Piola-Kirchhoff stress tensor
P ¼ ∂w=∂Fþ pF−1 and p is the Lagrange multiplier
enforcing the incompressibility constraint.
Suppose further that the body Ω is loaded in a two-sided

hard device, such that y1 ¼ λx1 at x1 ¼ �L, where λ is the
applied stretch which serves as the control parameter. Then
on the side boundaries (at x1 ¼ �L) the horizontal dis-
placements are prescribed y1 ¼ �λL while the possibility
of free sliding is ensured by the second condition P12 ¼ 0.
The upper boundary x2 ¼ 0 will be kept free so that P22 ¼
P21 ¼ 0 while the lower boundary x2 ¼ H will be con-
strained only partially so that y2 ¼ H=λ and P21 ¼ 0. The
ensuing basic problem of elasticity theory admits a homo-
geneous solution yð0Þ ≔ Fð0Þx, where Fð0Þ ¼ diagðλ; λ−1Þ;
the corresponding pressure is pð0Þ ≔ −λ−1∂w=∂λ2.
To study the stability of this solution, we use standard

methods [20,52–54] and write the perturbed displacement
and pressure fields, in the form y ¼ yð0Þ þP∞

j¼1 ε
juðjÞ and

p ¼ pð0Þ þP∞
j¼1 ε

jpðjÞ where ε is a small parameter.
Inserting these expansions in the force balance equation
we obtain, at the first order, a linear boundary value
problem for uð1Þ and pð1Þ.
To illustrate the results we introduce the stream function

uð1ÞðxÞ ¼ ð∂2χ;−∂1χÞ, and write the solution of the first
order equilibrium problem in the form χ ¼ iAgðγx2Þ
expðiγx1Þ=γ þ c:c., where A is still undefined complex

amplitude and c.c. denotes complex conjugate. Here we
have also introduced the horizontal wave number
γ ¼ ðnπÞ=ð2λLÞ, where n is an integer with even (odd)
values representing symmetric (asymmetric) modes,
respectively. The expression for pð1ÞðxÞ in terms of
gðγx2Þ is too long to be presented here, see Ref. [55].
Following closely [20], we write the real valued function

g in the form gðγx2Þ ¼
P

4
k¼1 Ck exp½γωkx2�, where

ω1 ¼ −ω2 ¼ α, ω3 ¼ −ω4 ¼ β. The constants α, β can
be found from the relations αβ ¼ λ2 and α2 þ β2 þ 2 ¼
λðλ4 − 1Þη; the elastic energy enters these relations through
the function ηðλÞ ¼ ŵ00ðλÞ=ŵ0ðλÞ which characterizes the
physical nonlinearity.
The bifurcation points λnðH=LÞ, parametrized by the

integers nðH=LÞ, can be found from the condition that
there exists a nontrivial set of coefficients Ck, such that the
functions uð1Þ and pð1Þ satisfy the boundary conditions at
the linear order. This gives an explicit nonlinear algebraic
equation, see Ref. [55]. We can then define λcrðH=LÞ ¼
minn≥1λnðH=LÞ and denote by ncrðH=LÞ the correspond-
ing critical mode. To illustrate the sensitivity of the
instability threshold λcrðH=LÞ to the geometry of the
domain characterized by the ratio H=L, we need to choose
a specific energy density.
To account for strain softening in the simplest form, we

assume that w ¼ μðI − 2Þ=I, where I ¼ λ21 þ λ22 is the first
strain invariant and μ is the measure of rigidity (see more
about this particular choice in [55]). In this case ŵðλÞ ¼
μðλ2 − 1Þ2=½2ðλ4 þ 1Þ� and the softening (ŵ00 < 0) takes

place for λ > λlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=3Þð ffiffiffiffiffi

33
p þ 6Þ4

q
, see Fig. 2(a) and

[55]. The value λlm is known as the Considère or the load
maximum (LM) threshold [54,62,63], where by the “load”
we understand the axial stress in the direction of traction
PðλÞ ¼ e1 · P · e1 ¼ ŵ0ðλÞ; reaching this threshold indicates
the occurrence of necking in slender bodies [20,26,64,65]. It
can be also shown that crossing the LM threshold is a
necessary condition for the occurrence of a generic elastic
instability [20].
Observe next that, independently of the value of n, the

functions λnðH=LÞ, shown in Fig. 2(b) for n ¼ 1, 2,
approach the point λlm ≃ 1.407 in the limit of infinitely
small aspect ratios (H ≪ L, thin domains) and the point

FIG. 1. Schematic representation of the considered surface
instability showing the reference and the actual configurations,
while also detailing the nature of the boundary conditions. FIG. 2. (a) The energy density ŵðλÞ of our softening material as

a function of the maximal principal stretch λ1. (b) The stability
curves for the two modes with n ¼ 1, 2; the purple line in the
inset represents the function λcrðH=LÞ.
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λcc ≃ 1.465 in the limit of infinitely large aspect ratios
(H ≫ L, thick domains).
The emerging threshold λcc indicates the failure of the

complementing condition (CC) [44,46,66–68]. In an infin-
ite system it marks the onset of wrinkling instability with all
wave numbers becoming unstable simultaneously. In our
case the value of the CC threshold can be found analytically
as a solution of the transcendental equation ηðλccÞ ¼ −λ−3cc
[55]. Note that in the classical geometrically linearized
elasticity theory, where both stretches and rotations are
small and therefore we can use the approximationwðEÞwith
E ¼ ð1=2Þð∇uþ∇uTÞ, the very difference between the
thresholds λcc and λlm disappears and the whole complexity
of the emerging stability diagram is lost [55].
Outside these two limits (of infinitely thin and infinitely

thick domains), the behavior of the function λcrðH=LÞ
looks uncorrelated. However, a remarkable underlying
structure reveals itself if we focus instead on the integer
valued function ncrðH=LÞ, see Fig. 3.
First of all, we observe that the necking-type instability

with ncr ¼ 1 is not a feature of slender bodies only, but
appears periodically as one changes the aspect ratio.
Similarly, the wrinkling-type instability with ncr ¼ ∞
appears at periodically distributed values of the aspect
ratio. In both cases the period is the same and is equal
to ΔðH=LÞ ¼ 4λ3cc=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 2λ2cc þ 3λ4cc

p
, see Ref. [55] for

details.
Overall, we observe a periodic distribution of “staircase”

structures with an infinite number of steps in every period
representing all integer values of ncr from necking with
ncr ¼ 1 to wrinkling with ncr ¼ ∞. Each of these staircases
demonstrates the same “devilish” features with step accu-
mulation taking place around the recurrent wrinkling
thresholds (where the unstable mode becomes singularly
localized near the free surface). In other words, each
staircase describes a crossover between necking and
wrinkling with the steps emerging due to the locking in
the parameter intervals where horizontal and vertical
oscillations of the displacement field are resonant with
the domain geometry. To the best of our knowledge, the
reported extreme sensitivity of the critical wave number to
the aspect ratio and the emergence of special geometries
where the instability pattern changes dramatically from

fully localized to fully delocalized, have not been previ-
ously observed in nonlinear elasticity problems.
The revealed distribution of the stability thresholds can

be corroborated analytically using the observation that for
H=L ≫ 1 (when λcr ∼ λcc) one can approximate the actual
problem of finding ncrðH=LÞ, involving minimization of an
implicitly given function over a discrete set, by a model
problem N ¼ arg maxξ½sinðaξÞ=eξ�, where ξ is a positive
integer and a ∼H=L. The model problem can be solved
explicitly and its solution N can be formally proved to
exhibit the periodic staircase structure of the type shown in
Fig. 3, see Ref. [55] for details.
To determine the nature of detected bifurcations, we now

perform a standard weakly nonlinear amplitude expansion
[4,69–75]. The idea is to compute the next terms of the
perturbative expansion uð2Þ, pð2Þ and use the obtained
information to determine λ dependence of the amplitude
A near the bifurcation point λcr. In this respect the “near
necking” (single-mode instability) and the “near wrinkling”
(multimode instability) regimes function differently.
Indeed, in the more conventional near necking regimes,

where the buckling thresholds λn are well separated and
only a finite number of modes are initially activated in
the postbuckling regime, the natural small parameter is
known to be ε ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijλ − λcrj=λcr

p
. By expanding the energy

functional W ¼ R
Ω wdx in ε we obtain [55] ΔW ¼

ε4ðθ2jAj2 þ θ4jAj4Þ þ oðε4Þ, where θ2ðλÞ, θ4ðλÞ are known
real functions. The requirement of stationarity of the energy
in A (at order ε4), gives the expression for the amplitude
A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−θ2=ð2θ4Þ
p

where θ2 and θ4 have the same sign.
This characterizes the bifurcation as a subcritical (unstable)
pitchfork, see the dashed line in Fig. 4(a). The implied
unstable postbuckling regime is the diffuse necking illus-
trated in the inset in Fig. 4(a).
The near wrinkling regimes, where buckling thresholds

accumulate, are markedly different. In this case a small
FIG. 3. The inverse of the critical mode ncr versus the aspect
ratio H=L. The accumulation points correspond to n ¼ ∞.

FIG. 4. Bifurcation diagrams showing the amplitude ΔH of the
unstable mode on the free surface for the cases: (a) H=L ¼ 1
(near necking case) and (b) H=L ¼ 2.5 (near wrinkling case).
The red triangles denote the critical thresholds λcr. Solid and
dashed lines represent the results of the finite element simulations
and of the weakly nonlinear analysis, respectively. Insets show
the distribution of the maximal principal stretch λmax in the actual
configuration corresponding to the location of the square marker.
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increment of the control parameter λ away from the critical
value λcr activates an essentially infinite number of instability
modes. Therefore in the weakly nonlinear approximation an
unstable mode interacts with many other modes. The avail-
ability of a broad bandwidth of such modes requires a
different scaling and one can show that the natural small
parameter in this case is ε ¼ jλ − λcrj=λcr, see Refs. [76,77]
for similar analyses. To take into account all the implied
interactions we need to modify the expression for the first
order stream function adopted in the near necking case and
write instead χ ¼ Pþ∞

m¼−∞ iðAm=γmÞgðγmx2Þ expðiγmx1Þþ
c:c:wherem is an integer andAm is amplitude of themodem.
We can then proceed as before and find the amplitude
equation, accounting for cubic resonances, which now
takes the form of an infinite system: θ1Am þPþ∞

k¼−∞ θ3ðkÞ
AkAm−k ¼ 0. Here again the real functions θ1ðλ;mÞ and
θ3ðkÞðλ;mÞ are known explicitly [55]. The analysis shows
that the bifurcation is again a subcritical pitchfork, see the
dashed line in Fig. 4(b), which implies that the incipient
postbifurcational mode, illustrated in the inset in Fig. 4(b), is
again unstable.
To complement this analytical study we also performed

some direct numerical simulations. For numerical conven-
ience we slightly modified the model by introducing
into our original energy density wðFÞ a dependence
on J ¼ λ1λ2, a measure of volumetric deformation.
More specifically we used the expression wJðFÞ ¼ ðμ=IÞ
ðI − 2 log J − 2Þ þ ðΛ=2Þðlog JÞ2 with Λ equal to 100μ
which corresponds to almost incompressibility; note that at
Λ → þ∞ we recover the original model.
The bifurcated branch was obtained after we introduced

an imperfection on the free boundary with a wave number
of the instability mode and a small amplitude of the order
of 10−5L, see the blue lines in Figs. 4(a) and 4(b). We used
an arclength continuation method [78,79] which allowed
us to reach the state of strain focusing causing local
violation of the complementing condition. The deforma-
tion patterns at such limits (of the applicability of con-
tinuum elasticity) are illustrated in the insets in Figs. 4(a)
and 4(b) for the typical near necking and near wrinkling
regimes.
The ultimate strain localization, which induced the break

down of our continuum model, is indicative of the trend
towards the formation of atomically sharp cracks. To
capture the latter, the scale-free continuum theory, which
is expected to be operative only on long waves, can be
regularized through the introduction of a subcontinuum
length scale. A convenient approach of this type is a phase-
field model of fracture, e.g., [50,51,80,81]. Specifically, we
assume that

wpfðF; αÞ ¼ ð1 − αÞ2ðμ=2ÞðI − 2Þ þ μα2 þ μl2
0k∇αk2;

where αðxÞ∈ ½0; 1� is a subcontinuum damagelike scalar
field: the compatibility with our original nonlinear

elasticity model is ensured by the fact that wðFÞ ¼
minα∈ ½0;1�½ð1 − αÞ2ðμ=2ÞðI − 2Þ þ μα2�. The regularization
is achieved through the term penalizing gradients of α
which brings an internal length scale l0. At l0 ≪ L this
approach is known to be equivalent to the Griffith fracture
model with the toughness Gc ¼ μl0=2 [34,50,82].
Moving in this way beyond continuum elasticity and

adopting again the weak compressibility regularization,
we performed a series of numerical simulations with the
goal to capture the actual formation of cracks. We used a
Newton’s algorithm complemented by a standard pseudo--
arclength continuation technique [78] to minimize (at each
value of the loading parameter λ) the energy with respect to
both, the deformation field yðxÞ, and the auxiliary scalar
field αðxÞ.
The results of the two representative numerical simu-

lations, illustrating qualitatively different near necking and
near wrinkling regimes, are presented in Figs. 5 and 6. In
both figures the (unstable) postbifurcational response is
represented through the dimensionless force-stretch rela-
tion FðλÞ ¼ R

0
−H P11ðλÞjx1¼Ldx2. The deformed configura-

tions close and far from the bifurcation points are shown in
the insets. Note that while in near wrinkling regime we
show for simplicity only the case with two emerging

FIG. 5. Normalized axial force F=μL versus the mean stretch λ
for the near necking case (H=L ¼ 1). The insets on the right show
the distribution of the internal variable α in the reference
configuration corresponding to the points A and B. The parameter
l0=H ¼ 0.01.

FIG. 6. Normalized axial force F=μL versus the mean stretch λ
for the near wrinkling case (H=L ¼ 2.5). The insets on the right
show the distribution of the internal variable α in the reference
configuration corresponding to the points A and B. The parameter
l0=H ¼ 0.01.
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cracks, the aspect ratio of the domain and the regularization
length could be chosen differently to obtain arbitrary many
cracks.
The common feature of the two cases, shown in Figs. 5

and 6, is the gradual sharpening of the initially diffuse local
“nonaffinity” measured by parameter α. The actual for-
mation of cracks can be linked to the moment of reaching
the value α ∼ 1 inside the localized regions with the
thickness of order of subcontinuum scale l0. Since the
focus of our Letter is crack nucleation, we did not advance
our simulations till the complete break down of the slab
which is preceded by secondary bifurcations representing
both crack branching and crack arrest [11]. Overall, the
presence in this problem of a subcritical bifurcation
indicates the possibility of abrupt (dynamic) transition
from a homogeneous state to a cracked state which is a
typical scenario in brittle fracture.
To conclude, using the simplest geometrical setting and

focusing on initially flawless soft solids, we showed that
crack nucleation is preceded by an elastic instability which
can be identified using continuumelasticity theory only if the
latter accounts properly for both geometrical and physical
nonlinearities. Such elasticity theory predicts a surprisingly
complex linear stability diagram with recurrent geometry-
sensitive crossovers between necking and wrinkling modes.
Both necking and wrinkling instabilities were shown to
evolve towards the formation of developed cracks when the
classical elasticity was seamlessly extended as a phase-field
type model. Our analysis builds a bridge between nonlinear
elasticity and fracture mechanics and points to the existence
of purely elastic precursors of crack nucleation. Similar
mechanisms should be operative in other highly nonlinear
manifestations of elasticity such as cavitation [83,84], phase
nucleation [85,86], and creasing [87,88].
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