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We use molecular dynamics to show that plastic slip is a crucial component of the transforma-
tion mechanism of a square-to-triangular structural transition. The latter is a stylized analog of
many other reconstructive phase transitions. To justify our conclusions we use a novel atomistically-
informed mesoscopic representation of the field of lattice distortions in molecular dynamics simu-
lations. Our approach reveals a hidden alternating slip distribution behind the seemingly homoge-
neous product phase which points to the fact that lattice invariant shears play a central role in this
class of phase transformations. While the underlying pattern of anti-parallel displacements may be
also interpreted as microscopic shuffling, its precise crystallographic nature strongly suggests the
plasticity-centered interpretation.

Reconstructive phase transitions are the most
widespread type of structural transformations in solids.
These transitions lack the simplifying group-subgroup re-
lationship and therefore cannot be described by the con-
ventional Landau theory. The development of the equally
encompassing theory of reconstructive transitions is still
a challenge given that they involve breaking of chemi-
cal bonds and are characterized by micro-inhomogeneous
configurations with slip, twinning, and stacking faults ap-
parently intertwined [1–7].

The BCC-HCP reconstructive transition is one of the
most representative [8–15]. Its mechanism, proposed by
Burgers based on crystallographic analysis [16–23], im-
plies the presence of a homogeneous shear and a super-
imposed alternating shuffling represented by anti-parallel
shifting of atomic layers. The origin of the shuffling can-
not be addressed based on crystallography only and var-
ious attempts to interpret it while referring to structural
mechanics, energetics and kinetics can be found in the
literature [14, 17, 24–32]. Similar problem exists for the
FCC-HCP reconstructive phase transition which can be
accomplished crystallographically by the alternating co-
ordinated gliding of Shockley partials on every second
close-packed crystallographic plane [33, 34]. The origin
of the implied antagonistic displacements still remain ob-
scure despite many insightful attempts to link it to first
principles auxiliary computations [33, 35–49].

More generally, the pattern of anti-parallel, crystallo-
graphically specific, nanoscale, highly coordinated dis-
placements appear to be a distinguishing feature of re-
constructive transitions, which is the main factor placing
them outside the classical Landau picture [1, 50, 51]. A
fundamental understanding of this phenomenon is then
of great theoretical interest and in this Letter we pro-
pose its new interpretation. Our conclusions are based on
systematic molecular dynamics (MD) studies of a proto-
typical model which suggest that the crucial non-Landau
factor in reconstructive phase transitions is the disguised
plastic slip.

Specifically, we study the simplest reconstructive tran-
sition between 2D square (S) and triangular (T) lat-

tices [2, 52, 53]. While such square-to-hexagonal phase
change is of interest by itself [54–68], it can be considered
as a stylized, low dimensional, Bravais lattice analog of
both emblematic BCC-HCP and FCC-HCP reconstruc-
tive transitions [69–71].

To interpret the results of our MD simulations we shift
attention from the conventional focus on the configura-
tions of individual atoms to the original representation
of the transformation history in terms of the evolution
of atomic neighborhoods. This new approach allows us
to map the transformation path into the configurational
space of the mesoscopic metric tensors. The purely ge-
ometrical periodic tessellation of the latter creates the
possibility to distinguish unambiguously between elas-
tic and plastic deformations [2, 53, 72]. The application
of such atomistically-informed representation of lattice
distortions in the case of S-T transition reveals that its
fundamentally non-affine mechanism involves alternating
lattice invariant shears which points towards a plasticity-
centered interpretation of this reconstructive transition.
To corroborate the results of our MD experiments, we
also performed a parallel study of a coarse grained meso-
scopic model which directly deals with the evolution of
atomic neighborhoods [72–76]. The obtained qualita-
tive agreement suggests that the observed slip-dominated
mechanism of S-T transition is a robust feature of this
class of reconstructive transformations, insensitive to mi-
croscopic details.

The molecular dynamics simulations were carried out
using LAMMPS [77, 78]. The particle interaction
potential was chosen in the form V (r) = a/r12 −
c1 exp [−b1(r − r1)

2]− c2 exp [−b2(r − r2)
2], allowing one

to stabilize in 2D both square and triangular lattices
[79]; here r1 is the lattice constant and r2 is the sec-
ond nearest neighbor distance. Periodic boundary con-
ditions were employed and pressure controlled proto-
col was implemented within isothermal-isobaric ensem-
ble [80]. The computed (kinetic) T-P phase diagram for
the direct S-T transition is shown in Fig. 1(a). The
predicted negative slope of the coexistence curve agrees
with similar numerical experiments [81–83] and is also
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FIG. 1. MD simulated square-to-triangular transition: (a)
kinetic T-P phase diagram showing only the direct transition;
(b) the same transition in P-V (area A) performed at T = 10
K (as indicated in (a) by an arrow).

consistent with the data for BCC-HCP transformation
in iron [84, 85]. In Fig. 2 we illustrate the fact that the
originally pure-crystalline square lattice transforms into a
poly-crystalline triangular configuration with specifically
mis-oriented grains separated by dislocation-rich curved
grain boundaries [80].
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FIG. 2. Multigrain configuration of transformed triangular
lattice (T) colored according to the potential energy of each
atom. The atomic structure of two triangular grains with 30◦

mis-orientation is illustrated in the insets.

As a novel way of interpreting the results of MD sim-
ulations, we extracted from individual atomic position
data the local values of the deformation gradients. This
amounts to post-processing the instantaneous MD data
which are then interpreted as representing piecewise lin-
ear strain fields [86–90]. Specifically, by denoting the
reference discrete atomic positions xi and the deformed
atomic positions yi, we can define the effective defor-
mation gradient Fi by minimizing the error function∑ ∥ ∆y − Fi∆x ∥2 with summation over the pairs of
elements inside the chosen neighborhood of a given site
i [91–97]. In our case of weakly distorted lattices the
sampling neighborhood could be limited to two comple-
mentary triangular domains [80]. Most importantly, this
approach allows us to compute the MD informed local

metric tensor Ci = FiTFi.

The possibility of mapping the results of MD sim-
ulations into the C-space (with coordinates C11, C22,
and C12) is of great interest because its crucial sub-
space, det(C) = 1, is naturally tessellated by the action
of the global symmetry group of Bravais lattices. The
latter is a finite strain extension of the crystallographic

  

FIG. 3. Stereographic projection on a Poincare disk of the
configurational space of metric tensors C with detC = 1
given by the formulas x = t(C11 − C22)/2, y = tC12, where
t = 2(2 + C11 + C22)

−1, see [80] for details. In (a,b) the ref-
erence states are the square phase S and the triangular phase
T1, respectively. Dark gray indicates the minimal periodicity
domain, light gray – the minimal elastic domain; blue lines
represent the tessellation induced by the GL(2,Z) global sym-
metry.

point group and can be represented in our case explic-
itly: GL(2,Z) = {m, mIJ ∈ Z, det(m) = ±1}, see for
instance [2, 53, 98–112].

The symmetry-induced periodicity structure in the
space of metric tensors C is illustrated in Fig. 3(a,b),
where we identify both, the minimal periodicity (funda-
mental) domain and the minimal elastic domain (funda-
mental domain extended under the action of the point
group), see [80] and also [75, 76] for more details. The
two panels in Fig. 3 provide equivalent information with
the only difference that in (a) the C-space is centered
around the reference square lattice (point S), while in
(b) the reference lattice is triangular (point T1) [80]. The
importance of Fig. 3(b) for what follows is that it clearly
indicates that the two triangular lattices T1 and T2 be-
long to different elastic domains because they differ by a
lattice invariant shear representing an elementary plastic
slip.

In Fig. 4(a) we show in more detail a fragment of the
C-space centered around the point S (taken in this case
as the reference, essentially a zoom in on Fig. 3(a)). One
can see that an unbiased (pressure or temperature in-
duced) S-T transition would be represented in Fig. 4(a)
simultaneously by two paths: S → T1 and S → T2. Both
paths describe pure shear deformations traversing con-
figurations with rhombic symmetry; while those are iso-
choric projections, the actual MD transition is also ac-
companied by a volumetric contraction, see [80]. If we
advance from C-space to the larger F-space, even more
complex picture emerges, see Fig. 4(b). Thus, the “de-
formation variants” in C-space multiply as “orientation
variants” in F-space where the same deformation can
correspond to several different orientations of the basis
vectors.

More specifically, observe first that the stretch tensor
U⋄(λ) =

√
C⋄ along the path S → T1 can be written in
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FIG. 4. (a) A fragment of the configurational space of met-
ric tensors C showing the original square lattice (point S)
and two equivalent versions of the triangular lattice (points
T1 and T2). Solid arrows are directed along the two sym-
metric pure shear (rhombic) paths S → T1 and S → T2; the
elastic domain is shown in pink; (b) A schematic structure
of the four equivalent transformation paths in the extended
configurational space of metric tensors F emphasizing rota-
tions needed to recover the geometric compatibility with the
square phase.

the form [113]

U⋄(λ) =
1

2

[
λ+ 1

λ λ− 1
λ

λ− 1
λ λ+ 1

λ

]
, (1)

where λ = 1 at the square phase S and λ = λ∗ = 31/4

at the triangular phase T1; along the synchronous path
S → T2 the stretch tensor is U⋄(1/λ). Note next, that
the mappings U1 = U⋄(λ∗) and U2 = U⋄(λ−1

∗ ), describe
area preserving stretching along two opposite diagonals
of a square lattice cell with one of the diagonals becom-
ing longer than the other. These mappings, however, do
not fully characterize the complete S → T transition be-
cause the underlying rigid rotation remains unspecified.
For instance, to ensure geometrically compatible lattice
orientations, a clockwise rotation R+(ϑ) and anti clock-
wise rotation R−(ϑ) with ϑ = ± 15◦ have to be added
to U1 and U2. Such specification of rotations produces
four equivalent triangular lattices T+

1 , T
−
1 , T

+
2 and T−

2

shown schematically in Fig. 4(b). The corresponding
deformation gradients are F±

1,2 = R±
1,2U1,2, where, for

instance,

R+
1 =

1√
coshα

[
cosh(α/2) sinh(α/2)
− sinh(α/2) cosh(α/2)

]
, (2)

with α = 2 lnλ∗: the rotation aligns in this case the basis
vector e1 (already rotated by the mapping U⋄(λ∗)) with
the horizontal direction.

In Fig. 5(a,d) we show that all four variants T±
1,2 have

been indeed observed in our MD experiments. One can
see that the two representations of the same atomic con-
figuration, reached at the end of the S-T transformation,
feature alternating rows/columns of positive and nega-
tive components of the deformation gradients, F±

12 and
F±
21, see Fig. 5(b,e). In other words, we observe mix-

tures of alternating states, either T+
1 and T−

2 , in Fig.
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FIG. 5. In (a), (d) we depict the MD simulated fields F12 and
F21 in the transformed triangular phase. Zoomed-in views of
fragments from (a,d) are presented in (b,e) where we see the
corresponding atomic configurations visualized using OVITO
[114]. In (c,f) we show triangulation representations corre-
sponding to zoomed-in fragments from (b,e). In (g,h) we
identify the corresponding variants T±

1,2.

5(g), or T−
1 and T+

2 , in Fig. 5(h). In Fig. 5(c,f) we illus-
trate the associated Delaunay triangulations visualizing
the non-affine deformation behind the apparently homo-
geneous grains. The parallel numerical experiments using
athermal molecular statics fully corroborate these rather
remarkable observations, see [80] for details.

The main conclusion is that the standard representa-
tion of MD data, showing in the case of the S-T transi-
tion a polycrystal with mis-oriented homogeneous grains,
is deceptive. Instead, our new way of representing MD
data reveals crystallographically specific nano-twinning
disguised as rigid rotations. Given that the underlying
antiparallel atomic displacements correspond exactly to
lattice invariant shears, it is natural to interpret the re-
sulting pattern as representing alternating plastic slips.
The emerging depiction of the transformation path com-
plements and broadens previous studies of the mechanism
of the S-T transition [1, 2, 18, 51, 53, 62, 81, 83, 115–120].
The apparently overlooked peculiarity of the S-T transi-
tion is the possibility to compose elementary variants of
the product phase at the atomic level to obtain the final
configuration with no overall shear deformation and no
‘surface’ energy penalty inside any of the grains.

Additional insights can be obtained if we present the
obtained strain distribution against the energy landscape
ϕ(C) in the C-space. To construct such a landscape it
is sufficient to apply homogeneous deformation C to a
mesoscopic set of atoms, while accounting for all pairwise
interactions, and then use the Cauchy-Born rule [121,
122] and write ϕ(C) = 1

2Ω

∑
x

∑
xc∈N (x) V (

√
RiCijRj),

where Ri are the vectors representing reference points
and the internal summations extend over all points xc

belonging to the cut-off neighborhood N (x). The glob-
ally symmetric potential ϕ(C) emerges if we extend by
GL(2,Z) periodicity the results of computations
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FIG. 6. Gradual progression of the S→T transformation in
C-space at three different stages corresponding to points (1-
3) indicated in Fig. 1(b). Fragments of the initial square
and the transformed rhombic and triangular configurations
are shown in the insets. The energy landscape is visible at
the background.

performed in a single elastic domain.

In Fig. 6, we show a fragment of the computed
energy landscape around the reference configuration S
which includes the two target configurations T1 and T2.
We mapped into the same C-space the atomic strains
from our MD simulations while showing separately the
three stages (1-3) of the S-T transition indicated in Fig.
1(b). Specifically, Fig. 6(a) shows the beginning of
the transformation when all atomic strains populate the
marginally stable square configuration S located at the
origin. At the intermediate stage of the transformation,
shown in Fig. 6(b), we observe spreading of atomic
strains along the two symmetric rhombic (pure shear)
paths towards two energy wells representing the variants
T1 and T2. Note that both paths are pursued simultane-
ously and, as a result, the transformed triangular phase
emerges as comprised of strains populating both energy
wells T1 and T2, see Fig. 6(c). A broader picture, rep-
resenting also a small number of elements which end up
in distant energy wells, can be found in [80].

Further analysis of the stage-by-stage transformation
process in the physical space, see Fig. 7(a), shows that
the alternating micro-slips (represented by oscillatory
fields F12 or F21) develop layer-by-layer through back
and forth transverse propagation of Shockley partials;
the possibility of such nano-scale ‘zipping’ by moving
surface steps is well known, see for instance [123]. At
larger scale the transformation will appear as proceeding
through front propagation which leaves behind a pattern
of anti-parallel displacements disguised as a rigid rotation
of a perfect triangular lattice, see Fig. 7(b–e).

Using the constructed multi-well periodic potential
ϕ(C) we can now develop a coarse grained description
of the system. The simplest way to obtain a regularized
theory is to assume that such potential describes mechan-
ical response of elastic finite elements whose size intro-
duces a mesoscopic cut-off spatial scale [72, 73, 75, 121].
The piece-wise affine deformation of the elements can be
then presented in the form y(x) = yijNij(x), where yij
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FIG. 7. (a) Layer-by-layer propagation of the deformation
gradient (here only F21 component) during S-T transforma-
tion; (b-e) transient spatial configurations of the deformation
gradient showing the formation of an ideally periodic pattern.

is the deformation of the 2D network of discrete nodes
and Nij(x) are the linear shape functions. The problem
reduces to finite dimensional parametric minimization of
the energy functional W =

∫
Ω0

ϕ(C)dΩ0, where Ω0 is the

computational domain, see [80] for details. The outcome
of such mesoscopic modeling of the S-T transformation
process is illustrated in Fig. 8. As in our molecular simu-
lations we started with a perfect square lattice brought to
a marginally stable state. In the emerging polycrystalline
configuration, see Fig. 2, we again observe a texture of
triangular grains with mis-orientation of 30◦. The bound-
aries of the grains are similarly dislocation-rich even if
now the dislocation cores are blurred at the cut-off scale
of elastic finite elements. The transformation is again ad-
vancing along two concurrent rhombic (pure shear) paths
with eventual lock-in on the higher symmetry configu-
rations T1 and T2 [80]. In the final configuration, the
apparent rotations are again achieved through alternat-
ing crystallographically specific slips inside the adjacent
planes with the formation of the same two types of vari-
ant mixtures (T+

1 ,T
−
2 ) and (T−

1 ,T
+
2 ), see Fig. 8.

FIG. 8. Outcome of the coarse grained modeling of S-T tran-
sition: (a) The post-transformation polycrystalline texture;
(b-c) two fragments of mis-oriented triangular grains, with
(b) presenting (T+

1 ,T
−
2 ) variant mixture and (c) representing

(T−
1 ,T

+
2 ) variant mixture.

We can now try to draw some parallels between the
observed mechanism of the S-T transition in 2D and, for
instance, the mechanism of the reconstructive BCC-HCP
transition in 3D [85, 124]. While the latter involves vol-
ume preserving pure shear deformation in addition to
shuffling, those two phenomena appear to be well sepa-
rated in time and therefore can be decoupled [125]. We
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can then, following [18], neglect the Landau-type compo-
nent of the transformation by associating the primary or-
der parameter with the shuffle. Note that a shuffle would
have naturally emerged in S-T transition if in our recon-
struction of atomistic deformation gradients we had used
a double unit cell [126]. Usually the BCC-HCP shuffle is
perceived as proceeding via softening of an optical mode
with the formation of an intermediate orthorhombic con-
figuration with an idea that such lowering of symmetry is
maintained until the system locks-in in the higher sym-
metry configuration [127]. Our analysis suggests that
it can be viewed, in the first approximation, as a pat-
tern of anti-parallel shifts of consecutive planes inside
a single unit-cell (probably with some homogeneous ad-
justment layer-wise). The large transformation strain in
the lock-in conditions drives the scale of such apparent
micro-twinning to atomic dimensions.

The proposed analogy should be viewed with caution
as the BCC-HCP transition in 3D is still different from
the S-T transition in 2D. Thus, it is not clear whether
the experimentally confirmed path for BCC-HCP tran-
sition [17] can be decomposed into full plastic slips or
instead represented by alternating stacking faults result-
ing from the passage of only partial dislocations. Thus,
the reconstructive FCC-HCP transition appear to be an
example of the latter possibility as in this case the HCP
phase emerges from an anti-parallel coordinated gliding
of Shockley partials [38–40, 128, 129]. In the setting of
S-T transformation the implied nano-scale stacking fault
laminate [33, 48] would correspond to the layering of the
type T1- S -T2. Since in our case the S phase is unstable,
such ‘partially’ plastic laminates are not observed with
partials appearing only transiently as it is clear from our
Fig. 7(a).

To conclude, we showed that tracking the history of
atomic-scale metric tensors in MD simulations offers a
unique perspective on the intricate micro-pattern forma-
tion during reconstructive phase transitions. The pro-
posed interpretation of MD numerical experiments re-
veals previously hidden details of the deformation paths
allowing one to analyze systematically the underlying re-
lation between elastic and inelastic modes. The micro-
mechanism, shown to be operative during the prototypi-
cal S-T transition, contains some generic elements which
are expected to be common for most reconstructive tran-
sitions including the iconic BCC-HCP and FCC-HCP
transitions.
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[125] B. Dupé, B. Amadon, Y.-P. Pellegrini, and C. Denoual,

Physical Review B 87, 024103 (2013).
[126] D. R. Trinkle III, A theoretical study of the hcp to

omega martensitic phase transition in titanium (The
Ohio State University, 2003).

[127] D. Zahn and S. Leoni, Physical Review letters 92,
250201 (2004).

[128] S. Mahajan, M. Green, and D. Brasen, Metallurgical
Transactions A 8, 283 (1977).

[129] J. Singh and S. Ranganathan, physica status solidi (a)
73, 243 (1982).



Slip-dominated structural transitions:
Supplemental Material

Kanka Ghosh,1, ∗ Oguz Umut Salman,1 Sylvain Queyreau,1 and Lev Truskinovsky2, †
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SIMULATION DETAILS

We model phase transition under hydrostatic pressure
from a square lattice (S, plane space group p4mm)
to a close-packed hexagonal lattice, interpreted here
triangular lattice (T, plane space group p6mm).

MD simulations. We used Boyer potential presented
in the main paper with c1 = c2 = 2 and b1 = b2 = 8
as in [1]. Then the choice r2/r1=1.425 (where r2 and
r1 are second nearest neighbor distance and lattice pa-
rameter respectively) ensures that a square lattice with
a lattice constant of 1.0659 Å is the ground state. We
simulated 104 atoms with periodic boundary conditions
(PBC) and used a cutoff distance rc = 2.5Å. First
the square crystal is equilibrated within NVT ensem-
ble which takes 105 time steps with the step size ∆t =
0.0001 ps. Then, the pressure control protocol is imple-
mented within isothermal-isobaric (NPT) ensemble till
the square phase is marginalized. A broad range of tem-
peratures (10 K - 900 K) and pressures (0.1 × 107 bar
- 2.4 × 107 bar) was considered to construct the T-P
phase diagram presented in the main text. We used ve-
locity Verlet algorithm and performed 107 MD steps (=
1 ns) to study the S-T transition at T = 10 K to avoid
melting.

MS simulations. We used an athermal molecular
statics protocol which implies that the effects of fi-
nite temperature were negligible. PBC were maintained
throughout the simulation. Initially, a stable planar
square crystal was prepared with 104 atoms using the
same potential as in our MD simulations [1]. However,
due to the fact that in athermal molecular statics thermo-
dynamic pressure is an ambiguous concept and only virial
pressure can be computed confidently, we had change the
potential parameter r2/r1 from 1.425 to 1.3 to marginal-
ize the square lattice while stabilizing triangular lattice.
To induce the S-T transition we could then introduce a
small disturbance by displacing all the atoms at random
distances (about 0.9 % of the lattice parameter) along
both x and y directions. The conjugate gradient algo-
rithm was employed to conduct energy minimization.

Mesoscopic simulations. In our mesoscopic simula-
tions we again used the same potential with square phase
marginalized at the value of parameter r2/r1 = 1.3.
Within the framework of our mesoscopic tensorial model
(MTM), the globally periodic Landau potential ϕ(C) was

constructed using the Cauchy-Born rule from the same
interatomic potential as in our MD and MS numerical
experiments [1].
The energy was extended by symmetry beyond the

minimal periodicity domain. It implies the representa-
tion of an arbitrary metric tensor C in the form C̃ =
mTCm where m is a unimodular integer-valued matrix
and C̃ is an image of C inside the minimal periodicity
domain in the sense that ϕ(C̃) = ϕ(C).
In Figure S1 we illustrate the C-space (Poincaré disk,

see the detailed explanations below) with the superim-
posed computed strain energy landscape for three values
of the parameter r2/r1 as it gradually changes from 1.425
to 1.3. One can see that the energy minima (indicated via
dark blue) eventually shift from square configuration (see
‘S’ in Fig. S1(a)) to triangular configuration (see equiv-
alent triangular minima ‘T1’ and ‘T2’ in Fig. S1(c)).

FIG. S1: Strain energy landscape (color coded) in the con-
figurational C-space (Poincaré disk) at three different values
of the Boyer parameter r2/r1. Letters indicate the square (S)
and the two relevant triangular minima (T1, T2). The colors
represent the strain energy level.

We associated the elastic energy ϕ(C) with the node x
assuming that C = ∇yT∇y. The piecewise linear defor-
mation field y(x) was discretized using shape functions
as described in the main text which turned the problem
into finite dimensional, parameterized by displacements
of the 2D network of discrete nodes identified by their
integer-valued coordinates ij. Parametric minimization
of the discretized energy functional W =

∫
Ω0

ϕdΩ0 was
accomplished using a variant of conjugate gradient op-
timization known as the L-BFGS algorithm [2]. This
algorithm seeks solutions to the equilibrium equations
∂W/∂uij =

∫
Ω0

P∇NijdΩ0 = 0, where P = ∂ϕ/∂∇y,
uij denote the values of displacement at node ij, Nij is
the shape function at node ij and Ω0 is defined as the
computational domain. In our numerical experiments we
used (discretized) free boundary conditions P · N = 0,
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where N is the normal to the surface at the reference
state. The S-T transformation was again initiated by in-
crementally changing the potential parameter r2/r1 from
the value 1.425 to the value 1.3. This ensured the even-
tual shift in the nature of the ground state configuration
from square to triangular.

DEFORMATION GRADIENT

In Figure S2, we show the mapping which schemati-
cally describes the deformation of an atomic neighbor-
hood.

  

e1

e2

e1

e2

F

(a) (b)

FIG. S2: The schematic description of the deformation of
the chosen ‘atomic neighborhood’ ; (a), (b) show the

reference and the deformed states, respectively.

Suppose that in a two-dimensional lattice a reference
point is represented by a vector X = {X1, X2} while its
deformed position is represented by the vector x = {x1,
x2}. Then, the deformation gradient is FiI = ∂xi/∂XI ,
where the indexes i, I refer to deformed and reference
coordinate systems, respectively. If Rαβ and rαβ are
the vectors connecting atom α with its neighbors (β or
β1, β2,.., βn for n neighbors) in the reference and in the
actual configurations respectively, the approximate de-
formation gradient obtained by minimizing mean-square
difference between the actual displacements of the neigh-
boring atoms relative to the chosen central atom and
the relative displacements, that they would have had if
they were in a region of uniform strain, can be writ-
ten as Fα

iI = ωα
iM (ηαIM )

−1
, where ωα

iM ≡ ∑n
β=1 r

αβ
i Rαβ

M

and ηαIM ≡ ∑n
β=1 R

αβ
I Rαβ

M [3]. As a representative
atomic neighborhood we found sufficient to choose two
non collinear nearest neighbors and one of the second
nearest neighbors as the averaging domain, see Fig. S2.
In other words, the chosen atomic neighborhood of a par-
ticle is made of two complementary triangular domains.
Atomistic strain tensor C is recovered from the deforma-
tion gradient via the formula C = FTF.

LATTICE INVARIANT SHEARS

Lattice invariant shear is a crystallographically spe-
cific affine volume preserving deformation which trans-
forms an infinite lattice into itself. General lattice invari-
ant shears are described by the deformation gradients

represented by the integer valued unimodular matrices
{m, mIJ ∈ Z, det(m) = 1}, see [4, 5] for the details.

For instance, consider a square lattice (S) which is
homogeneously deformed with the deformation gradient
given by the formula F(α) = 1 + α e1 ⊗ e2, where α de-
notes the amplitude of shear, e1, e2 represent unit base
vectors along x and y directions, respectively. Such defor-
mation describes one parametric family of simple shears.

FIG. S3: (a) Schematic representation of the strain energy
ϕ(C) as a function of a simple shear amplitude α (see the
text). The insets schematically depict the equivalent square
lattice configurations S2, S and S1. (b) Schematic presenta-
tion of an edge dislocation.

Our Fig. S3(a) presents schematic structure of the
strain energy landscape ϕ(C) as a function of shear am-
plitude α. As one increases the parameter α from zero,
which corresponds to a minimum of the energy, the func-
tion ϕ(α) first reaches its maximum but then decreases
reaching again a symmetry related minimum at α = 1.
At this point an equivalent lattice is obtained. Simi-
larly, negative increment of α transforms at α = -1 the
original lattice configuration into yet another symmetric
configuration with exactly the same energy. The insets of
Fig. S3(a) schematically describe three equivalent lattice
configuration S, S1 and S2 corresponding to three equiv-
alent energy minima. Note that if we remove the bonds
in those insets and leave only atoms, the correspond-
ing three atomic configurations will be indistinguishable.
Furthermore, our Fig. S3(b) presents a schematic struc-
ture of an edge dislocation which can be viewed as a
‘domain wall’ between a sheared (S1 in this case) and
undeformed (S) ‘phases’.

An image of the same edge dislocation in the Poincaré
disk (see the definition below) with the superimposed
GL(2,Z) invariant energy landscape is shown in Fig. S4.
Here our simple shear parametrized by α is represented
by a curve which contains equivalent square lattices S,
S1 and S2 related via ‘lattice invariant simple shears’.
Similarly, the equivalent triangular lattices T1 and T2

are related via two symmetric ‘lattice invariant simple
shears’ only one of which is shown in Fig. S4(b).
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FIG. S4: (a) Schematic presentation of an edge dislocation
linking equivalent square lattices on a Poincaré disk. (b)
Similar edge dislocation in the case of triangular lattice.
Dashed lines represent examples of lattice invariant simple
shear paths. The colors represent the strain energy level.

CONFIGURATIONAL SPACE

The 3D space of symmetric metric tensors with co-
ordinates (C11, C22, C12) contains a subspace describ-
ing isochoric deformations and selected by the condi-
tion C11C22 − C2

12 = 1. This is our 2D configurational
space. The action of the infinite discrete symmetry group
GL(2,Z) naturally tessellates the configurational space
into periodicity domains. A convenient approach to vi-
sualize globally the subspace of metric tensors C with
det(C) = 1 is to use a stereographic projection of the
corresponding hyperbolic surface in the (C11, C22, C12)
space onto a unit disk, which is known as the Poincaré
disk, see Fig. S5.

The geometrically minimal periodicity domain in the
configurational space, known as the fundamental domain
is D = {2C12 ≤ min(C11, C22)}, see for instance a dark
gray triangular area in Fig. 3(a) in the main text; it
corresponds to the ‘minimal’ choice for the lattice vectors
ẽ1, ẽ2, selected by the Lagrange reduction algorithm [6–
13]. The three boundaries of the fundamental domain D
can be presented explicitly in the parametric form:

C =

(
α2 0
0 1

α2

)
, 0 < α ≤ 1, (1)

C =

(
α2/4 + 1/α2 −α2/4 + 1/α2

−α2/4 + 1/α2 α2/4 + 1/α2

)
, 0 < α ≤

√
2

(2)
and

C =

(
α2 α2/2
α2/2 α2/4 + 1/α2

)
, 0 < α ≤ γ. (3)

The GL(2,Z) copies (replicas) of these boundaries, con-
stitute the tessellation of the configurational space, rep-
resented in Fig. S5 by the thin black lines which are
divided (artificially) into solid and dashed ones for eas-
ier identification. To construct such copies one needs

to apply to (1-3) the group action C̃ = mTCm, where
{m, mIJ ∈ Z, det(m) = ±1}.
The elastic domain, which would describe fully the

elastic response of a single-well material as well as the
behavior of a solid undergoing Landau type structural
phase transition, is also known in the literature as the
maximal Ericksen-Pitteri neighborhood [6, 10, 11]. It
can be obtained from D by applying discrete transfor-
mations forming the crystallographic point group P (eI),
which contains only rigid rotations and is used to char-
acterize material symmetries within classical continuum
elasticity [6, 11].

FIG. S5: (a) Three dimensional hyperbolic surface
C11C22 − C2

12 = 1 in the configurational space of metric
tensors C11, C22, C12 projected onto a Poincaré disk: the

points A, B on such a surface are mapped to the points A1,
B1 on the disk. (b) Poincaré disk: thin lines indicate the
boundaries of minimal periodicity domains; points on the

disk describing equivalent square and triangular lattices are
marked by black squares and red triangles, respectively.

In the main paper we presented a structure of the
GL(2,Z) tessellation of the Poincaré disk in the two cases:
when the reference state corresponds to a square lattice
S or to a triangular lattice T1.
To obtain such a representation in the case when the

reference state is a square lattice, we first define the
corresponding reference basis e1 = {1, 0}, e2 = {0, 1}.
The deformed basis is then fi = Fei, where i = 1, 2
and F is the deformation gradient. Under the assump-
tion that detF = 1 we can introduce metric tensors
C = FTF describing different states in our configura-
tional space. These metric tensors are then projected
onto the Poincaré disk using the rectangular coordinates
on the disk: x = t(C11 − C22)/2, y = tC12, where
t = 2(2 + C11 + C22)

−1, see Fig. S5.
To obtain a similar representation in the case when the

reference state is a triangular lattice, we first write the
basis vectors of the triangular lattice T1 in the coordi-
nates of the basis of the square lattice S: h1 = {γ, 0} and
h2 = {γ/2, γ

√
3/2}, where γ = (4/3)1/4. We then in-

troduce a matrix H whose columns are the vectors h1,2.
Since hj = Hei the metric tensor in this new (triangular
lattice) basis takes the form C′ = H−TCH−1 where C is
the metric tensor in the old (square lattice) basis. Now
the components of the tensor C′ can be stereographically
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projected into the Poincaré disk using the same mapping
as before which gives rise to a tessellation presented in
Fig. 3(b) in the main text. While in both cases the fun-
damental domains D have the same triangular shape, the
elastic domains are different as the point group involves
four rotations when the reference lattice is square and six
rotations when it is triangular, see the light gray areas in
Fig. 3(a,b) in the main text.

DIRECT TRANSITION S→T

Molecular dynamics. We begin with highlighting that
our Fig. 2 and Fig. 5 in the main text represent the out-
come of the same MD numerical experiment, see their
direct juxtaposition in Fig. S6. Both figures show the
same transformed triangular crystal with the only differ-
ence is that in Fig. 2 atoms are colored according to their
potential energies per atom, see the reproduction in Fig.
S6(a), whereas in Fig. 5, which we present now as two
separate figures Fig. S6 (b,c), atoms inside two different
triangular phase grains are colored according to the value
of the particular components of the deformation gradient:
F12 in Fig. S6(b) and F21 in Fig. S6(c). More specifi-
cally, the fragment A in Fig. S6(a) is shown in Fig. S6(b)
emphasizing the component F12 because it presents an
example of a horizontal micro-layering (crystallographi-
cally specific finite shuffling). Instead, the fragment B
in Fig. S6(a) is represented in Fig. S6(c) emphasizing
the component F21 as the micro-layering in this case is
vertical. Note that the selective coloring of the grains
in Fig. S6(b,c) is chosen for convenience, in particular
the gray areas there do not indicate the presence of the
square phase which has completely disappeared in the
shown product (triangular) phase: the gray areas in Fig.
S6(b,c) indicate instead that either F12=0 or F21 = 0 in
the corresponding regions.

  

(a) (b) (c)

S
T1

Epot

-5.65 eV

-9.5 eV

F12

1

-1

1

-1

F21A

B

A B A B

FIG. S6: Transformed triangular polycrystal in MD
numerical experiment with atoms colored using: (a)

potential energies per atom, (b) F12 and (c) F21. Two
fragments A and B are also shown as insets.

FIG. S7: The S-T transition in the C-space. (a) 3D his-
togram representation of the strain distribution in triangular
phase; note that the ‘counts’ axis has a logarithmic scale.
(b) 2D histogram representation of the same strain distribu-
tions shown against the corresponding energy landscape. (c)
A highly deformed atomic fragment around the grain bound-
ary; both deformation gradient distribution and the deformed
triangulation network are shown in the two insets. (d) The
distribution of detC in the initial square (red) and the final
triangular lattices (blue).

In MD simulations the distribution of the values of
C over the atoms representing individual neighborhoods
evolves during the S-T transition. The transformation
starts when the values of C in all nodes are the same
which means that the distribution is fully localized at
the origin representing unstressed square lattice S. At the
end of the transformation when the T phase is nominally
reached, the configurational points spread in theC-space.

Our Fig. S7 illustrates the final strain distribution
projected on detC =1 surface. The three dimensional
histogram representation of the strain distribution, see
Fig. S7(a), indicates that most of the elements are in
either T1 or T2 energy wells. This is also seen in 2D his-
togram of the same atomistic strains shown in the Fig.
S7(b). Note however, that in addition to the most popu-
lated T1 and T2 triangular configurations, several other
locations outside the T1 and T2 energy wells within the
C-space are also occupied. Some of them correspond to
grain boundaries like the one in the fragment shown in
Fig. S7(c). In Fig. S7(d) we illustrate the fact that the
S-T transformation is accompanied by a volumetric con-
traction. Specifically, the original S phase with det C =
1 transforms into the final T phase with det C = 0.55.

Molecular statics. Simulations of S-T transition using
athermal molecular statics (MS) exhibited all the main
ingredients of the transformation mechanism observed
in MD experiments. In particular, our Fig. S8(a–h)
shows that the lattice scale alternate plastic slips involv-
ing both, atomic rows and atomic columns, are recovered.
Thus, we observe in neighboring grains the same alter-
nating mixtures of configurations T+

1 , T
−
2 (realized via

alternating F±
12) and of configurations T−

1 , T
+
2 (realized
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via alternating F±
21), see Fig. S8(g,h). The evolution of

the strain populations inside the C-space indicates the
same mechanism involving concurrent symmetric pure
shears. Specifically, our Fig. S8(i–k) shows that the
atomic strains spread via rhombic valleys towards the
triangular energy minima T1 and T2.

FIG. S8: (a), (d) The distribution of deformation gradient
components F12 and F21 in the transformed triangular phase

obtained in MS simulations. (i)–(k) Evolution of the
atomistic strain distribution in the C-space.

A minor difference is that in our MS experiments the
S-T transformation proceeded in almost isochoric con-
ditions. Indeed, due to lack of thermodynamic control
parameters in the athermal MS protocol, we had to in-
duce the S-T transition by changing the potential pa-
rameter r2/r1 from 1.425 to 1.3. To capture the struc-
tural transformation, radial distribution function g(r) =

1
πr2Nρ

∑N
i=1

∑N
j ̸=i ⟨δ(r− |rj − ri|)⟩ is calculated for our

2D crystal, where ρ = N/A is the density, N is the to-
tal number of atoms and A is the area of the system.
The distance between the atoms i and j is represented
by the difference rj - ri. As a result of the athermal S-T
transition, the lattice constant changed from 1.0659 Å
(r0 in Fig. S9(a)) in the ‘S’ phase to 1.14 Å (req in Fig.
S9(b)) in the ‘T’ phase , see Fig. S9(a), (b). The cor-
responding areas for the square unit cell is r20 = 1.1361

Å2 and for the triangular lattice (rhombic cell) is
√
3
2 r2eq

= 1.125 Å2. The ratio of the unit cells is then area□
area△

= 1.009. Therefore, the unit cell areas of the initial ‘S’
phase and the transformed ‘T’ phase are almost identical
in MS numerical experiments.

However, it is known that the S-T transition must nec-
essarily come with the increase of the packing fraction
as, for instance, triangular/hexagonal lattice is closed-
packed while its square counterpart is not. Specifically,
the packing fraction, defined as the ratio of the area oc-
cupied by the circles inside the unit cell and that of the

area of the unit cell, in ‘S’ phase is πa2

4 /a2 = π
4 ≈ 0.785

while in ‘T’ phase it is 1
2π

a2

4 /
√
3a2

4 = π
2
√
3
≈ 0.907, see

the distribution of the coordination numbers nc in Figure
S9(c).

  

(b)(a)

r0

√2r0

req

√3req

(d)(c)

5

7

nc

FIG. S9: Radial distribution functions g(r) for the initial
square lattice (a) and for the transformed triangular crystal
(b). In (c) we show the variation during the S-T transition
of the fractions of atoms (N/Ntot) characterized by different
coordination (nc). A fragment of the misoriented triangular
grains with atoms colored according to their coordination is
shown in (d).

Therefore, in view of the similarities of the parame-
ters of the unit cells, the S-T transition should result in
the formation of ‘void space’ that is realized through the
formation of less dense grain boundaries, see the frag-
ment shown in Fig. S9(d). In particular, we see that the
atoms constituting grain boundaries with nc = 5,7 are
differently coordinated vis a vis atoms inside the trian-
gular grains where nc = 6. Our numerical experiments
show that around 5 % of atoms constitute effectively
loose grain boundaries against 95 % of atoms inside the
close packed grains.

Mesoscopic tensorial model. The finite element simu-
lation of the S-T transition started again with a finite el-
ement configuration describing a marginally stable phase
S. The mechanism of the transformation into a T phase
followed closely what we have already seen in our MD and
MS simulations. For example, in Fig. S10 we show two
snapshots of the distribution of MTM strains in C-space.
Similar to what we have seen in our atomistic

FIG. S10: S-T transformation in MTM numerical
experiments: (a,b) fragments of the C-space illustrating two

successive stages of S-T transition; (c) the histogram
showing the distribution of the values of C in the final state.
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simulations, the transformed triangular lattice evolves
as a mixture of two triangular configurations T1 and T2.
Thus, we again observed alternating layer-wise propaga-
tion (both horizontal and vertical) of triangular phase.
These results show that within the coarse-grained de-
scription the front-propagation-based mechanism of S-T
reconstructive transition producing micro-plastically de-
formed triangular phase is preserved.

REVERSE TRANSITION T→S

Even though in much less detail, we have also per-
formed numerical experiments involving the reverse tran-
sition from triangular to square phase. More specifically,
we performed cyclic loading producing a hysteresis loop
and exhibiting a succession of two S→T→S reconstruc-
tive transitions.

FIG. S11: S→T→S reconstructive transition in preliminary
MD simulations. (a) P-V(area A) phase diagram of the com-
plete compression-expansion cycle. With the letters S, T,
and S0 we denote : pristine square, transformed triangular
lattice under compression and transformed square lattice af-
ter the subsequent expansion. Insets in (b), (c), and (d) show
microscopic configurations with their associated multi-grain
compositions.

In Fig. S11(a) we illustrate the hysteretic nature of
the square to triangular transition in MD by showing the
complete compression-expansion cycle on the P-V (area
A) plane. Specifically, as in our main discussion, we start
with a defect-free (pristine) 2D square crystal, see Fig.
S11(b), and employ isotropic compression (by increasing
hydrostatic pressure) to induce the transformation into a
triangular phase. The resulting configuration of misori-
ented triangular grains, see Fig. S11(c), is then subjected
to isotropic expansion via the reduction of pressure. This
brings the system back into the square phase which is
now also represented by a texture of misoriented square
grains, see Fig. S11(d). The insets reveal that as a re-
sult of the S→T→S cycle the original highly symmetric
‘cold’ square phase S develops into a multi-grain ‘hot’
configuration S0 which is obviously more generic and en-
tropically favored.

To corroborate these results, we also performed slightly

different athermal MS numerical experiments, see Fig.
S12. Here we studied the transition from a pristine tri-
angular phase to a multi-grain square phase by changing
the value of parameter r2/r1 from 1.3 to 1.425. As we
have already mentioned, this modifies the ground state
of the lattice from triangular to the square symmetry.
The resulting grain texture exhibits the same misorien-
tation angles as in our MD simulation and also reveals a
hidden alternating slip distribution behind the apparent
homogeneous rotations of the product phase (not shown
here). A systematic study of the S-T transition including
the comparison with the results of the MTM simulations
is underway and the discussion of the detailed structure
of the resulting hysteretic cycle is left for a separate study.

  

S

T(a) S(b)

FIG. S12: Preliminary modeling of T→S transition using
athermal MS simulations: (a) pristine triangular lattice (T),
(b) transformed square (S) lattice represented by a texture of
misoriented grains. Fragments of ‘T’ and ‘S’ grains with their
associated orientations are shown in the insets.

GRAIN MISORIENTATION

Here we clarify how the misorientation between the
grains was quantified in the main text. We focus then on
the direct S-T transition and deal with the grain struc-
ture inside the product triangular (hexagonal) phase.
Note first that the reference orientation of the triangular
basis is chosen in such a way that e1 is horizontal and
e2 forms with it a 60◦ angle, see Fig. S13. The mis-
orientation angle characterizes the rotation which relates
the basis vectors in two neighboring grains. Our Fig.
S13(a) shows a fragment of the product triangular lat-
tice featuring two grains separated by a grain boundary
and it is clear from this figure that the basis vectors in
the left grain need a 30◦ rotation to transform into the
basis vectors on the right.

However, as we explain in the main text, the same mis-
orientation angle can also be computed analytically. For
instance, we show below how one can evaluate the relative
rotation of the T+

1 and T−
1 components of the microtwin

patterns representing two neighboring triangular grains
shown in Fig. S13.
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FIG. S13: (a) A fragment of the product polycrystalline tri-
angular phase showing two misoriented grains separated by
a grain boundary; (b) basis vector e1 and e2 in both grains.
The identification of elementary cells in (b) shows that they
are related via a 30◦ rotation.

Recall that the coexisting variants T+
1 and T−

1 are ob-
tained from the S phase via deformation gradients F±

1 =
R±

1 U1, where

U1 =
1

2

[
λ∗ + 1

λ∗
λ∗ − 1

λ∗
λ∗ − 1

λ∗
λ∗ + 1

λ∗

]
, (4)

with λ∗ = 31/4 and

R±
1 =

1√
coshα

[
cosh(α/2) ± sinh(α/2)
∓ sinh(α/2) cosh(α/2)

]
, (5)

with α = 2 ln(λ∗). The corresponding rotation angles are
ϑ± where

ϑ± = sin−1

[
± sinh(α/2)√

cosh(α)

]
180◦

π
= ±15◦ , (6)

where clockwise and counter clockwise rotations are de-
noted via ‘+’ and ‘-’ respectively, see Fig. S13 (b). Note
that the rotations R+

1 (ϑ) and R−
1 (ϑ) align the basis vec-

tors e1 and e2 of the T1 lattice with the horizontal and
vertical directions, respectively. Therefore, the misorien-
tation between the variants T+

1 and T−
1 is exactly 30◦ as

we have already seen in Fig. S13 (a).

Similarly, analysis for the coexisting variants T+
2 and

T−
2 shows that the misorientation between them is again

30◦, see for instance Fig. 4(b) in the main text. We
reiterate that similar to variants T+

1 and T−
1 , the variants

T+
2 and T−

2 reside in neighboring grains separated by the
same grain boundary.

∗ kanka.ghosh@lspm.cnrs.fr
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