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Abstract

Physically motivated variational problems involving non-convex energies are
often formulated in a discrete setting and contain boundary conditions. The long-
range interactions in such problems, combined with constraints imposed by lattice
discreteness, can give rise to the phenomenon of geometric frustration even in a
one-dimensional setting. While non-convexity entails the formation of microstruc-
tures, incompatibility between interactions operating at different scales can produce
nontrivial mixing effects which are exacerbated in the case of incommensurabil-
ity between the optimal microstructures and the scale of the underlying lattice.
Unraveling the intricacies of the underlying interplay between non-convexity, non-
locality and discreteness represents the main goal of this study. While in general one
cannot expect that ground states in such problems possess global properties, such
as periodicity, in some cases the appropriately defined ‘global’ solutions exist, and
are sufficient to describe the corresponding continuum (homogenized) limits. We
interpret those cases as complying with a Generalized Cauchy–Born (GCB) rule,
and present a new class of problems with geometrical frustration which comply
with GCB rule in one range of (loading) parameters while being strictly outside
this class in a complimentary range. A general approach to problems with such
‘mixed’ behavior is developed.

1. Introduction

Variational problems emerging from applications are often both discrete and
non-convex. Important examples include one-dimensional boundary-value prob-
lems with translation-invariant energy densities describing pairwise interactions.
Such problems constitute the main subject of this paper.
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The representative energies for this class of problems can be written in the
generic form

F(w; k) = min

{ k∑
i, j=0

fi− j (ui − u j ) : u0 = 0, uk = w

}
, (1.1)

where for every n natural number fn is a potentially nonconvex energy governing
interactions between the lattice points at distance n, and the minimum is searched
among k + 1-arrays (u0, . . . , uk). We may assume that f0 = 0. As the parameter k
increases and more interactions are taken into account, a question arises about the
behavior of minimal arrays (uk

0, . . . , uk
k) and of the corresponding minimal energy.

One of the most important issues concerns the existence of a continuum limit of
the type Fhom(u) = ∫

I fhom(u′) dt, with I an interval in which the nodes i in (1.1)
are identified as a discrete subset (e.g., I = [0, 1] where the discrete subset is
1
kZ∩ [0, 1]). The single function fhom is expected to carry, in a condensed way, all
the relevant information about the infinite set of functions fn from (1.1).

To track the asymptotic behavior of the minimum values in (1.1) we can use
the average derivative z = w/k as a parameter, and scale the energy by k. Then,
under assumptions on a suitably fast decay of fn with respect to n, it can be shown
that the limiting energy density fhom exists and can be expressed by the formula

fhom(z) = lim
k→+∞

1

k
min

{ k∑
i, j=0

fi− j (ui − u j ) : u0 = 0, uk = kz

}
. (1.2)

Moreover, it can be shown that the function fhom is convex in the parameter z. This
result represents a particular case of a more general variational theory for limits
of lattice energies (see e.g. [3]); it can be also seen as a zero-temperature limit of
the analogous result in Statistical Physics [91,93]. However, formula (1.2) is only
a formal homogenization result in a discrete-to-continuum setting which is usually
non-constructive. In this paper we are raising the issue of the actual computability
of fhom(z).

Explicit formulas for fhom(z) in terms of fn are known only in few cases, most
of which are mentioned below. In general, it is known that the behavior of mini-
mizing arrays (uk

0, . . . , uk
k) at fixed z, may be complex, including equi-distribution

(‘crystallization’; see e.g. [75]), periodic oscillations [27,56], development of dis-
continuities (fracture in lattice models [30,96]) or defects (internal boundary layers
[25]).

A robust approach to the computation of fhom(z) is known under the name
of Cauchy–Born (CB) rule and is applicable under some restrictive conditions
[17,47]. It is based on the assumption that the homogenized energy can be computed
using the affine interpolations u j = z j and relying exclusively on problems with
finite k. Various sufficient conditions for the validity of the Cauchy–Born rule have
been obtained by a number of authors mostly in the context of local minimizers
[40,46,65,76,88,99,100]. While those results are usually valid only for subsets
of loading parameters, they are often applicable for dimensions higher than one.
They are of considerable interest, first of all, for the development of numerical
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methods because the applicability of the classical CB rule makes such methods
extremely efficient, even if for a limited set of boundary conditions. The difference
of our approach to (1.2) is that we are interested in global minimization (viewed
as a zero temperature limit of a statistically equilibrium response) and consider
the possibility that the conventional CB rule is operative only in a subset of the
loading parameters while in the complementary subset the CB strategy should be
appropriately generalized or even completely ruled out.

The main reason for the failure of the classical Cauchy–Born rule is the geomet-
rical frustration caused by incompatible optimality demands imposed by (gener-
ically non-convex and long range) potentials fn with positive integer n and the
discreteness of the lattice. More specifically, as non-convexity favors the forma-
tion of microstructures, incompatibility between interactions operating at different
scales may generate nontrivial mixing effects. The latter are dramatically more pro-
nounced in the case of incommensurability between the optimal microstructures
and the scale of the underlying lattice. A detailed case study of the underlying in-
terplay between non-convexity, non-locality and discreteness, represents the main
goal of this paper.

If the classical Cauchy–Born rule fails, the natural task is to search for a nontriv-
ial generalization of the Cauchy–Born rule. In this perspective, we pose the problem
of finding the conditions for which the minimal arrays in (1.1) have ‘global’ fea-
tures in the sense that solving a ‘local’ problem on a finite domain opens the way
towards describing the limit in (1.2). More specifically, the question is whether
the limiting energy fhom(z) can be approximately computed by solving a finite set
of ‘cell’ problems modeled on (1.1) and potentially producing non-affine optimal
configurations. The validity of the so-interpreted generalized Cauchy–Born (GCB)
rule would then require that even if the implied ‘local’ problems could be solved
only on some subsets of parameters, the knowledge of the corresponding solutions
would ensure the recovery of the macroscopic (homogenized) energy in the whole
range of loading parameters.

Note that in local problems like (1.1) the presence of interactions fn with
n ∈ {1, . . . , k} requires k boundary conditions on each side. By fixing parametri-
cally only the average strain z in (1.2) we effectively assume that the remaining
boundary conditions are natural. This simplifying assumption may stay on the way
of acquiring, for the given ‘local’ problem, the corresponding ‘global’ features. That
is why we will understand the ‘local’ GCB problem as having the right boundary
conditions to ensure the recovery of the macroscopic energy fhom(z). The simplest
case is when the value of fhom(z) can be achieved on arrays such that i �→ ui − zi
is periodic with a given period, but in general one should be allowed to adjust
boundary conditions accordingly while keeping in mind that these changes should
not affect the minimizers in an asymptotic sense.

We now illustrate the main difficulties on the way of generalizing the classical
CB rule with some known cases. We start with the simplest example where the
conventional CB rule works trivially. It is the case of convex nearest-neighbor
(NN) interactions; i.e., when fn = 0 for all n ≥ 2, and f1 = f is a strictly convex
function. In this case, the unique minimizer of the problem in (1.2) is the affine
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interpolation uk
j = z j . It is independent of k and hence ‘global’: in this case the

classical Cauchy–Born rule is applicable in its simplest form, and fhom(z) = f (z).
If we make the above example only a little more complex considering also con-

vex next-to-nearest-neighbour (NNN) interactions; i.e., fn = 0 for all n ≥ 3, with
f1 and f2 convex functions, we loose this exact characterization of the minimal
arrays. However, the discrepancy between uk

j and z j decays fast away from the
endpoints j = 0 and j = k of the array. A slight adjustment of the boundary-
value problems, say by imposing additional boundary conditions u1 = z and
uk−1 = z(k − 1) (which do not influence the asymptotic value of the minima
in (1.2)) reestablishes the affine interpolations uk

j = z j as minimizers, so that
fhom(z) = 2( f1(z) + f2(2z)). In this case the classical Cauchy–Born rule is appli-
cable, given that we modify boundary conditions in the ‘cell’ problem. Note that
this analysis extends to any sufficiently fast decaying set of convex potentials fn ,
giving fhom(z) = 2

∑∞
n=1 fn(nz).

Even if we abandon the convex setting, we may still easily describe the behavior
of minimum problems in (1.2) in the case of nearest-neighbor interaction, with
f1 = f . It can be shown that fhom in (1.2) is given by the convexification f ∗∗ of
the NN potential [28]. However the classical Cauchy–Born rule in this case has to be
properly generalized. Suppose, for instance, that the potential f has a double-well
form. In this case the relaxation points towards configurations containing mixtures
of the two energy wells. Since in this setting there are no obstacles to simple mixing,
the relaxation strategy providing fhom is straightforward. Indeed, for each z there
exist z1, z2, θ ∈ [0, 1] such that f ∗∗(z) = θ f (z1) + (1 − θ) f (z2). Hence, we
can construct a function uz : Z → R with uz

i − uz
i−1 ∈ {z1, z2}, uz

0 = 0 and
|uz

i − i z| � C . Such uz may be chosen periodic, if θ is rational, or quasiperiodic
(loosely speaking, as the trace on Z of a periodic function with an irrational period)
otherwise. In both cases we obtain ‘local’ minimizers with ‘global’ properties which
allows one to talk about the applicability of the GCB rule.

The situation is more complex in the case when non-convexity is combined
with frustrated (incompatible) interactions. To show this effect in the simplest set-
ting it is sufficient to account for nearest-neighbor and next-to-nearest-neighbor
interactions only and we make the simplest nontrivial choice by assuming that
f1 is a ‘double-well’ potential and that f2 is a convex potential. In this case the
homogenized potential fhom is also known explicitly [27,86]. Its domain can be
subdivided in three zones: two zones of ‘convexity’ where minimizers are trivial
(as for convex potentials) and a zone where (approximate) minimizers in (1.2) are
two-periodic functions with uz

i − uz
i−1 ∈ {z1, z2} and z1 + z2 = z (in a sense, a

constrained non-convex case as above). Hence, in these three zones we have min-
imizers with a ‘global’ form because the macroscopic energy can be obtained by
solving elementary ‘cell’ problems.

One can say that in the two zones of ‘convexity’ the classical CB rule is applica-
ble. In the ‘two-periodic’ third zone we see that the homogeneity of the minimizers
is lost but an appropriately augmented GCB rule still holds. For the remaining val-
ues of z no ‘local’ GCB rule is applicable since in those cases the unique (up to
reflections) minimizer is a ‘two-phase’ configuration with affine and two-periodic
minimizers coexisting while being separated by a single ‘interface’ [25]. The frus-



Arch. Rational Mech. Anal.         (2023) 247:107 Page 5 of 113   107 

tration (incompatibility) manifests itself in this case through the impossibility of
the penalty-free accommodation of next-to-nearest interactions across such an in-
ternal boundary layer. As a consequence, as k diverges, such minimizers tend to
an affine interpolation between the ‘convex’ and ‘oscillating’ zones which delivers
the correct value of fhom(z) without being a solution of any finite ‘cell’ problem.
Effectively, the ‘representative cell’ in this case has an infinite size and therefore
no GCB-type ‘local’ description of the macroscopic state is available. A somewhat
similar situation is encountered in continuum homogenization of both random [70]
and strongly nonlinear [26,82] elastic composites.

In what follows, we interpret the loss of ‘locality’ in homogenization problems,
which was illustrated above on the simplest example, as a failure of the GCB rule.
To shed some light on the mechanism of this phenomenon, we consider below a
class of analytically transparent discrete problems combining nonconvexity with
geometrical frustration.

More specifically, given the complexity of a general asymptotic analysis for
even one-dimensional problems of this type, we limit our attention to a class of
discrete functionals of type (1.1) with

f1(z) = 1

2
f (z) + m1z2, fn(z) = f−n(z) = mnz2 for n ≥ 2, (1.3)

where the function f (z) is non-convex. The coefficients mn which introduce non-
locality and frustration, are assumed to be non negative and sufficiently integrable.
In other words, we suppose that the non-convexity is ‘localized’ in the nearest-
neighbor interactions, while all other interactions are quadratic. The positivity of
the infinite sequence m = {mn : n ≥ 1} is chosen to ensure that the implied
quadratic ‘penalty’ is a measure of the distance of the configuration ui from the
affine configuration Lz(i) = zi and can be then seen as a non-local version of the
gradient of u − Lz . Using a terminology borrowed from Statistical Mechanics, one
can also say that such penalization brings anti-ferromagnetic-type (favoring oscil-
lations) interactions, see for instance [72]; an alternative and more conventional,
ferromagnetic-type (prohibiting oscillations) quadratic penalty, was considered, for
instance, in a similar discrete setting in [92].

To provide a mechanical justification for our choice of fn we note that recently
considerable efforts have been focused on the study of pattern formation induced
by instabilities in structures with non-convex energy that are reinforced by elastic
environments [85]. The complexity of the resulting segmentation patterns originates
from the presence of competing incommensurate interactions. For instance, the non-
convexity of the elastic energy of brittle springs in a linear chain drives the system
towards strain localization, while the elastic background with convex energy favors
homogeneity. Under quasi-static loading the elastic subsystem carries the load,
while the brittle subsystem fractures sequentially with emerging discontinuities
forming an intricate segmentation pattern. Typical continuum examples include
cracking of drying mud, fragmentation of thin coatings and rupture of fibres in
elastic matrices [19,66,98]. Conceptually similar discrete phenomena take place
during drying-induced hierarchical self-assembly in nano-bristle assemblages, from
carbon nanotube forests to gecko feet hairs, during the formation of vertebra and
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during self-organization of sarcomeres in skeletal muscles [38,55,84,87,97] Many
of the discrete systems of this type were shown to exhibit remarkably complex
locking on particular patterns, which could be reached and maintained reliably.
In an attempt to elucidate the origin of such locking phenomena, we essentially
consider a prototypical one-dimensional scalar model. Taken literally, the model
describes a simple mechanical chain of multi-stable springs linked elastically by
long-range unbreakable elastic springs [80].

The main mathematical advantage of a choice of fn as in (1.3) is that the
ensuing problem can exhibit both ‘local’ (GCB) and ‘global’ behavior depending
on the structure of the sequence of scalar parameters mn . Therefore our goal will
be to use the chosen class of functionals to characterize the difference between
CB, GCB and non-GCB problems in terms of such sequences. We show that in
this naturally limited but still sufficiently rich framework one can precisely specify
the factors preventing the GCB-type description of the macroscopic energy and
pointing instead towards the non-GCB nature of the minimizers. Moreover, the
considered example allow us to abstract some general technical tools which can
facilitate the detection and the characterization of the non-GCB asymptotic behavior
in more general minimization problems.

We reiterate that even in the absence of an adequate ‘cell’ problem, the ensuing
value of fhom(z) is fully determined by the homogenization formula which in our
case takes the form fhom(z) = Q̂m f (z), where

Q̂m f (z) = lim
k→+∞

1

k
min

{
k∑

i=1

f (ui − ui−1)

+
k∑

i, j=0

mi− j (ui − u j )
2 : u0 = 0, uk = kz

⎫⎬
⎭ . (1.4)

The nontrivial part of the mapping Q̂m f , accentuating the nonlinearity of the
problem, is carried by the operator Qm f (z) = Q̂m f (z) − 2

∑
n≥1 mnn2z2. Thus,

if f is convex, this mapping, to which we refer as the m-transform of f , is the
identity; actually, the same remains true even if f is 2m1-convex, in the sense
that the function z �→ f (z) + 2m1z2 is convex. If, however, the function f is
not 2m1-convex, the m-transform of f is nontrivial. Thus, the function Qm f (z)
is in general non-convex and Qm f (z) > f ∗∗(z) for some z; the non-convexity of
Qm f (z) depends sensitively and ‘nonlocally’ on the penalizing sequence m.

Indeed, recall that Q̂m f can be viewed as an operator acting on the non-convex
function f and producing an m-dependent function which effectively represents a
constrained relaxation of f . In the same vein, the function Qm f represents a non-
locally constrained convexification of f . Interpreted in such a way, the construction
of Qm f is reminiscent of energy quasiconvexification in continuum elasticity. The
latter deals with minimization of the functionals

∫
f (F) dx, where F is a matrix

field. The role of nonlocal constraint in such problems is played by the condition
curlF = 0, which is highly nontrivial in a multidimensional setting [71]. In a one-
dimensional setting this whole construction can be imitated through the introduction
of a penalizing kernel m mimicking the Green’s function of the constraint. As in
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the case of continuum elasticity, such a penalization can introduce incompatibility,
which in a discrete setting can lead to geometrical frustration.

One of the goals of this paper will be to link the degree of the non-convexity of
the function Qm f with the breakdown of the GCB rule. For instance, in the para-
metric domain where periodic microstructures are optimal, one can also expect
the convexity of the function Qm f (see Remark 3.28 and the example analyzed
in Section 4). Topologically different periodic microstructures will exist in finite
intervals of z where they can be ‘stretched’ to secure the commensurability with
the lattice (see for instance Theorem 4.1 and for a detailed analysis the examples
in Section 4.2.3). In such intervals the corresponding minimizers posses ‘global’
properties and the GCB rule is respected. However, in general, when z is varied con-
tinuously, the optimal microstructure will change discontinuously and the domain
of applicability of the GCB rule can coexist with the domains where it breaks down
(see for instance the example in Section 5.3.1 and the analysis in Sections 5.4.1
and 5.4.2). The challenge is to identify the conditions on m, when, for instance, the
knowledge of the intervals where GCB rule is applicable, allows one to re-construct
the m-transform of a given non-convex function f also for z where the GCB rule
is non-applicable.

In this paper we are not attempting to solve the problem posed above in its full
generality and instead focus on a physically interesting sub-class of non-convex
functions f allowing one to construct explicit solutions of the minimization problem
for several important classes of penalizing kernels m.

Specifically, we aim at the development of a comprehensive theory for bi-convex
functions f . More precisely, we assume that there is a value z = z∗ such that the
restrictions of f to (−∞, z∗] and [z∗,+∞) are both convex; well-known examples
of bi-convex functions are the quadratic double-well potential ( f (z) = (|z| − 1)2

with z∗ = 0), used for the description of phase transitions, and the truncated
quadratic potential ( f (z) = z2 if z � 1 and f (z) = 1 if z ≥ 1, with z∗ = 1), which
is used in Fracture Mechanics. In what follows we often refer to the two convex
branches of f as microscopic phases.

An important property of the bi-convex functions f is that, independently of
the choice of the kernels m, the mapping Q̂m f is largely characterized by a phase
function θ = θ(z) which represents the asymptotic volume fraction of one of the
‘phases’ in the limiting minimizer, say the limit of the percentage of indices i for
which uk

i − uk
i−1 ≥ z∗. When f is convex, then θ = 0 or θ = 1 and when its

is bi-convex, the central question will be to describe for a given m the form of
θ(z). As we show, the applicability of GCB can be related to the emergence of the
m-dependent ‘steps’ on the graph of the function θ represented by the values θ for
which {z : θ(z) = θ} is a non-degenerate interval. In what follows we refer to such
intervals as locking states and to the corresponding GCB-type microstructures as
mesoscopic phases. This characterization is justified by the fact that in the locking
states the form of minimizers is stable in the sense that the set of indices i at finite k
such that that uk

i −uk
i−1 ≥ z∗ is independent of z, up to an asymptotically negligible

fraction. Therefore, the implied ‘staircase’ structure of the function θ is not a feature
of the discrete problem only as it survives in the continuum limit. As we show, the
locking states have the desired global properties, and for such states an appropriate
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finite ‘cell’ problem can be formulated and solved. In other words, in such states
the GCB rule is operative and the computation of the macroscopic energy energy
can be made explicit. In this paper we have chosen to illustrate all these effects by
considering penalization kernels m amenable to fully explicit study. Our analysis
shows that a rather comprehensive picture can be obtained based on the analysis of
just two archetypal classes of kernels.

The first class of analytically transparent kernels contains ‘concentrated’ (com-
pact, localized, narrow banded, etc.) parametric sequences m defined by the con-
dition that there exists M ≥ 2 such that mn = 0 if n ≥ 2 and n 
= M ; here M
plays the role of a parameter. We prove that for such kernels (and independently of
f , as long as it is non-convex) locking states do exist and correspond to θn = n

M
with n ∈ {0, . . . , M}. Minimizers in this case, representing mesoscopic phases, are
M-periodic. Moreover, we prove that the associated phase function θ is piecewise
affine, interpolating locally between the locking states θn−1 and θn . Thus, while for
θ that is not a locking state we do not have GCB-type minimizers (with ‘global’
properties), the whole mapping Q̂m f can be recovered from the knowledge of its
value at those z corresponding to locking states where the GCB rule is operative.

The second class of analytically transparent kernels contains exponentially de-
caying sequences m which we write in the parametric form mn = e−σn with σ > 0
playing the role of a parameter analogous to M in the first class. Here again we can
give a complete description of the relaxed problem, for instance, when f is a trun-
cated convex potential ( f is constant in [z∗,+∞)). Given this particular structure
of non-convex potentials (describing, for instance, lattice fracture), locking states
are either θ = 0 or θ ∈ { 1

k : k ∈ N}. In the latter case, minimizers are k-periodic
and therefore of GCB-type, which means that they posses ‘global’ properties. In-
terestingly, we show that in each period such minimizers have a single difference
uk

i −uk
i−1 exceeding the threshold z∗ (single ‘crack’). Again, we prove that the set of

mesoscopic phases is sufficiently rich to provide the ‘building blocks’ whose simple
mixtures allow one to construct the whole mapping Q̂m f . An important difference
with the case of ‘concentrated’ kernels is that now the optimal ‘simple’ mixtures of
‘global’ (or GCB) states are not unique optimal microstructures. More precisely,
we show that even for non-locking values of z one can build optimal minimizers
which are of GCB-type. For all values of z such minimizers are quasiperiodic and
therefore posses the desired ‘global’ properties, thus broadening the spectrum of
possible GCB-type microstructures.

All these explicit results, which also include an analytical study of the intricate
role of the parameters σ and M , can be obtained because for these two classes
of kernels (concentrated and exponential) one can reformulate the original non-
additive (non-local) minimum problem with presumably complex mixing properties
as an additive (local) problem with no mixing effects at all. For concentrated kernels
this is achieved by rewriting the non-additive problem as a superposition of additive
problems. For exponential kernels the reduction of complexity is due to the mapping
of a scalar problem with long-range interactions on a vectorial problem with only
nearest-neighbor interactions.

Variational problems with energies like (1.4) have been studied extensively in
physical literature where they emerged independently in different settings rang-
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ing from conventional magnetic and mechanical systems [10,67] to discotic liquid
crystals [42,57,64]. In such problems the optimal periodicity of a microstructure
representing the ground state (global minimum of the energy) competes with the
periodicity of the lattice, and the geometrical frustration emerges when the two
periodicities are incompatible (for instance, incommensurate). Since the interac-
tions in actual physical systems are very complex, the main focus was on the study
of simplified discrete models such as the Frenkel-Kontorova model [35] or the
classical ANNNI model [94]. A prototypical Ising model with antiferromagnetic
long-range interactions, which is the simplest problem of this same type was con-
sidered in [11]. Two explicit solutions for the class of problems with exponential
kernels studied in the present paper, were found in [84,85].

In the mathematical literature discrete and continuous variational models with
antiferromagnetic interactions were considered in [27,28,39,58,86,90]. An impor-
tant link was established by S. Aubry and J. Mather between variational prob-
lems of type (1.4) and the quasiperiodic trajectories of discrete dynamical sys-
tems. Recent mathematical results extending Aubry-Mather theory can be found in
[14,49,54,59].

In the present paper we reformulate the problems studied previously in the
framework of the theory of dynamical systems, as problems of the calculus of
variations. This change of perspective allows one to apply powerful homogenization
results providing direct access to the corresponding continuum limits. The goal is
to demonstrate how, already in one-dimensional problems, the interplay between
discreteness and non-convexity compromises the classical Cauchy–Born rule and
precludes the use of conventional ‘cell’ problems for computation of the relaxed
energies.

In the context of discrete-to-continuum transitions, the obtained results bring
new understanding of the role of the frustrated non-local interactions in the deter-
mination of homogenized energies. While the case of ferromagnetic interactions
has been extensively studied before, here we show that the introduction of anti-
ferromagnetic interactions brings fundamentally new effects, most importantly the
emergence of mesoscopic phases resulting in the locking of the minimizers on
lattice-commensurate microstructures. These effects affect the structure of the con-
tinuum energy and do not disappear in the course of discrete-to-continuum transi-
tion.

Instead of the focus on Euler–Lagrange equations, characteristic of the theory
of dynamical systems, our main tools are the direct methods of the calculus of
variations. In particular, we obtained our main results through the use of the novel
bounds resulting either from the judicial choice of periodic test functions or from
cluster minimization. In this sense our results complement and broaden the findings
made in the dynamical systems framework.

One result of this type is the characterization of the continuum limit when
non-local interactions are concentrated on M-neighbors. The analysis of this case
highlights the increasing difficulty of dealing with geometrical frustration and non-
commensurability effects as progressively more distant interactions are incorpo-
rated, and suggests the possibility of scale-free patterns even in the case of finite-
range interaction kernels. It complements the results of Aubry [8], who showed
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that long-range interactions favor hyper-uniform solutions. Another result, allow-
ing one to relate the regularity of the relaxed energies in θ with the existence of
periodic solutions, can be viewed as an extension of the link between regularity and
the rotation number established by Mather in the framework the dynamical systems
approach [79].

In addition to explicit computations of global minimizers we also posed the
problem of finding the �-equivalent continuum approximations of the correspond-
ing lattice problems [34]; that is, the construction of asymptotic continuum theories
accounting for the lattice scale in the spirit of [34]. We succeed in constructing such
an approximation in the case of an exponential kernel while also showing that the
conventional formal asymptotic limit, which neglects the underlying geometric
frustration, underestimates the intricacies of the interplay between non-convexity,
non-locality and discreteness and produces only a lower bound for Qm f . This
explicit example serves as a cautionary tale demonstrating in which form the fi-
nite scale lattice effects can survive homogenization and affect the macroscopic
variational problem.

2. Nonlocal Discrete Problems and Their Relaxation

In this paper we study the asymptotic behaviour of particular nonlocal discrete
problems parameterized by the number of nodes involved. This can be viewed as
a discrete-to-continuum homogenization process by introducing a small parameter
ε and suitable scalings of the energies. However, with an abuse of terminology, we
choose to label this process as the computation of a relaxed functional.

Following the usual terminology, a functional � is the relaxation of an original
functional � if, loosely speaking, infimum problems involving � have the same
value as infimum problems involving �, and the latter admit solution (given that the
corresponding problem is coercive), see e.g. [21,41]. In the context of the Calculus
of Variations, the relaxed functional is usually obtained by a lower-semicontinuous
envelope with respect to some topology, it is stable under continuous perturbations,
and often (but not always) is stable with respect to closed constraints, such as fixed
boundary values or imposed integral constraints. Moreover, if the original functional
depends on some energy density, often (but not always) the relaxed functional can be
characterized by a new energy density obtained as a transformation (convexification,
quasiconvexification, sub-additive or BV -elliptic envelope, etc.) of the original
energy density, so that relaxation of an energy can be viewed as an operation on
an energy density. In our case we deal with a sequence of minimum problems,
so it would be correct to talk about homogenization or �-convergence rather than
relaxation. Nevertheless, we would like to highlight properties of the homogenized
continuum energy in the same spirit of a lower-semicontinuous envelope, and hence
we choose the terminology of relaxation.

We focus on the relaxation of nonlocal discrete functionals of type (1.4). They
involve a non-convex function f and contain a ‘penalization kernel’ m. The idea
is to single out the local (nearest-neighbour) interaction in the general discrete-to-
continuum problem, and consider the corresponding potential f as the function



Arch. Rational Mech. Anal.         (2023) 247:107 Page 11 of 113   107 

that needs to be ‘relaxed’. The nonlocal (beyond nearest-neighbour) interactions
are assumed to be linear. The corresponding quadratic term in the energy brings
the simplest penalization into the relaxation process. We show that even such a
simple penalization may still carry incompatibility and may even lead to geometrical
frustration. In what follows, with a slight abuse of terminology, we will be referring
to (1.4) as a m-dependent relaxation of a non-convex energy density f . Before
giving the formal definitions, we make some preliminary comments distinguishing
penalized relaxation from non-penalized relaxation.

2.1. Nearest–Neighbour Interaction and Quadratic Penalization

As it is well known, the convexification of a function f can be seen as the result
of a discrete-to-continuum relaxation process in a local setting involving nearest-
neighbour interactions only. To be more specific, for any k ∈ N and z ∈ R we
introduce the set

A(k; z) = {u : [0, k] ∩ N → R such that u(0) = 0, u(k) = kz} (2.1)

of admissible test functions satisfying boundary conditions. Here the parameter z
represents the affine boundary conditions u(i) = Lz(i), where Lz(i) = i z.

Proposition 2.1. (A characterization of the convex envelope) Let f : R → R. Then,
the convex envelope of f is

f ∗∗(z) = lim
k→+∞

1

k
inf

{ k∑
i=1

f (u(i) − u(i − 1)) : u ∈ A(k; z)

}
.

It is useful in this context to interpret Proposition 2.1 as a consequence of discrete-
to-continuum �-convergence (see e.g. [21, Ch. 4.2]). Indeed, define for a given
bounded interval I and for any ε > 0 the set of indices Iε(I ) and the set of discrete
functions Aε(I ) given by

Iε(I ) = {i ∈ Z : εi ∈ I }, Aε(I ) = {u : εIε(I ) → R}, (2.2)

respectively. Here and in the sequel, ui denotes the value u(εi), and we identify
u ∈ Aε(I ) with its piecewise-constant extension in I . Having defined

F0
ε (u; I ) = ε

∑
i,i−1∈Iε(I )

f
(ui − ui−1

ε

)
(2.3)

for u ∈ Aε(I ), the �-limit with respect to the L2-convergence of F0
ε is the func-

tional F0(u, I ) = ∫
I f ∗∗(u′) dt for u ∈ H1(I ). Then, choosing εk = 1

k , by the
convergence of minimum problems we get

f ∗∗(z) = min{F0(u; (0, 1)) : u(0) = 0, u(1) = z}
= lim

k→+∞ min{F0
εk

(u; (0, 1)) : u(0) = 0, u(1) = z},

which is the desired formula up to a change of variable.
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Fig. 1. Representation of exponential and concentrated kernels

Remark 2.2. (Additivity) Note that the problems defining f ∗∗ are additive, in the
sense that, setting

μ(k, z) = inf

{ k∑
i=1

f (ui − ui−1) : u ∈ A(k; z)

}
,

we have μ(k, z) = min
{
μ(k1, z1) + μ(k2, z2) : k1 + k2 = k, k1z1 + k2z2 = kz

}
.

We now add to the nearest-neighbour term, described by a non-convex function
f , a quadratic long-range term of the form

k∑
i, j=0

m|i− j |(ui − u j )
2,

which brings the simplest penalization of global inhomogeneity while promoting
uniformity in the sense of averages. The sequence m = {mn}n∈N is assumed to be
such that

mn ≥ 0 for anyn and mn = o(n−β)n→+∞ for some β > 3. (2.4)

Such penalization has an ‘antiferromagnetic’ character, in that it in fact favors local
oscillations induced by the non-convexity of f .

In the sequel, an important role will be played by the two special families of
kernels: exponential, mn = e−σn , and concentrated at some M , mn = 0 for all n
except n = 1 and n = M with M ≥ 2. In Fig. 1(A) we represent two exponential
kernels for different σ . Also for concentrated kernels one can similarly account for
a parameter σ by using the new definitions, mσ

1 = (1/σ)m1 and mσ
M = (1/σ)mM ,

see Fig. 1(B).
Before formally defining the penalized energy, we need to make some assump-

tions on f . These assumptions will be used to obtain the existence of the limit of
minimum problems. Note that the hypotheses can be relaxed, but they are stated as
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follows in order to avoid unnecessary technicalities. Our first simplifying assump-
tion is that the (non-convex) potential f : R → [0,+∞) satisfy a quadratic growth
hypothesis; namely,

0 � f (z) � c(z2 + 1) for some c > 0. (2.5)

In addition to (2.5), we will also assume that the function f satisfies

1

c
z2 � f (z) + m1z2. (2.6)

Note that hypothesis (2.6) is automatically satisfied if m1 > 0. We will point out
specifically in which of the cases assumption (2.6) is not necessary.

Definition 2.3. (Relaxation with kernel m) For all z ∈ R we set

Q̂m f (z) = lim
k→+∞

1

k
inf

{ k∑
i=1

f (ui − ui−1) +
k∑

i, j=0

m|i− j |(ui − u j )
2 : u ∈ A(k; z)

}
.

The function Q̂m f is well defined since the limit exists by known discrete-to-
continuum results (see formula (2.9) below). For this existence the growth condi-
tion is essential; however, in some cases we will use this formula also for some
degenerate f for which the limit exists. Note that, except for the case when only
nearest-neighbours are involved, the minimum problems defining Q̂m f are not
additive in the sense of Remark 2.2.

2.2. General Properties of Q̂m f (z)

In this section, we list some properties of the relaxation with kernel m derived
from its variational nature.

Remark 2.4. (Nearest-neighbour interactions) By Proposition 2.1, the convex en-
velope of f can be viewed as Q̂0 f , where m = 0 is the trivial kernel mn = 0 for
any n ≥ 1; that is,

Q̂0 f (z) = f ∗∗(z). (2.7)

More in general, again by Proposition 2.1, we obtain that Q̂m f (z) = ( f (z) +
2m1z2)∗∗ if mn = 0 for any n ≥ 2. Note that in these cases we have no non-
additivity effects.

Remark 2.5. (Q̂m f as a �-limit) The fact that Q̂m f is well defined and some of
its key properties follow by the fact that the functional F defined by F(u) =∫

I Q̂m f (u′) dt for I bounded interval and u ∈ H1(I ) can be interpreted as the
�-limit of a suitable sequence of discrete functionals Fε. Indeed, consider the
functionals

Fε(u; I ) = ε
∑

i,i−1∈Iε(I )

f
(ui − ui−1

ε

)
+ ε

∑
i, j∈Iε(I )

m|i− j |
(ui − u j

ε

)2
(2.8)
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defined inAε(I ), withIε(I ) andAε(I ) as in (2.2). Such functionals can be rewritten
as

Fε(u; I ) =
∑
h≥1

∑
j, j+h∈Iε(I )

ε f h
(u j+h − u j

εh

)

where f 1(z) = f (z) + 2m1z2 and f h(z) = 2z2h2mh if h > 1. With this notation,
functionals Fε satisfy the hypotheses of [3, Theorem 6.3]; that is, f 1(z) ≥ c1z2

with c1 > 0, and f h(z) � chz2 with
∑

h ch < +∞. The lower bound follows by
the growth hypothesis (2.6), and the upper bound by (2.5) and by hypothesis (2.4)
onm. Hence, the �-limit of Fε with respect to the L2-convergence is represented by
the functional F(u, I ) = ∫

I fhom(u′) dt , where fhom satisfies the homogenization
formula

fhom(z) = lim
k→+∞

1

k
inf

{ k∑
h=1

k−h−1∑
j=0

f h
(u j+h − u j

h

)
: u ∈ A(k; z)

}
. (2.9)

Rewriting this formula, we get that the function fhom coincides with the function
Q̂m f introduced in Definition 2.3, which proves that it is well-defined as a limit.

Remark 2.6. Note that, while condition (2.6) can be relaxed by requiring that f has
a superlinear growth (not necessarily quadratic), it cannot be dropped altogether.
Indeed, if f = 0, m2 
= 0 and mn = 0 otherwise, then the limit in Definition 2.3
does not exist.

The following proposition states the convexity of Q̂m f , which is ensured by
the lower semicontinuity of the �-limit:

Proposition 2.7. (Convexity of Q̂m f ) Let m be as in (2.4) and let f : R →
[0,+∞) satisfy (2.5) and (2.6). Then the function Q̂m f is convex.

In the following remark we highlight that the boundary conditions can be trans-
formed in conditions on a boundary layer, which are more convenient for compu-
tations:

Remark 2.8. (alternative statements of boundary conditions) The boundary condi-
tions u0 = 0 and uk = kz can be replaced by conditions on a boundary layer. We
state two different equivalent possibilities, that will both be used in the proofs. In the
first one the boundary layer is a small portion of the whole domain, parameterized
by a small δ, which then we let tend to 0, as

Q̂m f (z) = lim
δ→0

lim inf
k→+∞

1

k
inf

{ k∑
i=1

f (ui − ui−1)

+
k∑

i, j=0

m|i− j |(ui − u j )
2 : u ∈ Aδ(k; z)

}

= lim
δ→0

lim sup
k→+∞

1

k
inf

{ k∑
i=1

f (ui − ui−1)
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+
k∑

i, j=0

m|i− j |(ui − u j )
2 : u ∈ Aδ(k; z)

}
, (2.10)

where

Aδ(k; z) = {u ∈ A(k; z) : ui = i z if i � δk and i ≥ (1 − δ)k}.
In the second one the double limit is replaced by a k-depending boundary layer at
a mesoscopic scale, as

Q̂m f (z) = lim
k→+∞

1

k
inf

{ k∑
i=1

f (ui − ui−1)

+
k∑

i, j=0

m|i− j |(ui − u j )
2 : u ∈ Akα (k; z)

}
, (2.11)

with α ∈ (−1, 0).
These formulas can be proved by an argument which is customary to variational

treatments of homogenization problems (see e.g. [3]). In proving formulas (2.10)
and (2.11), it is necessary to use the growth hypothesis (2.6). In case it does not
hold, the limits in formulas (2.10) and (2.11) may be different from the limit in the
definition of Q̂m f .

We now give some general estimates on Q̂m f .

Remark 2.9. (Estimates by decomposition for Q̂m f ) If m = m′ + m′′; that is,
mn = m′

n + m′′
n for all n, and f = g + h, then we have

Q̂m f (z) ≥ Q̂m′ g(z) + Q̂m′′h(z).

In Remark 2.4 we have examined the case when m = 0. It may be of interest
to consider the case when conversely f = 0 as in the following lemma. If m is as
in (2.4), then we set

am = 2
+∞∑
n=1

mnn2. (2.12)

Lemma 2.10. (Minimization of the quadratic part) Let m1 > 0, so that (2.6) is
satisfied with f = 0. Then we have Q̂m0(z) = amz2.

Proof. By using ui = i z as a test function in the definition of Q̂m0(z) we get the
inequality Q̂m0(z) � amz2, after noting that

lim
k→+∞

1

k

k∑
i, j=0

m|i− j |(i − j)2 = lim
k→+∞

2

k

k∑
n=1

(k − n + 1)mnn2 = 2
+∞∑
n=1

mnn2 = am.

It then suffices to prove that for all fixed N we have

Q̂m0(z) ≥ 2
N∑

n=1

mnn2z2.
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With fixed α ∈ (−1, 0), let u be a test function for the problem in (2.11) with f = 0
for k1+α > N . We then have

1

k

( k∑
i=1

2m1(ui − ui−1)
2
)

≥ 2m1z2. (2.13)

If n ∈ {2, . . . , N } and 
 ∈ {0, . . . , n − 1}, let i
 = � k−

n �. We can rewrite the

energy due to interactions at distance n as

1

k
2mn

n−1∑

=0

i
∑
i=1

(u
+in − u
+(i−1)n)2 ≥ 1

k
2mn

n−1∑

=0

i

( 1

i


i
∑
i=1

(u
+in − u
+(i−1)n)
)2

= 1

k
2mn

n−1∑

=0

i

(u
+i
n − u


i


)2 = 1

k
2mn

n−1∑

=0

i
n2z2

≥ 2mn
n

k

⌈k − n

n

⌉
n2z2 = 2mn(1 + ok(1))n2z2,

where we have used the convexity inequality and the boundary condition u j = j z
close to the boundary. Summing up for n ∈ {2, . . . , N } and using (2.13), we prove
the claim. �

In the next proposition we compare Q̂m f with the convex envelope of f and
with f itself (to be more accurate, taking into account the case that f is not lower
semicontinuous, with the lower-semicontinuous envelope of f ).

Proposition 2.11. (Trivial bounds for Q̂m f ) Let m be as in (2.4) and let f : R →
[0,+∞) satisfy (2.5) and (2.6). The inequalities

f ∗∗(z) + amz2 � Q̂m f (z) �
(

f (z) + amz2)∗∗ � f (z) + amz2 (2.14)

hold, where f denotes the lower-semicontinuous envelope of f ; i.e., the largest
lower-semicontinuous function not larger than f .

Proof. By using ui = i z as a test function in the definition of Q̂m f (z) we get
the inequality Q̂m f (z) � f (z) + amz2 as in the first part of the proof of Lemma
2.10. Since Q̂m f is continuous by Proposition 2.7, this ensures that Q̂m f (z) �
f (z)+amz2. Since Q̂m f (z) is convex, we also obtain Q̂m f (z) � ( f (z)+amz2)∗∗.
The lower bound is obtained by using Remark 2.9 with the choice g = f , h = 0,
m′ = 0 and m′′ = m. This gives

Q̂m f (z) ≥ Q̂0 f (z) + Q̂m0(z) = f ∗∗(z) + amz2

since Q̂m0(z) = amz2 by Lemma 2.10, and Q̂0 f (z) = f ∗∗(z). �
Corollary 2.12. If f is convex, then Q̂m f (z) = f (z) + amz2.

Remark 2.13. (Non-sharpness of lower bounds by decomposition) If we apply
Corollary 2.12 to the estimate in Remark 2.9 with h convex and m′′ 
= 0, then
the estimate gives an equality only if Q̂m f (z) = f (z) + amz2.
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2.3. Lower Bound: Optimization on Nearest–Neighbour Clusters

Rather remarkably, one can explicitly compute Q̂m f when there is only one
non-zero coefficient mM of m beside nearest neighbours. The computation is ob-
tained by optimizing on clusters of nearest neighbours of length M . As a conse-
quence one can obtain lower bound for a general m, which are in general not sharp,
but are however, useful.

For any given λ ≥ 0, we set

fλ(z) = f (z) + λz2. (2.15)

In particular f2m1(z) = f (z) + 2m1z2 describes the total energy due to nearest-
neighbour interactions. We first rewrite Corollary 2.12 in terms of the effect of the
convexity of this contribution.

Proposition 2.14. (Convex nearest-neighbour interactions) Let f be such that f2m1

is convex. Then

Q̂m f (z) = f (z) + amz2.

More in general, for an arbitrary f this equality holds at all z such that f2m1(z) =
f ∗∗
2m1

(z).

Proof. Applying Remark 2.9 with g = f , h = 0 and m′ defined as m′
1 = m1 and

m′
n = 0 if n ≥ 2, for all z such that f2m1(z) = f ∗∗

2m1
(z) we have

Q̂m f (z) ≥ Q̂m′ f (z) + Q̂m′′0(z) = f ∗∗
2m1

(z) + am′′ z2

= f2m1(z) + am′′ z2 = f (z) + amz2,

where we have used Remark 2.4, Lemma 2.10 and the convexity hypothesis. The
converse inequality holds by Proposition 2.11. �

Now, we can define nearest-neighbour cluster energies. More precisely, for any
integer M ≥ 2 we define

P M f (z) = 1

M
min

⎧⎨
⎩

M∑
j=1

f2m1(z j ) :
M∑

j=1

z j = Mz

⎫⎬
⎭+ 2mM M2z2. (2.16)

For completeness of notation, we also set P1 f (z) = f2m1(z).
Note that if M ≥ 2 and f2m1 is convex then P M f (z) = f (z) + 2m1z2 +

2mM M2z2.

Definition 2.15. (Concentrated kernels) Let M ≥ 1. We say that a kernel m is
concentrated at M if mn = 0 if n 
∈ {1, M}.
Proposition 2.16. (Relaxation with concentrated kernel) If m is concentrated at
M, then Q̂m f = (P M f )∗∗.
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Proof. Remark 2.4 proves the claim for M = 1. Now, assume M ≥ 2. We can use
formula (2.11) for the computation of Q̂m f (z); in particular, we may suppose that
test functions satisfy ui = zi if i � M and i ≥ k − M . Let u be a minimizer; using
the notation in the proof of Lemma 2.10 with i
 = � k−


M �, we can write

k∑
i=1

(
f (ui − ui−1) + 2m1(ui − ui−1)

2
)

+ 2mM

k∑
i=M

(ui − ui−M )2

=
M−1∑

=0

Mi
∑
i=1

1

M

(
f (ui − ui−1) + 2m1(ui − ui−1)

2
)

+ 2mM

M−1∑

=0

i
∑
i=1

(u
+i M − u
+(i−1)M )2 + Cz,

where Cz is a constant taking into account extra boundary interactions, with |Cz | �
MC(1 + z2) independent of k. We then estimate

M−1∑

=0

Mi
∑
i=1

1

M

(
f (ui − ui−1) + 2m1(ui − ui−1)

2
)

+ 2mM

M−1∑

=0

i
∑
i=1

(u
+i M − u
+(i−1)M )2

≥
M−1∑

=0

i
∑
i=1

P M f
(u
+i M − u
+(i−1)M

M

)

≥
M−1∑

=0

i
∑
i=1

(P M f )∗∗(u
+i M − u
+(i−1)M

M

)

≥
M−1∑

=0

i
(P M f )∗∗(u
+i
 M − u


i
M

)
=

M−1∑

=0

i
(P M f )∗∗(z)

≥ M
⌈k − M

M

⌉
(P M f )∗∗(z).

Dividing by k and taking the limit as k → +∞ we obtain the lower bound.
To prove that the lower bound is sharp it suffices to choose a minimizer

z1, . . . , zM for P M f (z), extend it by M-periodicity and define a test function
u on {0, . . . , k} with k = nM by setting u0 = 0, ui −ui−1 = z if i ∈ {1, . . . , M}∪
{k − M + 1, . . . , k}, and ui − ui−1 = zi otherwise. Using this test function and
letting k → +∞, we obtain Q̂m f � P M f . Since Q̂m f is convex, we finally get
Q̂m f � (P M f )∗∗. �

Remark 2.17. (General concentrated interactions) In the previous proposition we
have considered quadratic interactions between M th neighbours. Actually, it is not
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necessary to assume quadraticity or even convexity of these interactions, and the
same proof shows that

lim
k→+∞

1

k
min

{ k∑
i=1

f (ui − ui−1) +
k∑

i=M

g(ui − ui−M ) : u0 = 0, uk = kz
}

= ψ∗∗(z), (2.17)

where f, g : R → [0,+∞) are such that f is of quadratic growth and g satisfies a
quadratic bound from above, and ψ is defined by

ψ(z) = 1

M
min

{ M∑
j=1

f (z j ) :
M∑

j=1

z j = Mz

}
+ g(z). (2.18)

Remark 2.18. (Periodic recovery sequences and multiplicity of minimizers) Note
that if P M f (z) = (P M f )∗∗(z) and {zi } is a minimizer for P M f (z) extended by
M-periodicity, a function u with u0 = 0, ui −ui−1 = zi gives a recovery sequence
for the �-limit of the functionals (2.8) at u(x) = zx . Note that ui −zi is M-periodic.

We also observe that if {z1, . . . , zM } is a minimizer, then any permutation of
its values gives a minimizer.

Proposition 2.19. (A lower bound for general m) Let m be any kernel; then for
any M the following estimate holds:

Q̂m f (z) ≥ (P M f )∗∗(z) + 2
∑
n≥2

n 
=M

n2mnz2. (2.19)

In particular, we have Q̂m f (z) ≥ sup
M≥1

(
(P M f )∗∗(z) + 2

∑
n≥2

n 
=M

n2mnz2
)

.

Proof. Inequality (2.19) is obtained by using Remark 2.9 with m′ =
(m1, 0, . . . , 0, mM , 0, . . . ), Proposition 2.16, and the fact that Q̂m′′0(z) =
2
∑

n 
∈{1,M} n2mnz2. If M = 1, the estimate is an immediate consequence of Re-
marks 2.4 and 2.9. �

2.4. Upper Bound: Optimization over Periodic Patterns

In order to give an upper bound for Q̂m f , it is of interest to consider minimum
problems on sets of N -periodic functions. We will see that when the value Q̂m f (z)
is obtained by this periodic minimization, which can be interpreted as a Cauchy–
Born approach, it is possible to deduce further structural properties of the relaxed
functional.

For N ∈ N we define

R̂N
m f (z) = 1

N
inf

{
F#(u; [0, N ]) : i �→ ui − zi is N -periodic

}
, (2.20)
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where

F#(u; [0, N ]) =
N∑

i=1

f (ui − ui−1) +
N∑

i=1

∑
j∈Z

m|i− j |(ui − u j )
2.

Note that each site i ∈ {1, . . . , N } interacts with all j ∈ Z. Using periodic functions
as test functions in the �-limit producing Q̂m f (see Remark 2.5), we see that
R̂N
m f (z) ≥ Q̂m f (z) for all N , so that, setting

R̂m f (z) =
(

inf
N

R̂N
m f (z)

)∗∗
,

we obtain a bound for the m-relaxation of f . More specifically, we can write

f (z) + amz2 ≥ R̂N
m f (z) ≥ R̂m f (z) ≥ Q̂m f (z) ≥ amz2 (2.21)

where N is arbitrary; the first estimate is obtained by taking ui = i z.
An application of Remark 2.8 to boundary conditions allows one to show that in

(2.20) we can asymptotically neglect the interaction terms with sites outside [0, N ].
Then, we have the following proposition.

Proposition 2.20. For all z ∈ R we have R̂m f (z) = lim
N→+∞ R̂N

m f (z) = Q̂m f (z).

Accordingly, the m-relaxation can be alternatively defined as a limit of minimum
problems constructed on periodic functions.

Remark 2.21. (Global periodic solutions) Note that in general the equality in Propo-
sition 2.20 is not attained at finite N . However, in some cases the knowledge of
R̂N
m f for some finite N is sufficient for the description of Q̂m f . A notable case

is that of nearest and next-to-nearest neighbor interactions, for which a general
formula for Q̂m f can be proven using this approach. In the notation above that for-
mula simply reads Q̂m f = (R̂2

m f )∗∗ [29,86]. In particular, if f is a double-well
energy with minimum value 0 attained for z ∈ {−1, 1} then in a neighbourhood of
0 we have Q̂m f (z) = R̂2

m f (z); that is, the minimum for Q̂m f (z) is reached on
functions with ui − zi 2-periodic, up to an error due to the boundary conditions
and vanishing as k → +∞. In this sense, such problems have ‘global’ solutions
and are therefore solvable by the application of the GCB rule.

2.5. The m-Transform of f

In view of Proposition 2.11, in order to compare Q̂m f with f we can subtract
the quadratic term. In this way, the bounds in (2.14) are rewritten as

f ∗∗(z) � Q̂m f (z) − amz2 � f (z). (2.22)

This suggests to interpret the function Q̂m f (z)− amz2 as an independent operator
acting on f . We then give the following definition:
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Definition 2.22. (m-transform of f ) Let m be as in (2.4) and let f : R → [0,+∞)

satisfy (2.5) and (2.6). The m-transform of f is the function Qm f : R → [0,+∞)

defined as

Qm f (z) = Q̂m f (z) − amz2. (2.23)

Given that, by (2.22),

f ∗∗(z) � Qm f (z) � f (z), (2.24)

the m-transform of f can be viewed as an m-dependent interpolation between f
and f ∗∗.

We start the study of the m-transform with the observation that at z fixed the
construction of Qm f (z) can be interpreted in a variational sense as a minimization
problem with a penalization term involving a distance from the affine function Lz .
This claim is justified by Remarks 2.23 and 2.24 below.

Remark 2.23. (Variational definition of Qm f ) Note that, when ui = i z, then

amz2 = lim
k→+∞

1

k

k∑
i, j=0

m|i− j |(i − j)2z2 = lim
k→+∞

1

k

k∑
i, j=0

m|i− j |(ui − u j )
2.

Hence, we have the equality

Qm f (z) = lim
k→+∞

1

k
inf

{ k∑
i=1

f (ui − ui−1)

+
k∑

i, j=0

m|i− j |
(
(ui − u j )

2 − (i − j)2z2) :u ∈ A(k; z)

}
. (2.25)

Remark 2.24. (Interpretation of the penalty term as a distance) If m1 > 0, then
the last sum in (2.25) is a measure of the distance from ui to the affine function
Lz(i) = i z. To show this, we first note that by Remark 2.8 we can restrict to test
functions u such that ui = i z for i � kα+1 and i ≥ k −kα+1 for some α ∈ (−1, 0).

Now, for any 
 ∈ {1, . . . , k} we consider the sum of the terms with |i − j | = 
,
obtaining

∑
|i− j |=


(
(ui − u j )

2 − (i − j)2z2)

=
∑

|i− j |=


(
(ui − i z) − (u j − j z)

)2 + 2z
∑

|i− j |=


((ui − i z) − (u j − j z))(i − j)

=
∑

|i− j |=


(
(ui − i z) − (u j − j z)

)2 + 4z

∑

i− j=


((ui − i z) − (u j − j z))

=
∑

|i− j |=


(
(ui − i z) − (u j − j z)

)2 + 4z


−1∑
r=0

(
(ukr,
 − kr,
z) − (ur − r z)

)
,
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where kr,
 = r + 
� k−r



�.
If 
 � kα+1, then r � kαk and kr,
 = r + 
� k−r



� ≥ k − 
 ≥ (1 − kα)k, so that

ukr,
 − ur = 
� k−r



� = 
� k


�, and the last term in the sum vanishes, so that

1

k

∑
|i− j |�kα+1

(
(ui − u j )

2 − (i − j)2z2) = 1

k

∑
|i− j |�kα+1

(
(ui − i z) − (u j − j z)

)2
.

Now, we fix δ > 0. Recalling the decay condition (2.4) on m, there exists 
δ

such that for 
 > 
δ we have m
 < δ
−β . If k is such that kα+1 > 
δ , then

1

k

k∑
|i− j |>kα+1

m|i− j |
(
(ui − u j )

2 − (i − j)2z2) � 2

k

k∑

>kα+1

k∑
i=


m
(ui − ui−
)
2

� 2

k

∑

>kα+1


2m


k∑
i=1

(ui − ui−1)
2 � 2δ

k

∑

>kα+1


2−β
k∑

i=1

(ui − ui−1)
2.

Note that in our computations we limit to u satisfying
∑k

i=1(ui − ui−1)
2 � Ck by

(2.6), so that this term is negligible as k → +∞. Likewise, we obtain

2m1

k

k∑
i=1

(ui − ui−1 − z)2 � 1

k

k∑

=1

∑
|i− j |=


m|i− j |
(
(ui − u j )

2 − (i − j)2z2)

� 2

k

( ∞∑

=1


2m


) k∑
i=1

(ui − ui−1 − z)2.

This double inequality shows that the quadratic part is equivalent to the square of the
L2 norm of the derivative of u − Lz , where u is identified with the piecewise-affine
function on (0, 1) with u′ = ui − ui−1 on ( i−1

k , i
k ).

We note that the remark above suggests the use of minimum problems as above
in an implicit Euler scheme to obtain discrete orbits for a gradient-flow type evo-
lution driven by the non-convex part of the energy, with the quadratic part acting
as a dissipation. In view of Remark 2.5, the limit of such orbits as ε → 0 and
scaling accordingly the dissipation describes a continuum evolution in the spirit of
minimizing movements as in [4]. However, the interplay of discreteness and scaling
of the dissipation may influence the form of this evolution as shown in [33] (see
also [5] for a prototypical example in dimension one, and [32] for a geometrical
setting).

Some general algebraic properties deriving from the definition of Qm f are the
following:

Remark 2.25. (Properties of Qm)

(i) Qm( f + g) ≥ Qsm f + Q(1−s)mg for all s ∈ (0, 1);
(ii) if g is convex Qm( f + g) ≥ (Qm f ) + g;

(iii) if g is affine then Qm( f + g) = (Qm f ) + g;
(iv) if r ≥ 0, then Qm(r f )(z) = r Qm/r f (z);
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(v) if r ∈ R and ( f ◦ Lr )(z) = f (r z) then Qm( f ◦ Lr )(z) = Qm/r2 f (r z);
(vi) if λ ∈ R and we denote ( f ◦ Tλ)(z) = f (z − λ) then Qm( f ◦ Tλ)(z) =

Qm f (z − λ).

Properties (i)-(v) follow directly from the definition of Qm f . We give some
details for the proof of (vi), since for this we have to modify the boundary condition
of the test functions, using (2.11) in Remark 2.8. For any test function u for Qm( f ◦
Tλ)(z) we consider uλ given by uλ

i = ui −λi , which is a test function for Qm f (z−λ)

obtaining

k∑
i=1

f (ui − ui−1 − λ) +
k∑

i, j=0

m|i− j |(ui − u j )
2 −

k∑
i, j=0

m|i− j |(i − j)2z2

=
k∑

i=1

f (uλ
i − uλ

i−1) +
k∑

i, j=0

m|i− j |(uλ
i − uλ

j )
2 −

k∑
i, j=0

m|i− j |(i − j)2(z − λ)2

+2λ

k∑
i, j=0

m|i− j |(ui − u j − z(i − j))(i − j).

Then, (vi) holds if we show that

lim
k→+∞

1

k

k∑
i, j=0

m|i− j |(ui − u j )(i − j) = amz.

Now, we note that in the sum
∑k

i, j=0 m|i− j |(ui − u j )(i − j) we can regroup the
terms with |i − j | = 
 and obtain a telescopic sum whose ending terms are in the
boundary layer. Hence, since for each 
 these sums are exactly 
, we have

lim
k→+∞

1

k

k∑
i, j=0

m|i− j |(ui − u j )(i − j) = lim
k→+∞

2

k

k∑

=1


(m
(uk − u0)
)

= lim
k→+∞

2

k
kz

k∑

=1

m


2 = amz,

concluding the proof of (vi).

Definition 2.26. (Stability underm-transform) We say that z is a point ofm-stability
for f if Qm f (z) = f (z). If this equality holds for all z, we say that f is m-stable.

Remark 2.27. (Global properties of points of stability) Let z be a point ofm-stability
for f . Then, the value of Q̂m f (z) is realized by choosing the affine function u ∈
A(k; z) given by ui = i z in each minimum problem in Definition 2.3.

We recall that fλ(z) = f (z) + λz2 as in (2.15).

Proposition 2.28. (m-stability and convexity)

(i) if f is m-stable then fam is convex;
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Fig. 2. The function Qm f in Remark 2.30 with f (z) = (1 − z2)2 for different values of
m1 < 1

(ii) if f2m1 is convex then f is m-stable.

Proof. Claim (i) follows from the definition of m-stability since fam = Q̂m f .
Claim (ii) is given by Proposition 2.14. �
Remark 2.29. (‘Moderately’ non-convex functions are m-stable) The proposition
above implies that if f is ‘moderately non-convex’ then it is also m-stable. This is
valid in particular if f is twice differentiable and

inf
z

f ′′(z) > −4m1. (2.26)

Remark 2.30. (Nearest-neighbour interactions) By Remark 2.4 we get that

(i) if mn = 0 for any n ≥ 1, then Qm f (z) = Q̂m f (z) = f ∗∗(z);
(ii) if mn = 0 for any n ≥ 2, then Qm f (z) = ( f (z) + 2m1z2)∗∗ − 2m1z2.

In the second case, we note that in general if m1 
= 0 both inequalities in (2.24)
may be strict for some values of z. For example, if f (z) = (1 − z2)2 and m1 � 1,
then

Qm f (z) =

⎧⎪⎨
⎪⎩

(1 − z2)2 if z � −√
1 − m1

m1(2 − m1) − 2m1z2 if |z| �
√

1 − m1

(1 − z2)2 if z ≥ √
1 − m1,

and both inequalities are strict for |z| <
√

1 − m1 (see Fig. 2). Conversely, if
m1 ≥ 1 then Qm f (z) = f (z) for any z; in particular in this case f is m-stable (but
not convex).

Remark 2.31. (Regularity properties) From equality (2.23) we deduce that for any
m the operator Qm has the same regularity properties of Q̂m; that is, Qm f has the
regularity properties of a convex function. In particular, Qm f is locally Lipschitz,
which is then a necessary condition for f to be m-stable. Note that by (2.22) the
convexity of f is a sufficient condition for the stability with respect to any m.

Proposition 2.32. Let Q0
m f = f and define iteratively Qn

m f = Qm(Qn−1
m f ).

Then the sequence Qn
m f is non-increasing and its limit Q∞

m f is m-stable.
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Proof. The sequence is non-increasing by (2.22). Moreover Qn
m f ≥ f ∗∗ for all n.

Since the functions Qn
m f are equi-Lipschitz continuous by Remark 2.31, they con-

verge uniformly on compact sets to their limit Q∞
m f by Ascoli-Arzelà’s Theorem.

Since Qm is continuous with respect to the uniformly convergence on compact sets,
we have Q∞

m f = limn Qn
m f = Qm(limn Qn−1

m f ) = Qm(Q∞
m f ). �

The next proposition states that for non-trivial kernel concentrated at M ≥ 2
stable functions are only f such that f2m1 is convex, which is a trivial condition
implying stability by Proposition 2.28(ii). Moreover, iteration of the m transform
gives a strictly decreasing sequence.

Proposition 2.33. Let m be a non-trivial kernel concentrated at M ≥ 2; that is,
with mM 
= 0. In this case:

(i) f is m-stable if and only if f2m1 is convex;
(ii) if f2m1 is not convex then for any n, there exists z such that Qn

m f (z) >

Qn+1
m f (z);

(iii) Q∞
m f (z) = f ∗∗

2m1
(z) − 2m1z2.

Proof. (i) By Proposition 2.28 we only have to prove that the convexity of f2m1 is
necessary for the m-stability of f . We then suppose that f is m-stable and f2m1 is
not convex, and show that there exists z such that f (z) > Qm f (z), contradicting
the m-stability of f .

From Proposition 2.14 we have that Q̂m f (z) = fam(z) for all z such that
f2m1(z) = f ∗∗

2m1
(z). We consider a maximal interval where f2m1 > f ∗∗

2m1
. By the

growth conditions on f and its continuity (since we suppose that it is m-stable) this
interval is a bounded open interval (S0, SM ), and we have Q̂m f (S0) = fam(S0)

and Q̂m f (SM ) = fam(SM ).
Note that, upon setting

r(z) = f2m1(S0) + f2m1(SM ) − f2m1(S0)

SM − S0
(z − S0),

for z ∈ [S0, SM ] we have

1

M
min

⎧⎨
⎩

M∑
j=1

f2m1(z j ) :
M∑

j=1

z j = Mz

⎫⎬
⎭ ≥ f ∗∗

2m1
(z) = r(z),

with equality if and only if minimal z j belong to {S0, SM } for all j , which implies
that z ∈ {Sh : h ∈ {0, . . . , M}}, where

Sh = S0 + h
SM − S0

M
.

We then have

P M f (Sh) = r(Sh) + 2mM M2S2
h .

Since

P M f (z) ≥ (P M f )∗∗(z) ≥ f ∗∗
2m1

(z) + 2mM M2z2 = r(z) + 2mM M2z2,



  107 Page 26 of 113 Arch. Rational Mech. Anal.         (2023) 247:107 

and Qm f = (P M f )∗∗ by Proposition 2.16, in particular we have

Q̂m f (Sh) = (P M f )∗∗(Sh) = P M f (Sh) = r(Sh) + 2mM M2S2
h ,

from which we get

Qm f (Sh) = r(Sh) − 2m1S2
h .

If h ∈ {1, . . . , M − 1} we have

f (Sh) + 2m1S2
h = f2m1(Sh) > f ∗∗

2m1
(Sh) = r(Sh)

which implies

f (Sh) > r(Sh) − 2m1S2
h = Qm f (Sh),

which contradicts the stability of f .
Note that indeed

Q̂m f (z) > r(z) + 2m M M2z2 if z ∈ (Sh, Sh+1). (2.27)

To check this observe that, since Q̂m f (z) = (P M f )∗∗(z), there exist z1, z2 ∈
[Sh, Sh+1] and t ∈ [0, 1] such that z = t z1 + (1 − t)z2 and

Q̂m f (z) = t P M f (z1) + (1 − t) P M f (z2)

≥ t r(z1) + (1 − t)r(z2) + t 2mM M2z2
1 + (1 − t) 2mM M2z2

2,

and we get (2.27) unless z1 = z2 = z. The latter case is ruled out, as we would
have Q̂m f (z) = t P M f (z); that is, z ∈ {Sh, Sh+1}.

(ii) We fix h ∈ {0, . . . , M − 1} and consider any interval (Sh, Sh+1) as defined
in the proof of claim (i) above. If z ∈ (Sh, Sh+1), by (2.27) we have

Qm f (z) + 2m1z2 = Q̂m f (z) − 2mM M2z2

> r(z) = f ∗∗
2m1

(z) = ( f (z) + 2m1z2)∗∗

≥ (Qm f (z) + 2m1z2)∗∗. (2.28)

Hence, each (Sh, Sh+1) is an interval of non-convexity of Qm f (z)+2m1z2 and we
may repeat the argument of the proof of claim (i) to show that Q f

m(z) > Q2
m f (z) in

M −1 equi-spaced points in (Sh, Sh+1). The argument can be then used iteratively.
(iii) If f2m1 is convex the claim is trivial. Suppose otherwise. By (2.28) we have

( f (z) + 2m1z2)∗∗ = (Qm f (z) + 2m1z2)∗∗ = r(z)

for z ∈ [S0, SM ], and, iterating the argument also

r(z) = ( f (z) + 2m1z2)∗∗ = (Qn
m f (z) + 2m1z2)∗∗,

for z ∈ [S0, SM ] and n ≥ 1. As in the proof of claim (ii) above we have

Qn
m f (z) + 2m1z2 = r(z) if z = S0 + k

Mn
(SM − S0)
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for all k � Mn , and then

Q∞
m f (z) + 2m1z2 = r(z) if z = S0 + k

Mn
(SM − S0)

for some n and for all k � Mn . By density, the equality then extends to all
z ∈ [S0, SM ]. Arguing in this way in each interval of non-convexity of f2m1 we
conclude. �
Corollary 2.34. The same claims of the previous proposition hold if m is such that
M ≥ 2 exists such that mn = 0 if n 
∈ {1, MN}.
Proof. The proof follows by noting that

k∑
i, j=0

m|i− j |(ui − u j )
2 � 2m1

k∑
i=1

(ui − ui−1)
2 + m̃M

k∑
i, j=0, |i− j |=M

(ui − u j )
2,

where m̃M = ∑∞
j=1 j2m j M , and arguing by comparison, applying the previous

proposition to the kernel m̃ where m̃1 = m1 and m̃n = 0 if n 
∈ {1, M} �
Proposition 2.33 does not hold for ‘incommensurate’ kernels; i.e., such that

there are interactions not multiple of a common M > 1. In the example below we
treat a paradigmatic case.

Example 2.35. (Incommensurability and non-trivialm-stability) Letm be such that
mn 
= 0 if and only if n ∈ {2, 3}.

Let k ∈ N and consider the quadratic function

G(z1, . . . , zk) = 2m2

k∑
i=1

(zi + zi+1)
2 + 2m3

k∑
i=1

(zi + zi+1 + zi+2)
2

defined on k periodic sequences {zi }i∈Z. Using that for all a, b ∈ R we have
2(a2 + b2) ≥ (a − b)2, so that

2m2(zi+1 + zi+2)
2 + 2m3(zi + zi+1 + zi+2)

2 ≥ min{m2, m3}z2
i ,

we obtain that

Hc(z1, . . . , zk) = G(z1, . . . , zk) − 2c
k∑

i=1

z2
i ≥ 0

for any c ∈ (0,
min{m2,m3}

2 ). Hence, since Hc is a symmetric non-negative 2-
homogeneous polynomial of degree 2, it is convex. Then

1

k
min

{
Hc(z1, . . . , zk) :

k∑
i=1

zi = kz
}

= 8m2z2 + 18m3z2 − 2cz2. (2.29)
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Now, we suppose that f (z)+2cz2 is convex for some c ∈ (0,
min{m2,m3}

2 ). Then
for any k

1

k
min

{ k∑
i=1

f (zi ) + G(z1, . . . , zk) :
k∑

i=1

zi = kz
}

= 1

k
min

{ k∑
i=1

( f (zi ) + 2cz2
i ) + Hc(z1, . . . , zk) :

k∑
i=1

zi = kz
}

= f (z) + 2cz2 + 8m2z2 + 18m3z2 − 2cz2 = f (z) + amz2.

Note that by Remark 2.8 in the definition of Qm f we can take ui − ui−1 = z for
i = 1, 2, 3 and i = k, k −1, k −2, and consider the function ui −ui−1 extended by
k-periodicity. Indeed, the minimum problem in (2.11) is estimated from below by
the periodic problem up to a term O( 1

k ). Hence, Q̂m f (z) ≥ f (z)+ amz2, and f is
m-stable, since the other inequality is true by (2.22). Note that this implies that, in
general, the condition f2m1 convex is not necessary for the m-stability of f , since
in this case it suffices that f2m1+2c be convex.

Definition 2.36. (Effective strength of nearest-neighbour interaction) Let

Gk(z1, . . . , zk) =
+∞∑
n=1

2mn

k∑
i=1

( i+n∑
j=i

z j

)2

defined on k-periodic sequences {z j } j∈Z. We define the effective strength of nearest-
neighbour interaction meff

1 for m as the supremum of all constant c such that

Gk(z1, . . . , zk) ≥ 2c
k∑

i=1

z2
i

for all k ∈ N and for all {z j } j∈Z.

Remark 2.37. (Lower bound with meff
1 ) Note that meff

1 ≥ m1. The two values coin-
cide if and only if m satisfies the generalized concentration hypothesis of Corollary
2.34. Repeating the argument in Example 2.35, we obtain that a sufficient condition
for the m stability of a function f is the convexity of f2meff

1
. Moreover, we have the

estimate

Qm f (z) ≥ f ∗∗
2meff

1
(z) − 2meff

1 z2. (2.30)

This can be achieved again following Example 2.35, estimating f2meff
1

with its
convex envelope.
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2.5.1. Interpolation by Parameterized Kernels The penalization kernel m may
depend on a scale parameter σ , measuring either the range or the scale of incom-
patibility. Of particular interest are kernels that tend to 0 as σ → +∞, while they
loose their summability as σ → 0. Kernels m with such a dependence on a scale
parameter σ can be used to interpolate between the extreme bounds in (2.24).

A suitable class of such kernels is constructed as follows. Let m : [0,+∞) →
[0,+∞) be a continuous non-increasing function such that m is strictly positive
up to some x > 0, and ∫ +∞

0
x2m(x) dx < +∞.

These conditions are satisfied by m(x) = e−x ; in this case, by setting mn = mσ
n =

m(σn), we obtain the exponential kernels mn = e−σn studied in more detail in
Section 5.

The following proposition holds:

Proposition 2.38. Let m : [0,+∞) → [0,+∞) be as above, and for all σ >

0 consider the kernel mσ = {m(σn)}n. Let f : R → [0,+∞) satisfy growth
assumptions (2.5) and (2.6). Then,

lim
σ→+∞ Qmσ f (z) = f ∗∗(z) and lim

σ→0+ Qmσ f (z) = f (z). (2.31)

Proof. Setting amσ = 2
+∞∑
n=1

m(σn)n2, we obtain that

amσ � 2
∫ +∞

0
m(σ (x + 1))(x + 1)2 dx � 2

σ

∫ +∞

0
m(y)y2 dy = C

σ
→ 0 as σ → +∞.

Then, the first equality in (2.31) follows directly from Proposition 2.11, as we have

f ∗∗(z) � Qmσ f (z) � ψ∗∗
σ (z) − amσ z2 � f (z)

where ψσ (z) = f (z) + amσ z2. Since amσ decreases to 0 as σ → +∞, then there
exists a convex function ψ such that

f ∗∗(z) � ψ(z) = lim
σ→+∞ ψ∗∗

σ (z) = lim
σ→+∞

(
ψ∗∗

σ (z) − amσ z2
)

� f (z).

Hence, ψ(z) = f ∗∗(z) = lim
σ→+∞ Qmσ f (z).

Now, we prove the second limit in (2.31). Since (2.14) holds, it is sufficient to
show that lim

σ→0
Qmσ f (z) ≥ f (z). Up to scaling, we can suppose that x = 1 and

m(1) = 1. Since m is non-increasing, it is sufficient to prove the desired equality
for m = χ[0,1]. The function amσ is non-increasing with respect to σ ; hence, for
any z there exists the limit of Qmσ f (z) as σ → 0. Let σk → 0 as k → +∞ and
let uk be a minimizer in [0, k] for the minimum problem in the formula of Qmσk in
Remark 2.23; that is, uk is an admissible minimizer for Gσk (u) defined by

Gσk (u) =
k∑

i=1

f (ui − ui−1) +
k∑

i, j=0

m(σk |i − j |)((ui − u j )
2 − (i − j)2z2).
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Let Nk = � 1
σk

�. By Remark 2.8, we can assume that the test functions u, defined
for i ∈ Z, satisfy ui = i z for i � Nk and i ≥ k − Nk . Reasoning as in Remark
2.24, for any 
 = 1, . . . , Nk and r = 1, . . . , 
 we have

�k/ l�∑
i=1

(
(uk

i
+r − uk
(i−1)
+r )

2 − z2
2
)

=
�k/ l�∑
i=1

(
uk

i
+r − uk
(i−1)
+r − z


)2 ≥ 0.

We now define a discrete function wk by setting wk
i = uk

i − uk
i−1 − z. For any

1 � n � Nk , we can write

wk
i =

i+n∑
j=i

wk
j −

i+n∑
j=i+1

wk
j ,

so that, by summing over n,

Nk
1

k

k∑
i=1

(wk
i )2 � 2

k

k∑
n=1

k∑
i=1

(
(uk

i+n − uk
i−1 − (n + 1)z)2 + (uk

i+n − uk
i − nz)2)

� 4

k
Gσk (uk),

recalling that m(σkn) = 1 if σkn � 1 and 0 otherwise. Now, let ũk denote the
piecewise-affine extension to [0, 1]of the discrete function defined by ũk( i

k ) = 1
k uk

i ,
so that (ũk)′ − z = wk

i in each interval ( i−1
k , i

k ). Since 4
k Gσk (uk) is equibounded,

we obtain that

∫ 1

0
((ũk)′ − z)2 dt = 1

k

k∑
i=1

(wk
i )2 � C

Nk
→ 0 as k → +∞.

Hence, ũk → zx in H1(0, 1). We get

lim
k→+∞ Qmσk f (z) ≥ lim inf

k→+∞
1

k

k∑
i=1

f (uk
i − uk

i−1) ≥ lim inf
k→+∞

1

k

k∑
i=1

f (uk
i − uk

i−1)

= lim inf
k→+∞

1

k

k∑
i=1

f (wk
i + z) = lim inf

k→+∞

∫ 1

0
f (ũ′

k) dt ≥ f (z),

by the lower-semicontinuity of the functional w �→ ∫ 1
0 f (w′) dt with respect to

the strong H1-convergence. �
Remark 2.39. (‘Singular’ kernels depending on σ ) If m is a kernel concentrated at
some M ≥ 2, with mM 
= 0, we consider a different type of parameter dependence.
In this case, we can setmσ = {mσ

n }n = {φ(σ)mn}n , with φ decreasing and such that
limσ→0+ φ(σ) = +∞ and limσ→+∞ φ(σ) = 0; for instance, we may consider

mσ
n = 1

σ
mn .
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Since mn is not decreasing, this case cannot be treated directly by applying the
result of the above proposition. However, the same argument as in the proof of
Proposition 2.38 can be used as well giving

lim
σ→+∞ Qmσ f (z) = f ∗∗(z). (2.32)

As for the limit as σ → 0+, we can follow the proof up to the definition of wk
i ,

obtaining

1

k

k∑
i=1

(wk
i )2 � 2

k

k∑
n=1,M

k∑
i=1

(
(uk

i+n − uk
i−1 − (n + 1)z)2 + (uk

i+n − uk
i − nz)2)

� max
{ σk

m1
,

σk

m M

}4

k
Gσk (uk),

and we can conclude exactly as above, proving that

lim
σ→0+ Qmσ f (z) = f (z). (2.33)

Note that if m1 = 0 equality (2.33) in general does not hold (while (2.33) is always
valid). As an example, we refer to Remark 4.6.

In general, for σ -dependent kernels equalities (2.31) are achieved only asymp-
totically. However, in some cases they are reached for some finite values of σ > 0.
To highlight this fact, we give the following definition.

Definition 2.40. (Critical transition value of σ ) Let f : R → [0,+∞) be a con-
tinuous function satisfying growth assumptions (2.5) and (2.6). Let {mσ }σ>0 be
a family of parameterized kernels. We define the critical transition value of σ by
setting

σc = σc( f ) = sup{σ > 0 : Qmτ f = f for allτ < σ }.

We set σc = 0 if Qmσ f < f for any σ .

Example 2.41. (Existence of positive critical transition values) Let f (z) = (1−z2)2

and let m be concentrated at some M ≥ 2, as in Remark 2.39. We set mσ
1 = m1

σ
and mσ

M = mM
σ

. By Remark 2.29, we have that σc = m1 is the critical transition
value. Note that, conversely, for any σ we have that Qmσ f (z) > f ∗∗(z) for some
values of z, hence the limit in (2.32) is only reached at +∞.

In the sequel, an important role will be played by the two special families
of kernels depending on σ , exponential and concentrated at some M , introduced
above and already illustrated in Fig. 1, for which the computation of Qm f can be
performed analytically. In both cases, we will be able to trace explicitly the role of
the scale parameter σ characterizing the range/strength of the penalization kernel.
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3. Description of Minimizers by a Phase Function

In this section, we focus on the important case of ‘generalized double well’
potentials when the domain of a function f can be subdivided in two sub-domains
of convexity, which in what follows we refer to as A and R\A. We call such
potentials bi-convex and refer to the two convex branches of f as phases. Given
that some microstructures in such models can be interpreted as a ‘phase mixtures’,
it will be convenient to introduce the ‘volume-fraction parameter’ θ representing
the percentage of indices i such that ui − ui−1 is in the set A. The computation of
minima with prescribed volume fraction θ gives an upper bound for Q̂m f .

With the introduction of θ , one can proceed in two steps. The first step involves
the computation of the function Q̂m f (θ, z) which is obtained by a constrained
minimization with prescribed θ . Then the function Q̂m f can be obtained by a
one-dimensional optimization of Q̂m f (θ, z) over θ , which also defines the phase
function θ(z) such that Q̂m f (θ(z), z) = Q̂m f (z). In the problems of interest the
function θ(z) will have a complex ‘staircase’ structure reflecting the existence of
the locking states at the values of θ that are stable under variation of z.

Remark 3.1. (Constrained minimization and the structure of the phase function)
To understand the role of the constrained minimization producing the function
Q̂m f (θ, z) and to reveal the link between the shape of the phase function θ(z) and
the structure of the relaxed energy Q̂m f , it will be instructive to consider first the
case when only M-neighbour interactions are taken into account. We recall that in
this case there exists M ≥ 2 such that mM 
= 0 and mn = 0 for any n 
= M .

Proposition 2.16 gives a formula for Q̂m f (z). If f is bi-convex, we can subdi-
vide its computation by introducing a dependence on the fraction θ of zi = ui −ui−1
belonging to the convexity region A. More precisely, for any n = 0, . . . , M we can
first compute the minimum at a fixed fraction θn = n

M of zi belonging to A. Using
the convexity, such minimum problems reduce to the computation of

P M,n(z) = min
{
(1 − θn) f (z−) + θn f (z+) : z− � z∗, z+ ≥ z∗,

(1 − θn)z− + θnz+ = z
}

+ 2mM (Mz)2.
(3.1)

The optimal bounds are then completely characterized by the functions P M,n , in
the sense that

Q̂m f (z) = (
min

n
P M,n(z)

)∗∗
.

We will show that all the M+1 values θn are locking states in the sense above. These
values of θ are particularly relevant since the shape of Q̂m f (z) will be shown to
depend exclusively on ‘phase mixtures’ with ‘volume fraction’ θn . Another property
enjoyed by θn is that the minimum problems corresponding to values of z for which
θ(z) = θn admit periodic solutions.
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3.1. Phase-Constrained Relaxation and Related Properties

We now give some definitions, and obtain some general bounds valid for any
choice of f and m.

Let z∗ ∈ R and let A = [z∗,+∞). For a given θ ∈ Q ∩ [0, 1] and N ∈ N

we consider the set of test functions u with a percentage θ of indices i such that
ui −ui−1 ∈ A. Since we need a closed condition, the form of the constraint is given
as follows:

V(N ; θ) = {u : [0, N ] ∩ Z → R : #{i : ui − ui−1 > z∗} � θ N ,

#{i : ui − ui−1 < z∗} � (1 − θ)N }. (3.2)

For any z ∈ R we can then define the function

Q̂m f (θ, z) = lim inf
N→+∞
θ N∈N

1

N
inf

{
F1(u; [0, N ]) : u ∈ A(N ; z) ∩ V(N ; θ)

}
, (3.3)

where F1 is the (non-scaled) functional defined for u : [0, N ] ∩ Z → R by

F1(u; [0, N ]) =
N∑

i=1

f (ui − ui−1) +
N∑

i, j=0

m|i− j |(ui − u j )
2 (3.4)

(see (2.8) with ε = 1 and I = [0, N ]). In the notation Q̂m f (θ, z) we omit the
dependence on z∗. Note that a corresponding definition could be given also for a
more general set A.

In order to obtain bounds for Qm f , we also define

Qm f (θ, z) = Q̂m f (θ, z) − amz2. (3.5)

Theorem 3.2. (Optimization over the phase fraction) The following equality holds:

inf
θ∈Q∩[0,1] Q̂m f (θ, z) = Q̂m f (z).

Proof. It is sufficient to prove that Q̂m f (z) ≥ infθ∈Q∩[0,1] Q̂m f (θ, z). To this end,
with η > 0 fixed we choose δ > 0, k ∈ N and u an admissible test function for the
minimum in (2.10) such that

1

k

( k∑
i=1

f (ui − ui−1) +
k∑

i, j=0

m|i− j |(ui − u j )
2
)

� Q̂m f (z) + η.

Setting

θ = #{i : ui − ui−1 ≥ z∗}
k

,
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we extend u to Z so that ui − zi is k-periodic. Since u ∈ A(Nk; z) ∩ V(Nk; θ),
we can use it as a test function for

1

Nk
inf

{
F1(v; [0, Nk]) : v ∈ A(Nk; z) ∩ V(Nk; θ)

}
(3.6)

in the computation of Q̂m f (θ, z).
We subdivide the estimate of F1(v; [0, Nk]) by grouping interactions in three

(partially overlapping) different subsets taking into account the location of the
interacting sites in the subintervals [(r − 1)k, rk] for r ∈ {1, . . . , N }.

(i) (Interactions within a single subinterval) i, j ∈ [(r − 1)k, rk] for some
r ∈ {1, . . . , N }. Summing over all i, j and r gives the contribution

1

k
F1(u; [0, k]) (3.7)

to (3.6).
(ii) (Interactions between different intervals, but not close to the endpoints)

i ∈ I δ
r = [(r − 1)k + kδ, rk − kδ] ∩ Z, j ∈ Is = [(s − 1)k, sk] ∩ Z for some

r, s ∈ {1, . . . , N } with r 
= s.
Let i ′ = i − (r − 1)k and j ′ = j − (s − 1)k. We can write

(ui − u j )
2 = (ui ′ − u j ′ + z(r − s)k)2 � 2(ui ′ − u j ′)

2 + 2z2(r − s)2k2

� 2(i ′ − j ′)
i ′∑

l= j ′+1

(ul − ul−1)
2 + 2z2(r − s)2k2

(we can suppose for simplicity that j ′ < i ′). By (2.6) we have that

i ′∑
l= j ′+1

(ul − ul−1)
2 �

k∑
l=1

(ul − ul−1)
2 � c F1(u; [0, k]) � Ck,

so that (ui − u j )
2 � 2Ck2 + 2z2(r − s)2k2.

We may suppose that k is large enough, so that ml � η

lβ
if l ≥ kδ, where β

is the decay exponent of m. Note that |i − j | ≥ ∣∣|s − r | + δ − 1
∣∣k ≥ δk. Hence,

summing over such i, j , r and s we obtain

1

Nk

∑
r 
=s

∑
i∈I δ

r

∑
j∈Is

m|i− j |(ui − u j )
2 � 1

N

∑
r 
=s

2k(C + z2(r − s)2)
∑
i∈I δ

r

∑
j∈Is

m|i− j |

� 2
1

N

∑
r 
=s

(C + z2(r − s)2)
η∣∣|s − r | + δ − 1

∣∣β k3−β

� 2
∞∑

n=1

(C + z2n2)
η

|n + δ − 1|β k3−β � C̃η. (3.8)

(iii) (Interactions between different intervals, close to the endpoints) i, j ∈
J δ

r = [rk − kδ, rk + kδ] ∩ Z for some r ∈ {1, . . . , N − 1}.
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For such i, j we have ui − u j = z(i − j). Hence, we have

1

Nk

N−1∑
r=1

∑
i, j∈J δ

r

m|i− j |(ui − u j )
2 = z2

Nk

N−1∑
r=1

∑
i, j∈J δ

r

m|i− j |(i − j)2

� z2

k

∑
−kδ�l�kδ

∑
n∈Z

mnn2 � C̃δ. (3.9)

By (3.7)–(3.9) we obtain the estimate

1

Nk
F1(u; [0, Nk]) � 1

k
F1(u; [0, k]) + C̃(η + δ) � Q̂m f (z) + C(η + δ).

Taking the liminf as N → +∞, by the arbitrariness of η and δ we obtain the
claim. �

We now study the general properties of Q̂m f (θ, z) as a function of θ . To that
end, we write θ as the quotient of (coprime) integer numbers p and q, so that

Q̂m f (θ, z) = lim inf
k→+∞

1

kq
inf

{
F1(u; [0, kq]) : u ∈ A(kq; z) ∩ V(kq; θ)

}
.

We will need to develop some technical ideas related to the possibility of mod-
ifying boundary conditions. We note that the usual cut-off argument as in Remark
2.8 cannot be directly followed, since forcing the test function to satisfy the affine
condition ui = i z near the boundary may be incompatible with the constraint. Still,
we can modify the argument with a compatible condition remaining close to the
affine function near the boundary.

To make this precise, for any δ > 0 we introduce the set

Ãδ(N ; z) = {u ∈ A(N ; z) : |ui − ui−1| � |z∗| + 2|z| ifi � δN and i ≥ (1 − δ)N }
and state the following result:

Lemma 3.3. (Compatible boundary conditions) If holds that

Q̂m f (θ, z) = lim
δ→0

lim inf
k→+∞

1

kq
inf

{
F1(u; [0, kq]) : u ∈ V(kq; θ) ∩ Ãδ(kq; z)

}

for any θ = p
q ∈ Q ∩ [0, 1] and z ∈ R.

Proof. Let z ∈ R; we may suppose without loss of generality z � z∗. Let u ∈
V(kq; θ) ∩ A(kq; z) be a test function. We modify u separately close to the two
endpoints i = 0 and i = kq. Let uz be a function with uz

0 = 0, and such that
uz

i − uz
i−1 = z∗ if ui − ui−1 ≥ z∗ and uz

i − uz
i−1 = 2z − z∗ if ui − ui−1 � z∗. By

a cut-off argument as in Remark 2.8 we can modify u on [0, 2kqδ] in a function ũ
in such a way that ũi = uz on [0, kqδ], and ũi − ũi−1 
∈ {ui − ui−1, uz

i − uz
i−1}

except for at most kqδ/N for a given arbitrary N . Since uz
i − uz

i−1 = z∗ on a
strictly positive percentage of points in [0, kqδ] (hence, we can suppose larger than
kqδ/N ), up to slightly modifying ũ on such points we have that ũ satisfies the
constraint; i.e., ũ ∈ V(kq; θ). The same argument can be repeated close to i = kq.
Note that the energy of uz is comparable to that of the affine function zi , so that we
obtain an estimate for the energy of ũ. �
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This lemma allows us to prove the convexity of Q̂m f in both variables.

Proposition 3.4. (Convexity of Q̂m f ) The function

(θ, z) �→ Q̂m f (θ, z)

is convex; more precisely,

(1 − t)Q̂m f (θ1, z1) + t Q̂m f (θ2, z2) ≥ Q̂m f ((1 − t)θ1 + tθ2, (1 − t)z1 + t z2)

for any t ∈ [0, 1] ∩ Q, θh = ph
qh

∈ [0, 1] ∩ Q and zh ∈ R.

Proof. For any k ∈ N and δ > 0 we define

Q̂m f δ
k (θ, z) = 1

kq
inf

{
F1(u; [0, kq]) : u ∈ V(kq; θ) ∩ Ãδ(kq; z)

}
.

With fixed δ > 0, we choose sequences k1
N , k2

N → +∞ (omitting the dependence
on δ) such that

lim inf
k→+∞ Q̂m f δ

k (θh, zh) = lim
N→+∞ Q̂m f δ

kh
N
(θh, zh)

for h = 1, 2. We set Mh
N = kh

N qh . Recalling Lemma 3.3, for any fixed η > 0 we
find δη > 0 such that for 0 < δ < δη small enough there exists a test function
uh ∈ Ãδ(Mh

N ; zh) (again omitting the dependencies) such that

Q̂m f (θh, zh) ≥ lim
N→+∞ Q̂m f δ

kh
N
(θh, zh) − η = lim

N→+∞
1

Mh
N

F1(u
h; [0, Mh

N ]) − η.

(3.10)

Setting MN = nM1
N M2

N , we define a test function u in [0, MN ] ∩ N by means of
suitable translations of u1 and u2. More precisely, we set t = m

n and

ui =
{

û1
i ifi ∈ [0, (n − m)M1

N M2
N ]

û2
i−(n−m)M1

N M2
N

+ û1
(n−m)M1

N M2
N

ifi ∈ ((n − m)M1
N M2

N , MN ],

where ûh : [0, Mh
N ] ∩ N → R is given by

ûh = uh
i−( j−1)M1

N
+ ( j − 1)M1z1 ifi ∈ [( j − 1)Mh

N , j Mh
N ],

with j = 1, . . . , (n −m)M2
N if h = 1 and j = 1, . . . , m M1

N if h = 2. The function
u is an admissible test function for Q̂ fk1

N k2
N
(θ, z), where

θ = (1 − t)θ1 + tθ2 = (n − m)q2 p1 + mq1 p2

nq1q2
= p

q
and z = (1 − t)z1 + t z2.

Indeed, MN = k1
N k2

N q, and

#{i : ui − ui−1 ≥ z∗}
MN

= (n − m)N2k1
N p1 + m N1k2

N p2

M
= θ;
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the boundary conditions are satisfied since uMN = MN z. We get

1

MN
F1(u; [0, MN ]) ≥ Q̂m fk1

N k2
N
(θ, z). (3.11)

Since uh ∈ Ãδ(Mh
N ; z), recalling that m|i− j | = o(|i − j |−β) with β > 3, we obtain

1

MN
F1(u; [0, MN ]) �

(n − m)M2
N M1

N

MN
F1(u

1; [0, M1
N ])

+m M1
N M2

N

MN
F1(u

2; [0, M2
N ])

+c(δ)o(1)N→+∞ + Cδ

= n − m

n
Q̂ f δ

k1
N
(θ1, z1)

+m

n
Q̂ f δ

k2
N
(θ2, z2) + c(δ)o(1)N→+∞ + Cδ.

Taking the lim inf as N → +∞ and recalling (3.10) and (3.11), we get

Q̂m f (θ, z) � lim inf
N→+∞ Q̂m fk1

N k2
N
(θ, z)

� lim inf
N→+∞

1

MN
F1(u; [0, MN ])

� lim inf
N→+∞

(n − m

n
Q̂m f δ

k1
N
(θ1, z1) + m

n
Q̂m f δ

k2
N
(θ2, z2)

)
+ Cδ

� n − m

n
Q̂m f (θ1, z1) + m

n
Q̂m f (θ2, z2)) + η + Cδ.

Since η > 0 is arbitrary and δ ∈ (0, δη), this concludes the proof. �

3.2. Phase Function and Locking States

By the convexity of the function θ �→ Q̂m f (θ, z), we can extend it (and
consequently also Qm f (θ, z)) to the irrational values of θ ∈ (0, 1) by continuity.
This naturally leads to a definition which singles out some critical values for θ

remaining ‘stably optimal’ for a range of values of the loading parameter z.

Definition 3.5. (Locking states) We say that θ is a locking state for f and m if the
set {z : Qm f (θ, z) = Qm f (z)} contains an open interval.

The special values of θ , for which the relaxed energy Q̂m f (θ, z) can be obtained
by considering periodic minimizers, play a particular role in the construction of
Q̂m f . Usually, the arrangements of such minimizers remain optimal over an interval
of the values of z and the corresponding θ are locking states (see Remark 3.23).
The analysis of some model examples from this standpoint will show how the
knowledge of such special values of θ can allow one to compute the whole relaxed
energy Q̂m f (z) (for instance for concentrated kernels).

We can now introduce a ‘phase function’ as follows:
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Definition 3.6. (Phase function) We define the phase (multi)function �(z) by

�(z) = {
θ ∈ [0, 1] : sc(Qm f )(θ, z) = Qm f (z)

}
,

where sc(Qm f ) denotes the lower semicontinuous envelope of Qm f (θ, z) with
respect to θ . In order to define a phase function θ(z), we select θ(z) as the minimum
of the set �(z).

Remark 3.7. (A selection issue) Note that in order to have θ well defined we have
made a choice of θ(z) as a minimum in the case when �(z) is not a singleton.
This is an arbitrary choice and may lead to some difficulty in the interpretation of
this value, for example in cases where the dependence on θ ∈ [0, 1] is symmetric,
or in degenerate cases (see for instance items (b) and (c) with the corresponding
examples in Section 3.3.1).

Remark 3.8. (Locking states as the ‘steps’ (constancy intervals) developed by θ(z))
The definition of the phase function θ(z) allows one to interpret locking states as
the values θ for which θ−1(θ) contains an open interval.

Remark 3.9. (Possible non-semicontinuity at the extreme points) Note that
sc(Qm f )(θ, z) differs from Qm f (θ, z) only at most for θ ∈ {0, 1}, by the continu-
ity of Qm f (θ, z) in (0, 1). If the function θ �→ Qm(θ, z) is lower semicontinuous
in 0 and 1, then the multi-function �(z) coincides with the set

�(z) = {θ ∈ [0, 1] : Qm f (θ, z) = Qm f (z)}.
In general, the set �(z) can be empty, in which case, by Definition 3.6, �(z) is a
singleton and θ(z) = 0 (or 1) if there exists θn → 0 (or 1, respectively) such that
Qm f (θn, z) → Qm f (z) (see Example 3.15 below).

Proposition 3.10. If Q̂m f is affine in an open interval I and �(z) = {θ(z)} for all
z ∈ I , then θ is affine in I .

Proof. Let z1, z2 ∈ I , θ1 = θ(z1), and θ2 = θ(z2). For t ∈ (0, 1), Proposition 3.2,
the convexity of Q̂m f (θ, z) and the hypothesis imply that

Q̂m f (t z1 + (1 − t)z2) � Q̂m f (tθ1 + (1 − t)θ2, t z1 + (1 − t)z2)

� t Q̂m f (θ1, z1) + (1 − t)Q̂m f (θ2, z2)

= t Q̂m f (z1) + (1 − t)Q̂m f (z2)

= Q̂m f (t z1 + (1 − t)z2),

and the claim follows. �
Remark 3.11. (Locking states and periodic microstructures) The definition of lock-
ing state is formally disconnected from the periodicity of the associated minimizers.
However, the two notions are perhaps related. Indeed, if the value of the minimum
energy Q̂m f (z) is reached by some periodic minimizer with a given ‘pattern’ or
microstructure (describing the arrangement of ui − ui−1 in the two energy wells),
then one can expect the same pattern to be optimal also for small perturbations of
z (with of course, a small variation of the values of u). This would then entail that
the corresponding θ is a locking state, however, the formalization of this statement
remains unproven even if it holds in all our examples.
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3.3. Phase-Constrained Analysis for Decoupled Interactions

In this section we focus on the two extreme cases when the effects of f andm can
be decoupled; namely, either when m vanishes or when f is convex. A comparison
with these cases will highlight how for general f and m the interplay between
non-convexity and non-locality gives rise to complex superposition effects. Such
effects will be analyzed in the following sections in two particularly meaningful
examples.

3.3.1. Convexification as an Envelope of Phase-Constrained Problems We
start by considering the case when the kernel m vanishes. We know that in this
case

Qm f (z) = Q̂m f (z) = f ∗∗(z)

for any z. We can still focus on the dependence of the partially relaxed energy on the
volume fraction θ , which is already non trivial. Moreover, it shows some features
that we will later encounter in more complex examples.

In this section, we will use 0 instead of m in the notation. Suppose that while
f : R → [0,+∞) is not convex, there exists z∗ ∈ R such that the restrictions
of f to (−∞, z∗] and [z∗,+∞) are convex. For such f , we now compute both
Q0 f (θ, z) and �(z).

Remark 3.12. (Growth condition) The growth condition from below on f (z) +
2m1z2 assumed in the previous sections, in this case would imply a growth condition
on f . Nevertheless, for the results of this section it is not necessary, and below we
also treat cases where it is not satisfied, showing some non-continuity effects.

Let f0 and f1 denote the restrictions of f to (−∞, z∗] and to [z∗,+∞), re-
spectively. For θ ∈ (0, 1), by using the convexity of f0 and f1 we get

Q0 f (θ, z) = inf{(1 − θ) f0(t) + θ f1(s) : t � z∗, s ≥ z∗, (1 − θ)t + θs = z}.
As for the limit cases θ = 0 and θ = 1, we have

Q0 f (0, z) =
{

f0(z) ifz � z∗

+∞ ifz > z∗ and Q0 f (1, z) =
{

+∞ ifz < z∗

f1(z) ifz ≥ z∗.

We subdivide the subsequent analysis in dependence of the shape of the function
f ∗∗(z) representing the convex envelope of f ; more precisely, on whether the ‘non-
convexity set’ {z : f ∗∗(z) < f (z)} is a bounded interval, a half line or the whole
line. Note that in this set f ∗∗ is affine.

Case (a): the non-convexity set is a bounded interval We suppose that there exist
z0 ∈ (−∞, z∗] and z1 ∈ [z∗,+∞) such that

f ∗∗(z) =
{

f (z) if z ∈ R\(z0, z1)

r(z) if z ∈ [z0, z1], (3.12)
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Fig. 3. Graph of Q0 f t (θ, z) for different values of θ

Fig. 4. Graph of the phase function θ(z) for the function f t in Example 3.13

where r is affine and r(z) < f (z) in (z0, z1), then Q0 f (z) is obtained as a minimum
of Q0 f (θ, z). In this case, �(z) is a single value θ(z) for any z, and

θ(z) =

⎧⎪⎪⎨
⎪⎪⎩

0 if z � z0
z − z0

z1 − z0
if z0 � z � z1

1 if z ≥ z1.

Note that trivially Q0 f (z) is the convex envelope of the minimum of the two
functions Q0 f (0, z) and Q0 f (1, z); that is, of min{Q0 f (θ, z) : θ isalockingstate},
since the only locking states are 0 and 1.

Note moreover that, if lim
z→+∞

f (z)
z = +∞ and f ′−(z∗) is finite, then the formula

giving Q0 f (θ, z) can be simplified for z large enough. Indeed, there exists z+ such
that for any θ ∈ (0, 1)

Q0 f (θ, z) = (1 − θ) f0(z
∗) + θ f1

( z − (1 − θ)z∗

θ

)
if z ≥ z+.

Correspondingly, if lim
z→−∞

f (z)
|z| = +∞ and f ′+(z∗) is finite then, for any θ ∈ (0, 1),

Q0 f (θ, z) = (1 − θ) f0

( z − θ z∗

1 − θ

)
+ θ f1(z

∗) if z � z−

for |z−| large enough.
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Fig. 5. Graph of Q0 f t (θ, z) with θ fixed and increasing values of t

Example 3.13. (Double-well bi-quadratic potential) For any t > 1 we define

f t (z) =
⎧⎨
⎩

z2 if z � 1( z − t

1 − t

)2
if z ≥ 1.

If θ ∈ (0, 1), we get

Q0 f t (θ, z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(z − θ)2

1 − θ
+ θ if z � 1 − θ t

1 − z0
(z − θ t)2

1 − θ + θ(1 − t)2 if
1 − θ t

1 − t
� z � 1 + θ t (t − 1)

(z − 1 + θ(1 − t))2

θ(1 − t)2 + 1 − θ if z ≥ 1 + θ t (t − 1).

In Fig. 3 we picture the graph of Q0 f t (θ, z) with different values of θ and t fixed,
and their envelope (in red). Figure 4 represents the graph of θ(z) for a fixed t .

In Fig. 5 we picture the graph for a fixed θ and increasing values of t .

Remark 3.14. (Fracture as limit of phase transitions) If f t is defined as in Example
3.13, then for any fixed θ ∈ (0, 1)

lim
t→+∞ Q0 f t (θ, z) =

⎧⎨
⎩

(z − θ)2

1 − θ
+ θ if z � θ

θ if z ≥ θ.

This limit function is Q0 f (θ, z) for f the truncated parabola (see Example 3.15
below with f̃ (z) = z2). This asymptotic behaviour is illustrated in Fig. 5.

From a mechanical standpoint, in the limit as t → +∞ we can recover the case
fracture as limit of phase-transitions problems as the second well gets moved to the
right and its curvature diminishes [96].

Case (b): the non-convexity set is a half line.Let f ∗∗(z) < f (z) on a half-line, and
assume that the half-line is bounded from below, the other case being symmetric.

By the convexity properties of f0 and f1, up to the subtraction of the affine
function asymptotic to f1 at +∞, it is not restrictive to assume that lim

z→+∞ f1(z) ∈
[min f0,+∞), so that f ∗∗ = min f0 in [zmin

0 ,+∞), where zmin
0 is the largest

minimizer of f0 in (−∞, z∗].
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Fig. 6. a Q0 f (θ, z) for a truncated convex potential and b θ �→ Q0 f (θ, z) for different
values of z

For any θ ∈ (0, 1) and z ≥ (1 − θ)zmin
0 + θ z∗, we can use zmin

0 and
z−(1−θ)zmin

0
θ

as test values for Q0 f (θ, z). If z > zmin
0 , taking the limit as θ → 0 we get

Q0 f (z) = f0(z
min
0 ) = lim

θ→0

(
(1 − θ) f0(z

min
0 ) + θ f1

( z − (1 − θ)zmin
0

θ

))
= lim

θ→0
Q0 f (θ, z).

Since Q0 f (θ, z) = +∞ for z > z∗ ≥ zmin
0 , the function θ �→ Q0 f (θ, z) is not

lower semicontinuous in 0. If we also assume that lim
z→+∞ f1(z) > min f0, then

Q0 f (θ, z) > Q0 f (z) forany θ ∈ [0, 1] and z > zmin
0

and �(z) = ∅ (see Remark 3.9). Since for z � z∗ we have Q0 f (0, z) = Q0 f (z),
it follows that θ(z) = 0 for any z � z∗.

Example 3.15. (Truncated convex potential) Let f be the truncated convex given
by

f (z) =
{

f̃ (z) ifz � z∗

f̃ (z∗) ifz ≥ z∗,
(3.13)

where f̃ is a convex function such that the only minimum point of f̃ is 0 with
f̃ (0) = 0, and z∗ > 0. In particular, we can take f̃ (z) = z2, in which case f is
called a truncated quadratic potential. For θ ∈ (0, 1) we get

Q0 f (θ, z) =
⎧⎨
⎩

θ f (z∗) + (1 − θ) f
( z − θ z∗

1 − θ

)
if z < θ z∗

θ f (z∗) if z ≥ θ z∗.

For all such f the graphs of Q0 f (θ, z) and of Q0 f (z) have the form as those
pictured in Fig. 6(a). In Fig. 6(b) the function θ �→ Q0 f (θ, z) is represented for
two different values of z, highlighting the lack of lower semicontinuity in 0 if
z > z∗. Note that for any θ ∈ (0, 1) we have Q0 f (θ, z) > f (z) in (−∞, θ z∗].
Moreover, the optimal volume fraction θ(z) is always equal to zero, even though
Q0 f (θ, z) = Q0 f (0, z) only if z � 0 (see Remark 3.17 below).
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Case (c): the non-convexity set is the whole line If f ∗∗ < f in the whole R, then
in our hypothesis it is constant, and as in case (b) it is not restrictive to suppose that
both lim

z→−∞ f (z) and lim
z→+∞ f (z) are finite, so that

Q0 f (z) = min
{

lim
z→−∞ f (z), lim

z→+∞ f (z)
}
.

For θ ∈ (0, 1),

Q0 f (θ, z) = (1 − θ) lim
z→−∞ f (z) + θ lim

z→+∞ f (z).

The function θ �→ Q0 f (θ, z) is not lower semicontinuous in 0 if z > z∗ and in 1
if z < z∗.

If lim
z→−∞ f (z) = lim

z→+∞ f (z), then Q0 f (θ, z) = Q0 f (z) for any θ ∈ (0, 1)

and z ∈ R, hence �(z) = [0, 1] for any z and θ(z) = 0 for any z.
If lim

z→+∞ f (z) < lim
z→−∞ f (z), then for any z we have �(z) = {1} and θ(z) = 1.

Conversely, if lim
z→+∞ f (z) > lim

z→−∞ f (z), then for any z we have �(z) = {0} and

θ(z) = 0. Note that �(z) = ∅ at least for any z < z∗ in the first case, and at least
for any z > z∗ in the second.

We give some simple examples of case (c), highlighting the difference between
� and � due to the lack of semicontinuity at the endpoints.

Example 3.16. • If f (z) = min{1, e−z}, then Q0 f (z) = 0 and Q0 f (θ, z) =
1 − θ for θ ∈ (0, 1). Since Q0 f (0, z) and Q0 f (1, z) are strictly positive, then
�(z) = ∅ for any z. In this case, there is no locking state.

• If f (z) = max{min{1, 2e−z −1}, 0}, then Q0 f (z) = 0 and Q0 f (θ, z) = 1−θ

for θ ∈ (0, 1) as in the previous case. In this case, Q0 f (1, z) = 0 if z ≥ log 2,
hence �(z) = ∅ for any z < log 2 and �(z) = {1} if z ≥ log 2. The only
locking state is θ = 1.

• If f (z) = e−|z|, then Q0 f (z) = Q0 f (θ, z) = 0 for any θ ∈ (0, 1) and z ∈ R.
The set �(z) = (0, 1) for any z, while �(z) = [0, 1]. The only locking state is
θ = 0.

Remark 3.17. (Locking states in the degenerate cases) While we still have that
trivially Q0 f (z) is the convex envelope of min{Q0 f (0, z), Q0 f (1, z)}, in the ex-
amples of cases (b) and (c) nor both values θ = 0 and θ = 1 are regarded as locking
states. In the last of Examples 3.16 this is due to the arbitrary choice of defining
θ(z) as an infimum. As a consequence, the notion of locking state is not relevant in
the computation of Q0 f , in the sense that we cannot recover Q0 f (z) from the only
knowledge of Q0 f (θ, z) for θ locking states. In Example 3.15, indeed we have the
only locking state θ = 0 but Q0 f (0, z) = +∞ for z > 0.

3.3.2. Convex Potentials: Phase-Constrained Interpolation We now consider
the second extreme case; that is, when the function f is convex on all R and the
kernel m is arbitrary. As we noticed in Proposition 2.11, in this case the function
Qm f is trivially equal to f for any choice of m. Nevertheless, the results of the
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constrained minimization producing the functions Qm f (θ, z) are non-trivial even
in this case. They provide further information regarding the general structure of the
dependence of Qm f (θ, z) on the phase variable θ . Moreover, such examples can
serve as comparison limit cases for non-convex energies f .

Let f : R → R be a convex function while m can be arbitrary. In this case,
we would need the growth hypothesis lim

z→±∞ f (z) + 2m1z2 = +∞ only to use

some technical result concerning the variation of the boundary conditions. We fix
an arbitrary z∗ ∈ R and define, A = [z∗,+∞).

As for θ = 0 and θ = 1, by definition, we have

Qm f (0, z) =
{

f (z) if z � z∗

+∞ if z > z∗ and Qm f (1, z) =
{

+∞ if z < z∗

f (z) if z ≥ z∗.

In particular, Qm f (z) = Qm f (0, z) for z � z∗ and Qm f (z) = Qm f (1, z) for
z > z∗. Moreover, the following proposition holds.

Proposition 3.18. For θ ∈ (0, 1), we have

Qm f (θ, z) =

⎧⎪⎨
⎪⎩

θ f (z∗) + (1 − θ) f
( z − θ z∗

1 − θ

)
+ am

θ

1 − θ
(z − z∗)2 if z < z∗

(1 − θ) f (z∗) + θ f
( z − (1 − θ)z∗

θ

)
+ am

1 − θ

θ
(z − z∗)2 if z ≥ z∗.

(3.14)

Proof. We fix z < z∗. Let zi be such that
∑kq

i=1 zi = kqz, and

z = 1

#I

∑
i∈I

( f (zi ) + 2m1z2
i ),

where I = {i : zi ≥ z∗} and #I = θkq. Since f is convex, we get

1

kq

kq∑
i=1

( f (zi ) + 2m1z2
i ) = 1

kq

(∑
i∈I

( f (zi ) + 2m1z2
i ) +

∑
i 
∈I

( f (zi ) + 2m1z2
i )
)

≥ θ( f (z) + 2m1(z)
2) + (1 − θ)

(
f
( z − θ z

1 − θ

)+ 2m1
( z − θ z

1 − θ

)2
)

≥ θ( f (z∗) + 2m1(z
∗)2) + (1 − θ)

(
f
( z − θ z∗

1 − θ

)+ 2m1
( z − θ z∗

1 − θ

)2
)
, (3.15)

where we have used convexity in the first inequality, and the fact that z ≥ z∗ and
z−θ z
1−θ

� z−θ z∗
1−θ

in the second inequality.
Let M ∈ N and n � M be fixed. We define n partitions of the interval [0, kq]

given by the set of points

Pj =
{

hn + j : h = 0, . . . ,
⌊kq − j

n

⌋
− 1

}
, j = 0, . . . , n − 1.

Let u be an admissible test function for Q̂m f (θ, z). Recalling Lemma 3.3, we can
suppose u ∈ V(kq; θ) ∩ Ãδ(kq; z). With fixed n and j , let z̃ and θ̃ be defined by
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u� kq− j
n �n+ j − u j =

⌊kq − j

n

⌋
ñz

θ̃
⌊kq − j

n

⌋
n = #

{
i ∈

[
j,
⌊kq − j

n

⌋
n + j

]
∩ Z : ui − ui−1 ≥ z∗}.

Since u ∈ Ãδ(kq; z) and n � δkq, we obtain (kq − 2n)|z − z̃| � 4n|z| + 2n|z|.
Moreover (kq − 2n)|θ − θ̃ | � 2n + 2nθ , so that (uniformly with respect to n and
j)

z̃ = z + o(1)k→+∞, θ̃ = θ + o(1)k→+∞. (3.16)

In particular, if k is large enough then z̃ < z∗. By substituting to any zi ≥ z∗ the
value z∗ and to any zi < z∗ the value z̃−θ̃ z∗

1−θ̃
, the convexity of the square gives

1

kq

∑
i∈Pj

(zi+1 + · · · + zi+n)2 ≥ 1

kq

⌊θkq

n

⌋
(nz∗)2 + 1

kq

⌊ (1 − θ̃ )kq

n

⌋(
n

z̃ − θ̃ z∗

1 − θ̃

)2
.

Hence, recalling (3.16)

kq∑
i, j=0

m|i− j |(ui − u j )
2 ≥ 2

M∑
n=1

mnn
(⌊θkq

n

⌋
(nz∗)2 +

⌊ (1 − θ)kq

n

⌋
(n

z − θ z∗

1 − θ
)2
)

+o(1)k→+∞

which, together with (3.15), gives the estimate

1

kq
F1(u; [0, kq]) ≥ θ f (z∗) + (1 − θ) f

( z − θ z∗

1 − θ

)

+2
M∑

n=1

mn

(
θ(nz∗)2 + (1 − θ)(n

z − θ z∗

1 − θ
)2
)

+ o(1)k→+∞.

We obtain that

Q̂m f (θ, z) ≥ θ f (z∗) + (1 − θ) f
( z − θ z∗

1 − θ

)

+2
M∑

n=1

mn

(
θ(nz∗)2 + (1 − θ)

(
n

z − θ z∗

1 − θ

)2
)
.

Since M is arbitrary, we conclude that

Qm f (θ, z) ≥ θ f (z∗) + (1 − θ) f
( z − θ z∗

1 − θ

)

+am
(
θ(z∗)2 + (1 − θ)

( z − θ z∗

1 − θ

)2
)

− amz2,

which gives the lower bound for (3.14) in the case z < z∗.
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Fig. 7. The phase multifunction �(z) in the convex case

As for the upper estimate, we define a test function u by setting

ui =
⎧⎨
⎩

z∗i if i � θkq

z∗θkq + z − θ z∗

1 − θ
(i − θkq) if i > θkq;

since mn = o(n−β)n→+∞ with β > 3 we obtain

1

kq
F1(u; [0, kq]) = θ f (z∗) + (1 − θ) f

( z − θ z∗

1 − θ

)

+2
∞∑

n=1

mn

(
θ(nz∗)2 + (1 − θ)(n

z − θ z∗

1 − θ
)2
)

+ o(1)k→+∞,

which gives the upper bound for k → +∞. Similar arguments allow one to prove
(3.14) for z > z∗ or z = z∗. �

Note that the phase multifunction �(z) is given by (see Fig. 7)

�(z) =

⎧⎪⎨
⎪⎩

{0} ifz < z∗

[0, 1] ifz = z∗

{1} ifz > z∗.
(3.17)

Here 0 and 1 are the only locking states.
A particular interesting sub-case in this general class of problems is represented

by semi-degenerate quadratic-affine functions, sometimes used in theories of plas-
ticity [89]. Assume for instance that for all τ ∈ R the function 
τ : R → R is
defined as


τ (z) =
{

z2 if z � 1

2τ(z − 1) + 1 if z > 1.
(3.18)

Using the general expression for Qm f (θ, z) in (3.14), we can now obtain an explicit
formula for Qm
τ (θ, z) in the convex case τ ≥ 1, with the natural choice A =
[1,+∞).
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Fig. 8. Qm
τ (θ, z) for increasing values of θ

Example 3.19. (Convex-affine potentials) Let 
τ be defined as in (3.18). In the
convex case τ ≥ 1, for any θ ∈ (0, 1) we have

Qm
τ (θ, z) =

⎧⎪⎨
⎪⎩

1 + amθ

1 − θ
z2 − 2(1 + am)θ

1 − θ
z + (1 + am)θ

1 − θ
ifz � 1

am(1 − θ)

θ
z2 −

(2am(1 − θ)

θ
− τ

)
z + 1 − 2τ + am(1 − θ)

θ
ifz ≥ 1

These constructions are illustrated in Fig. 8, where we highlight the two parabolas
in different colours.

In Sections 4 and 5 we will also treat the non-convex case of 
τ ; that is, τ < 1,
with particular choices of the interaction kernel m. Note that all the general results
concerning 
τ still hold if we take a convex f̃ instead of the quadratic term.

3.4. Spin Representation and Optimal Microstructures

We observe that for bi-convex problems a more detailed way to describe the
behaviour of extremal functions is by using a two-value function which labels the
position of the strain variable, whether in one or in the other of the two convex
zones of f . Such ‘spin function’ can be viewed as a characteristic function of
the microstructure of an extremal. Note that periodic spin functions determine a
corresponding rational volume fraction θ .

To illustrate the geometry of microstructures we restate periodic minimum
problems for bi-convex functions in terms of a spin representation. This procedure
will allow us to rewrite non-convex minimum problems as minima of a family of
convex problems, and to obtain a better control of the geometry of minimizers.
We will use this formulation in some explicit examples in the next sections, to
characterize optimal periodic geometries.

We begin by formally introducing the spin variable s ∈ {−1, 1}N parameter-
izing the location of the argument of a bi-convex function f . The corresponding
volume fraction is then

θ = 1

2N

N∑
j=1

(1 − s j ),

where s j denotes the j-th component of s.
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Let f−1, f1 : R → R be such that

f (z) = min{ f−1(z), f1(z)} =
{

f−1(z) if z ∈ R\A

f1(z) if z ∈ A.
(3.19)

The slight difference in the notation with respect to previous sections, where the two
functions were denoted by f0 and f1, is due to the focus on individual components
of the spin vector taking the values −1 and 1. While the definitions and properties
will hold without any further assumptions, in the applications we will consider the
‘natural’ case when A is a half-line and the functions f−1, f1 are convex.

Omitting the dependence on A, for N ∈ Nwe define R̂N
m f : {−1, 1}N ×R → R

by setting

R̂N
m f (s, z) = 1

N
inf

{
F#(u, s; [0, N ]) : i �→ ui − zi is N -periodic

}
, (3.20)

where

F#(u, s; [0, N ]) =
N∑

i=1

fsi (ui − ui−1) +
N∑

i=1

∑
j∈Z

m|i− j |(ui − u j )
2.

Note that R̂N
m f depends on the choice of f1 and f−1 and not only on their minimum

f .

Remark 3.20. (Regularity with respect to z) If f1 and f−1 are of class C1(R) then
the function z �→ R̂N

m f (s, z) is of class C1(R) for any fixed s ∈ {−1, 1}N . This is a
direct consequence of the Euler–Lagrange equations characterizing the minumum
points of F#.

Now we add the phase constraint, minimizing over all s corresponding to a
given volume fraction, which eventually will give an alternative chatacterization of
Q̂m f (θ, z). More precisely, fixed θ = p

q ∈ Q ∩ [0, 1], for any N ∈ qZ we define
the function

�N
m f (θ, z) = min{R̂N

m f (s, z) : s ∈ SN (θ)}, (3.21)

where SN (θ) is the set of admissible spin vectors

SN (θ) = {s ∈ {−1, 1}N : #{i : si = 1} = θ N }
and again we omit the dependence on A. Moreover, we define

�m f (θ, z) = lim inf
N→+∞ �N

m f (θ, z).

The following proposition states that the analysis of Q̂m f (θ, z) can be reduced to
the periodic spin formulation giving �m f (θ, z):
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Proposition 3.21. (Periodic spin characterization of Q̂m f (θ, z)) The following
equality holds:

�m f (θ, z) = Q̂m f (θ, z).

In particular, the function (θ, z) �→ �m f (θ, z) is convex.

Proof. The inequality �m f (θ, z) ≥ Q̂m f (θ, z) directly follows by definition.
Conversely, given a minimum point u for

Q̂δ,Nq
m f (θ, z) = 1

Nq
inf

{
F1(u; [0, Nq]) : u ∈ Ãδ(Nq; z) ∩ V(Nq; θ)

}
,

we can extend it to Z so that ui − zi is Nq-periodic. Using this extended test
function in the definition of �

Nq
m f (θ, z), with the same computations as in the

proof of Lemma 3.3 we obtain

�
Nq
m f (θ, z) � Q̂δ,Nq

m f (θ, z) + o(1)

as N → +∞ and δ → 0. �
We are interested in those θ for which the constrained relaxation Q̂m f (θ, z)

is characterized by periodic minimization; that is, for which there is an interval
of z such that the corresponding optimal spin function s is periodic. Such s will
be locally z-independent, and this will allow to derive regularity properties for
Q̂m f (θ, z). For those special values of θ , we think of such functions Q̂m f (θ, ·)
as describing energy meta-wells. For brevity of notation, we directly say that the
corresponding value of θ is an energy well. As we are going to show below, this
concept is closely related to that of a locking state.

Definition 3.22. (Energy meta-wells) Let f be as in (3.19) and let �N
m be as in

(3.21). The value θ ∈ [0, 1] ∩Q is an energy well of f at z (related to the sequence
m) if there exists N such that Nθ ∈ Z and

�N
m f (θ, z) = �m f (θ, z). (3.22)

We say that θ is an energy well of f in an open interval I if there exists N such
that (3.22) holds for all z ∈ I ; if such I exists, we say that θ is a non-degenerate
energy well of f . If I = R, we simply say that θ is an energy well of f .

Note that the definition a priori depends on f1 and f−1. However, the condition
that f = min{ f1, f−1} implies that in the minimization procedure we may assume
f1 = +∞ outside A and f−1 = +∞ inside A, which shows that the definition
indeed only depends on f .

Remark 3.23. (Energy meta-wells and periodic solutions) By Proposition 3.21 we
also have that if θ ∈ [0, 1] ∩ Q is an energy well of f at z then

�N
m f (θ, z) = Q̂m f (θ, z).

This implies the existence of periodic minimizers; that is, of test function ui mini-
mizing Q̂m f (θ, z) with ui − zi N -periodic.
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Remark 3.24. If θ is an energy well of f at z, then there exists N such that

�k N
m f (θ, z) = �N

m f (θ, z) = �m f (θ, z)

for any k ≥ 1.

We now examine the regularity of �m f at fixed θ .

Proposition 3.25. (Differentiability with respect to z) If θ is an energy well of f in
an open interval I , then the function z �→ �m f (θ, z) is differentiable at any z ∈ I .

Proof. Given θ an energy well in I and the corresponding N as in Definition 3.22,
note that z �→ �m f (θ, z) is the minimum of a finite number of C1 functions,
corresponding to s ∈ SN (θ). Since z �→ �m f (θ, z) is convex the derivatives of
these functions must agree at the intersections. �

A central question in the description of Q̂m f is the reduction to a set X of θ

such that the claim of Theorem 3.2 holds taking the infimum only on X and such
that the computation of Q̂m f (θ, z) can be carried on for θ ∈ X . This is the case for
concentrated kernel. We will see in the examples that θ in these X are often energy
wells. The following proposition shows that if such an energy well is ‘essential’
then it is a locking state:

Proposition 3.26. (energy wells and locking states) Let X ⊂ [0, 1] ∩ Q be such
that (

inf
θ∈X

{Q̂m f (θ, z)}
)∗∗ = Q̂m f (z) (3.23)

for all z, and let θ∗ ∈ X be an energy well that is essential in (3.23); that is, such
that (

inf
θ∈X\{θ∗}{Q̂m f (θ, z)}

)∗∗
> Q̂m f (z) (3.24)

for some z. Then, θ∗ is a locking state.

Proof. We recall that Q̂m f (θ, z) = �m f (θ, z) by Proposition 3.21. Since θ∗ is an
energy well, by Proposition 3.25, the function z �→ �m f (θ∗, z) is differentiable.
By the essentiality condition (3.24), that function cannot be tangent to Q̂m f in an
isolated point, nor can be transversal to it. Hence, it must coincide with Q̂m f in an
interval. �

As for regularity properties of Qm f with respect to θ , we note that in general
locking states are points where the characterization of the energy changes. This
suggests that we may have a jump in the derivative at these points.

Conjecture 3.27. (Non differentiability at the energy wells) If X ⊂ [0, 1] ∩ Q is
such that (3.23) holds for all z and θ∗ ∈ X is an energy well satisfying (3.24), then
the function θ �→ Qm f (θ, z) is not differentiable in z at θ∗.
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This conjecture is reminiscent of regularity properties in dynamical systems,
where the global structure of minimizers can be used in the proofs, as in the work of
J. Mather [79]. Anyway, we will prove that it holds in the case studies (see Remark
4.5 for the M-th neighbour case, and Remark 5.26 for the truncated convex potential
and exponential kernel).

Remark 3.28. (Generalized Cauchy–Born (GCB) states) The spin representation of
a microstructure allows one to effectively parametrize periodic minimizers. Such a
representation can be expected to exist for locking states which can be viewed as
examples of ‘global’ solutions. We can also interpret such states as respecting the
generalized Cauchy–Born (GCB) rule. To make the notion of the GCB rule more
general we may refer to the possibility of computing the macroscopic energy by
solving an appropriate boundary value problem on a finite representative ‘cell’. The
question arises in which cases any minimizer can be viewed as a GCB state in the
above sense or as a simple mixture (a convex combination) of such states. We will
see in the next sections that for broad classes of physically interesting non-convex
energies f and the penalization kernels m only GCB states are relevant.

4. Relaxation with Concentrated-Kernel Penalization

In this section, we analyze the relaxation of a general bi-convex function f with
a concentrated kernel m. We recall that in this case there exists M 
= 2 such that
mn = 0 for all n ≥ 2 except for n = M and that such penalization leads to a non-
additive problem (see Definition 2.15). We show that the optimal microstructures
in this case are restricted to periodic states, corresponding to a fraction θn = n

M for
n ∈ {0, . . . , M}, and compatible mixtures of such periodic states corresponding to
neighbouring values of the phase fractions θn and θn+1, in other words, to first and
second order laminates.

Following the notation of Section 3, let z∗ ∈ R, A = [z∗,+∞), and let f : R →
R be such that the restrictions of f to (−∞, z∗] and [z∗,+∞) are convex. In this
section, we again use the notation

f2m1(z) = f (z) + 2m1z2 (4.1)

for the overall nearest-neighbour interactions.
We assume that growth hypothesis (2.6) holds, so that f2m1(z) → +∞ as

z → ±∞. Note that the analysis can also cover the degenerate case when this
condition is not satisfied. As a model, in Remark 4.6 we will consider the case of a
truncated quadratic potential f with m1 = 0, highlighting the effect of degeneracy.

4.1. Formulas for the Relaxation

In the case of a bi-convex f , formula of Proposition 2.16 describing Q̂m f can
be further specified as follows

Q̂m f (z) = (
min

n
P M,n(z)

)∗∗
, (4.2)
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where, for any n ∈ {0, . . . , M}, we let θn = n
M and introduce

P M,n(z) = min
{
(1 − θn) f2m1(z

−) + θn f2m1(z
+) : z− � z∗, z+ ≥ z∗,

(1 − θn)z
− + θnz+ = z

}
+ 2mM (Mz)2.

(4.3)

Now we prove that for any rational θ the constrained function Q̂m f (θ, z), defined
in (3.3), can be also characterized in terms of the functions P M,n , which themselves
correspond to particular values of θ , in the sense that P M,n(z) = Q̂m f (θn, z).

Theorem 4.1. (Shape of Q̂m f and of the phase function θ ) There exists an ordered
family of disjoint intervals (s−

n , s+
n ), where s−

0 = −∞ and s+
M = +∞, such that

(i) Q̂m f (z) = P M,n(z) in (s−
n , s+

n ) and it is affine in each of the intervals of the
form (s+

n , s−
n+1);

(ii) θ(z) = θn in (s−
n , s+

n ) and it is affine in each of the remaining intervals.
(iii) the set of the locking states of f is {θn} and

Q̂m f (z) = (
min{Q̂m f (θ, z) : θ is a locking state})∗∗

.

Proof. The proof of (i) and (ii) will follow from Lemma 4.4 below, while (iii) is
obtained by (4.2). �
Remark 4.2. Note that if θ(z) = θn then the value of Q̂m f (z) is attained on periodic
minimizers. The phase function θ can be explicitly written as

θ(z) =
⎧⎨
⎩

θn + 1

M

z − s+
n

s−
n+1 − s+

n
if s+

n � z � s−
n+1 for n ∈ {0, . . . , M − 1}

θn if s−
n � z � s+

n , for n ∈ {0, . . . , M},
(4.4)

with s−
0 = −∞ and s+

M = +∞. Moreover, if we write the convex envelope of the
minimum of P M,n and P M,n+1 as

min
{

P M,n, P M,n+1}∗∗
(z) =

⎧⎪⎨
⎪⎩

P M,n(z) if z � s+
n

r M,n(z) if s+
n � z � s−

n+1

P M,n+1(z) if s−
n+1 � z,

(4.5)

where r M,n is the interpolating affine function

r M,n(z) = P M,n(s+
n ) + P M,n+1(s−

n+1) − P M,n(s+
n )

s−
n+1 − s+

n
(z − s+

n ),

then Q̂m f (z) = r M,n(z) if z ∈ [s+
n , s−

n+1]. Note that this characterization of Q̂m f
holds under assumption (2.6), while it may fail if this condition is dropped, as we
show in Remark 4.6 below.

The main technical point of this section is Lemma 4.4 giving an explicit formula
for the constrained minimizations involving only pairs of successive locking states.
The proof of this fact relies on the following algebraic lemma.
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Lemma 4.3. (An algebraic lemma) Let n ∈ [0, M − 1] ∩N. If θ = p
q ∈ [ n

M , n+1
M

]
,

N ∈ N and Ik , for k ∈ {0, . . . , M}, are such that

M
M∑

k=0

Ik = Nq and
M∑

k=0

k Ik = θ Nq, (4.6)

then there exist coefficients αn
k such that αn

k ∈ [0, Ik] for any k and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M∑
k=0

αn
k = Mθ − n

M
Nq

M∑
k=0

kαn
k = (n + 1)

Mθ − n

M
Nq.

(4.7)

Proof. The linear system (4.7) has infinitely many solutions depending on M − 1
parameters. We have to show that there exists one solution in �M

k=0[0, Ik]. To this
end, it is sufficient to show that the hyperplane given by the equation

Hλ(α
n
0 , . . . , αn

M ) =
M∑

k=0

(λ + k)αn
k − (λ + n + 1)

Mθ − n

M
Nq = 0

intersects �M
k=0[0, Ik] for any λ ∈ R, which happens if for any λ ∈ R there exist

two points v,w ∈ R
M+1 such that Hλ(v) Hλ(w) � 0. Since n � Mθ � n +1 and

Hλ(0, . . . , 0) = −(λ + n + 1)
Mθ − n

M
Nq,

Hλ(I n
0 , . . . , I n

M ) = (λ + n)
(n + 1 − Mθ)

M
Nq,

we get Hλ(0, . . . , 0) Hλ(I n
0 , . . . , I n

M ) � 0 if λ � −(n + 1) or λ ≥ −n.
For the remaining cases, we note that by (4.6)

(n + 1)

M∑
k=0

(M − k)Ik − (M − (n + 1))

M∑
k=0

k Ik = (
(n + 1) − Mθ

)
Nq.

Since (n + 1)(M − k)− (M − (n + 1))k = M(n + 1 − k) � 0 if k ≥ n + 1, we get

n∑
k=0

(n + 1 − k)Ik ≥ (n + 1) − Mθ

M
Nq.

If we choose v = (v0, . . . , vk) with vk = 0 if k � n and vk = Ik if k > n we
obtain

H−(n+1)(v) = −(n + 1)
( M∑

k=0

Ik −
n∑

k=0

Ik

)
+

M∑
k=0

k Ik −
n∑

k=0

k Ik

= Mθ − (n + 1)

M
Nq +

n∑
k=0

(n + 1 − k)Ik ≥ 0.
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Noting that

H−n(v) = Mθ − (n + 1)

M
Nq +

n∑
k=0

(n − k)Ik − Mθ − (n + 1)

M
Nq ≥ 0,

it follows that Hλ(v) ≥ 0 for any λ ∈ (−(n + 1),−n). Since Hλ(0, . . . , 0) � 0,
this concludes the proof of Lemma 4.3. �

Now, we state the interpolation lemma.

Lemma 4.4. (Interpolation between locking states) Let θ ∈ [θn, θn+1] ∩Q, with n
integer such that 0 � n < M, and θn = n

M as above. Then the following formula
holds:

Q̂m f (θ, z) = min
{

M(θn+1 − θ)P M,n(wn) + M(θ − θn)P M,n+1(wn+1) :
M(θn+1 − θ)wn + M(θ − θn)wn+1 = z

}
. (4.8)

We mention that in view of growth condition (2.6) the minimum in (4.8) is achieved.

Proof. Up to scaling, we suppose mM = 1 for notational convenience. Since
Lemma 3.3 holds, for u ∈ A(Nq; z), if F1 is the non-scaled functional given
by (3.4), we can estimate F1(u; [0, Nq]) as

F1(u; [0, Nq]) =
Nq∑
i=1

f (zi ) + 2m1

Nq∑
i=1

(zi )
2 +

Nq∑
i, j=0, |i− j |=M

(ui − u j )
2

≥
Nq∑
j=1

f2m1(z j ) + M

Nq

∑
i∈MZ∩[M,Nq]

( i∑
j=i−M+1

z j

)2 + o(1)N→+∞,

where and zi = ui − ui−1.
It is not restrictive to assume Nq ∈ MN. For any i ≥ M we define

J+(i) = { j ∈ {i − M + 1, . . . , i − 1, i} : z j ≥ z∗}
J−(i) = { j ∈ {i − M + 1, . . . , i − 1, i} : z j < z∗}.

Moreover, for any k = 0, . . . , M we set

Ik = {i ∈ MZ ∩ [M, Nq] : #J+(i) = k},

and we denote the cardinality of Ik by Ik . Let ψ−1 and ψ1 denote the restrictions of
f2m1 to (−∞, z∗) and [z∗,+∞) respectively. Then, by separating the contributions
in each Ik , thanks to the convexity of ψ−1, ψ1 and of the square we have
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Nq∑
j=1

f2m1 (z j ) + M

Nq

∑
i∈MZ∩[M,Nq]

( i∑
j=i−M+1

z j

)2

=
M∑

k=0

∑
i∈Ik

( ∑
j∈J−(i)

ψ−1(z j ) +
∑

j∈J+(i)

ψ1(z j )
)

+ M
M∑

k=0

∑
i∈Ik

( ∑
j∈J−(i)

z j +
∑

j∈J+(i)

z j

)2)

≥
M∑

k=0

Ik

(
(M − k)(ψ−1(w

−
k ) + kψ1(w

+
k )) + M

(
(M − k)w−

k + kw+
k

)2
)

(4.9)

where w−
M = w+

0 = 0 and

w−
k = 1

(M − k)Ik

∑
i∈Ik

∑
j∈J−(i)

z j , w+
k = 1

k Ik

∑
i∈Ik

∑
j∈J+(i)

z j

otherwise.
We now may conclude the proof of the lower bound by applying Lemma 4.3

to (4.9), since Ik satisfy (4.6), regrouping the terms therein so as to compare that
expression with P M,n . Noting that

M∑
k=0

(M − k)αn
k = (Mθ − n)(M − (n + 1))

M
Nq,

we get by convexity that

M∑
k=0

αn
k

(
(M − k)(ψ−1(w

−
k ) + kψ1(w

+
k )) + M

(
(M − k)w−

k + kw+
k

)2
)

≥
( M∑

k=0

(M − k)αn
k

)
ψ−1(z

−
n+1) +

( M∑
k=0

kαn
k

)
ψ1(z

+
n+1)

+M
( M∑

k=0

αn
k

)((∑M
k=0(M − k)αn

k

)
z−

n+1 + (∑M
k=0 kαn

k

)
z+

n+1∑M
k=0 αn

k

)2

≥ (Mθ − n)

M
Nq

(
(M − (n + 1))ψ−1(z

−
n+1) + (n + 1)ψ1(z

+
n+1)

+M
(
(M − (n + 1))z−

n+1 + (n + 1)z+
n+1

)2
)
,

where

z−
n+1 =

∑M
k=0(M − k)αn

k w−
k∑M

k=0(M − k)αn
k

, z+
n+1 =

∑M
k=0 kαn

k w+
k∑M

k=0 kαn
k

.

Hence,

M∑
k=0

αn
k

(
(M − k)(ψ−1(w

−
k ) + kψ1(w

+
k ) + M

(
(M − k)w−

k + kw+
k

)2
)
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Fig. 9. Construction of the upper bound for M = 3 and n = 1

≥ (Mθ − n)Nq P M,n+1
((

1 − n + 1

M

)
z−

n+1 + n + 1

M
z+

n+1

)
.

Correspondingly, we obtain

M∑
k=0

(Ik − αn
k )
(
(M − k)(ψ−1(w

−
k ) + kψ1(w

+
k ) + M

(
(M − k)w−

k + kw+
k

)2
)

≥ (n + 1 − Mθ)Nq P M,n
((

1 − n

M

)
z−

n + n

M
z+

n

)
,

where

z−
n =

∑M
k=0(M − k)(Ik − αn

k )w−
k∑M

k=0(M − k)(Ik − αn
k )

, z+
n =

∑M
k=0 k(Ik − αn

k )w+
k∑M

k=0 k(Ik − αn
k )

.

Noting that

(n + 1 − Mθ)
(
(M − n)z−

n + nz+
n

)

+(Mθ − n)
(
(M − (n + 1))z−

n+1 + (n + 1)z+
n+1

)
= Mz,

for θ ∈ [ n
M , n+1

M

]
we then have, up to a negligible term,

F1(u; [0, Nq]) ≥ min
{
(n + 1 − Mθ)P M,n(wn) + (Mθ − n)P M,n+1(wn+1) :

(n + 1 − Mθ)wn + (Mθ − n)wn+1 = z
}

which concludes the proof of the lower bound in (4.8).
As for the upper bound, let θ = p

q ∈ [ n
M , n+1

M ], z ∈ R be fixed and (wn, wn+1)

be a minimizer of (4.8). For all k ≥ 1 we define a test function u : [0, k Mq] ∩
Z → R constructed as follows. Let w±

n be a minimizer of the problem defining
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P M,n(wn) in (4.3), and let w±
n+1 be a minimizer of the corresponding problem

defining P M,n+1(wn+1). We set u0 = 0, and

ui − ui−1 =
{

w+
n if i ∈ {1, . . . , n} mod M

w−
n if i ∈ {n + 1, . . . , M} mod M

for i � k Mq(θn+1 − θ)

ui − ui−1 =
{

w+
n+1 if i ∈ {1, . . . , n + 1} mod M

w−
n+1 if i ∈ {n + 1, . . . , M} mod M

for i > k Mq(θn+1 − θ)

(see Fig. 9). Note that u(k Mq) = k Mqz and u ∈ V(k Mq; θ), so that u is an
admissible test function for the computation of Q̂m f (θ, z), and the upper bound
follows. �
Remark 4.5. (Non-differentiability at locking states) From formula (4.8) we de-
duce that for all z the function θ �→ Qm f (θ, z) is differentiable at any θ 
∈
{θ1, . . . , θM−1}, whereas instead

∂(Qm f )

∂θ
(θ+

n , z) 
= ∂(Qm f )

∂θ
(θ−

n , z)

except possibly for some critical values of z. Indeed, in the computation of the left-
hand side derivative of Qm f at θ = θn we use P M,n−1 while for the right-hand
side we use P M,n+1, whose values are generically different at the minimum points
of (4.8).

4.2. Computation of Qm f for Prototypical Non-convex Energies

We now apply Theorem 4.1 to some prototypical f ; namely, truncated quadratic
potential and double-well potential.

4.2.1. Truncated Quadratic Potential We consider a special case of the trun-
cated convex potentials introduced in Example 3.15 with f̃ (z) = z2 and z∗ = 1;
that is, let f : R → R be defined by

f (z) =
{

z2 if z � 1

1 if z > 1,
(4.10)

and let A = [1,+∞). Note the growth assumption (2.6) implies that m1 > 0.
In this case, we have

Qm f (z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z2 if z � s+
0

r M,n(z) − 2(m1 + mM M2)z2 if s+
n � z � s−

n+1
2m1(1 − θn)

2m1 + θn
z2 + θn if s−

n � z � s+
n

1 if s−
M � z,

(4.11)

where the points s+
n and s−

n in Theorem 4.1 are

s±
n = s±

n (m1, mM ) = 2m1 + θn√
2m1(2m1 + 1)
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Fig. 10. Qm f (z) and θ(z) in the cases M = 2 (a) and M = 3 (b)

Fig. 11. Qm f and θ in a degenerate case

√
m1(2m1 + 1) + mM M2(2m1 + θn) ± mM M

m1(2m1 + 1) + mM M2(2m1 + θn)
(4.12)

and r M,n is the affine interpolating function in Remark 4.2. The formula for Qm f
is obtained by explicitly computing the functions P M,n(z) (see “Appendix B”).

In Fig. 10 (a)–(b), we show the structure of the functions Qm f (z) and θ(z) in the
cases M = 2 and M = 3, respectively. Here and in the following we use blue lines
for convex parts of the graph and red lines for concave ones. Note that in the first
case θ1 = 1

2 corresponds to periodic minimizers of period 2 and in the second case
θ1 = 1

3 and θ2 = 2
3 correspond to the two possible periodic minimizers of period

3. In the affine regions, we have mixtures of two periodic solutions, corresponding
to neighbouring locking states.

Remark 4.6. (Degenerate case with m1=0) The computation of Qm f for the trun-
cated quadratic potential f can be performed also in the degenerate case where the
growth hypothesis (2.6) does not hold; that is, supposing m1 = 0. Note that in this
case there is no coercivity on the nearest-neighbour interactions.

The construction in Theorem 4.1 becomes degenerate, and we obtain the for-
mula

Qm f (z) =

⎧⎪⎪⎨
⎪⎪⎩

z2 if z � z−
M

2
√

2mM M(1 + 2mM M2)z − 2mM M − 2mM M2z2 if z−
M � z � z+

M
1

M
if z+

M � z,

(4.13)
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Fig. 12. Graph of QM f (z) (for M = 6) and of the limit function

where

z−
M =

√
2m M M

1 + 2mM M2 and z+
M =

√
1 + 2mM M2

2m M M3 .

The corresponding phase function is then given by θ(z) = 0 if z � z−
M , θ(z) = 1

M
if z ≥ z+

M and affine otherwise, so that the locking states are θ = 0 and θ = 1
M .

Hence, Qm f (z) is obtained as the convex envelope of the minimum of P M,1(z)
and P M,0(z) only.

As for the description of θ as in (4.4), note that

lim
m1→0

s+
0 (m1, mM ) = z−

M , lim
m1→0

s−
1 (m1, mM ) = z+

M ,

while we have that as m1 → 0 then s+
n (m1, mM ) → +∞ for any n ≥ 1 and

s−
n (m1, mM ) → +∞ for any n ≥ 2. This corresponds to the fact that the sets of z

where θ(z) > 1/M tend to +∞ as m1 → 0. In Fig. 11 we picture Qm f and θ .

Remark 4.7. (Asymptotic analysis as M → +∞) In this remark we highlight the
dependence of θ = θ M and Qm f = QM f on M . We show that the limit of the
functions θ M as M → +∞ is the phase function of f when the only not vanishing
coefficient is m1, and correspondingly for QM f (z).

Indeed, the following estimates hold

s+
n �

n + 2m1 M + 1
2√

2m1(1 + 2m1)M
=: s̃+

n , s−
n ≥ n + 2m1 M − 1√

2m1(1 + 2m1)M
=: s̃−

n ,

so that we can define two piecewise-constant functions by setting

θ
M

(z) =

⎧⎪⎨
⎪⎩

0 if z � s̃+
0

θ M (s+
n−1) if z ∈ (̃s+

n−1, s̃+
n ]

1 if s̃+
M < z

and θ M (z) =

⎧⎪⎨
⎪⎩

0 if z � s̃−
0

θ M (s−
n ) if z ∈ (̃s−

n−1, s̃−
n ]

1 if s̃−
M < z,

obtaining that θ M (z) � θ M (z) � θ
M

(z). The claim follows noting that

lim
M→+∞ θ

M
(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if z �
√

2m1
1+2m1

2m1

(
z
√

1+2m1
2m1

− 1
)

if
√

2m1
1+2m1

� z �
√

1+2m1
2m1

1 if
√

1+2m1
2m1

� z,
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Fig. 13. Example of convex-affine non-convex potentials

and the same for θ M (z). Correspondingly

lim
M→+∞ QM f (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z2 if z �
√

2m1
1+2m1

−2m1

(
z2 − 2z

√
1+2m1

2m1
+ 1

)
if
√

2m1
1+2m1

� z �
√

1+2m1
2m1

1 if
√

1+2m1
2m1

� z

(see Fig. 12). In particular, we note that

lim
M→+∞ QM f (z) = ( f2m1)

∗∗(z) − 2m1z2 = Qm′ f (z),

where m′ = {m1, 0, . . . }.

Example 4.8. (Convex-affine potentials as perturbations of truncated potentials) We
consider the functions 
τ introduced in (3.18) in the non-convex case 0 � τ < 1,
as pictured in Fig. 13, with nearest and next-to-nearest neighbour interactions; that
is, with M = 2. To simplify the computations, we fix m1 = 1

2 and m2 = 1
4 .

The computation of Qm
τ (z) involves the values Qm
τ (θ, z) in the three locking
states θ0 = 0, θ1 = 1

2 and θ2 = 1; more precisely, it is sufficient to consider
Qm
τ (0, z) = 
τ (z) for z � 1, Qm
τ (1, z) = 
τ (z) for z ≥ 1 and

Qm
τ
(1

2
, z
)

= 1

3
z2 + 4τ

3
z + 3 − 6τ − τ 2

6

for 3
4 � z � 3

2 . Hence

Qm
τ (z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Qm
τ (0, z) ifz � sτ,+
0

r τ
1 (z) − 3z2 ifsτ,+

0 � z � sτ,−
1

Qm
τ ( 1
2 , z) ifsτ,−

1 � z � sτ,+
1

r τ
2 (z) − 3z2 ifsτ,+

1 � z � sτ,−
2

Qm
τ (1, z) ifz ≥ sτ,−
2
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Fig. 14. Qm
τ and corresponding phase functions for increasing values of τ ∈ (0, 1)

where r τ
1 (z) is the common tangent (in sτ,+

0 and sτ,−
1 ) to the parabolas Q̂m
τ (0, z)

and Q̂m
τ ( 1
2 , z), and correspondingly r τ

2 (z) is the common tangent (in sτ,+
1 and

sτ,−
2 ) to the parabolas Q̂m
τ ( 1

2 , z) and Q̂m
τ (1, z).
In Fig. 14 we represent Qm
τ for two different values of τ , also showing

the three energies Q̂m
τ (θ, z) when θ ∈ {0, 1
2 , 1}, and the corresponding phase

function θ . The value of τ in (b) is larger than that in (a). Note in particular that
if τ → 1 then sτ,−

2 − sτ,+
0 → 0; that is, the locking state θ = 1

2 progressively
disappears, and we recover the convex case (see Example 3.19), while for τ = 0
we recover the case of the truncated quadratic potential with M = 2.

4.2.2. Double-WellBi-quadraticPotential Let f : R → Rbe defined by f (z) =
(1 − |z|)2, and let A = [0,+∞). By explicitly computing the functions P M,n (see
“Appendix B”), we obtain for Qm f (z) the formula

Qm f (z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 + z)2 if z � s+
0

r M,n(z) − 2(m1 + mM M2)z2 if s+
n � z � s−

n+1

z2 + 2(1 − 2θn)z + 1 − 4θn(1 − θn)

1 + 2m1
if s−

n � z � s+
n

(1 − z)2 if s−
M � z,

where

s±
n = s±

n (m1, mM ) = 2θn − 1

1 + 2m1
± 2m M M

(1 + 2m1)(1 + 2m1 + 2mM M2)

and r M,n is the interpolating affine function given in Remark 4.2.

Remark 4.9. (Asymptotic analysis as M → +∞) As in Remark 4.7, we highlight
the dependence on M by writing θ(z) = θ M (z) and Qm f (z) = QM f (z). We show
that also in this case the limit of θ M (z) as M → +∞ is the phase function of f
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Fig. 15. The function z �→ QM f (z) for different values of M and the limit function

when the only not vanishing coefficient is m1, and correspondingly for QM f (z).
Indeed, since the distribution of s+

n and s−
n is uniform, we can directly deduce that

lim
M→+∞ θ M (z) =

⎧⎪⎨
⎪⎩

0 if z � − 1
1+2m1

(1+2m1)z+1
2 if |z| � 1

1+2m1

1 if z ≥ 1
1+2m1

.

Correspondingly

lim
M→+∞ QM f (z) =

⎧⎪⎨
⎪⎩

(1 + z)2 if z � − 1
1+2m1

−2m1z2 + 2m1
1+2m1

if |z| � 1
1+2m1

(1 − z)2 if z ≥ 1
1+2m1

(see Fig. 15). Again, we note that lim
M→+∞ QM f (z) = Qm′ f (z), where m′ =

{m1, 0, . . . }.

4.2.3. Analysis of Qm f (θ, z) Examining (4.8), which gives the values of Qm f (θ, z)
as interpolations between neighbouring locking states, we note that Qm f is given
by different formulas in different regions of the plane (θ, z). We briefly examine
some feature of this dependence in the simplest meaningful case M = 2 (see also
Fig. 10(a) and Fig. 15 for a comparison).

In Figs. 16 (truncated quadratic potential) and 17 (double-well potential), we
highlight zones with qualitatively different behaviour. In the bottom part we repre-
sent such zones in the domain of the function [0, 1] × R as coloured zones. In the
same pictures, the graphs of θ �→ Qm f (θ, z) are shown for some values of z with
corresponding colouring. Note that for any fixed z the function θ �→ Qm f (θ, z) is
differentiable everywhere (including the points where there is a change of the ana-
lytical expression), except for the point corresponding to the locking state θ1 = 1

2 ,
where the left and right derivative are not equal.

For the reader’s convenience, in the case of double-well potential we include an
explicit formula which is particularly simple thanks to the symmetry of Qm f (θ, z)
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Fig. 16. Analysis of θ �→ Qm f (θ, z) for different values of z in the truncated quadratic
case

Fig. 17. The function θ �→ Qm f (θ, z) for different values of z (double-well potential)

with respect to ( 1
2 , 0). We fix m1 = 1

2 , m2 = 1
4 , obtaining

Qm f (θ, z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3z2

1−θ
+ 2z + 1 if z � θ − 1

2z2

1−θ
+ θ if θ − 1 < z � θ−1

2

z2 − 2(2θ − 1)z + θ2 − θ
2 + 1

2 if θ−1
2 < z � 2θ+1

4
12z2

2θ+1 − 2z + 1 if 2θ+1
4 < z.
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Fig. 18. Representation of constancy sets of θ in the z- 1
σ plane (M = 4)

4.2.4. Dependence on the Scale Parameter σ As in Remark 2.39, we introduce
a dependence of the concentrated kernel m on the parameter σ by setting mσ

1 = m1
σ

and mσ
M = mM

σ
, for which we have

lim
σ→0+ Qmσ f (z) = f (z) and lim

σ→+∞ Qmσ f (z) = f ∗∗(z) (4.14)

for any f .
In the case of the truncated quadratic function f defined by (4.10) and an-

alyzed in Section 4.2.1, the first limit can be also checked directly noticing that
s+

n (mσ
1 , mσ

M ) → 1 as 1
σ

→ +∞ for any n, where s+
n (·, ·) is defined in (4.12).

Note that if θ ∈ (0, 1) then Qmσ f (θ, z) → +∞ as 1
σ

→ 0+. Moreover, for any
θ ∈ (0, 1) and for any z,

lim
σ→+∞ Qmσ f (θ, z) = Q0 f (θ, z) =

{
θ + (z−θ)2

1−θ
if z � θ

θ if z ≥ θ.

In Fig. 18 we picture in the z- 1
σ

plane the zones where θ(z) = θn for some n ∈
{0, . . . , M} and those where θ(z) is affine for fixed σ (in the case M = 4). The
latter are pictured in gray, and are bounded by blue and red curves, corresponding
to the lower and upper values of z, respectively (see also the right-hand side picture
in Fig. 21). This use of coloring will be repeated in the next figures.

As for the double-well potential, if the coefficient m1 does not vanish, then we
re-obtain the first limit in (4.14) by noting that

lim
σ→0+ s+

n (mσ
1 , mσ

M ) = lim
σ→0+ s−

n (mσ
1 , mσ

M ) = 0, (4.15)

where s+
n and s−

n are defined in (B.4).
In Fig. 19 we picture in the z- 1

σ
plane the zones where θ(z) = θn for some

n ∈ {0, . . . , M} and those where θ(z) is affine for fixed σ (in grey) for M = 4.
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Fig. 19. Representation of constancy sets of θ in the z- 1
σ plane (M = 4)

Fig. 20. The limit of Qmσ f for σ → 0 in the case m1 = 0

Remark 4.10. If m1 = 0, Remark 2.39 does not apply. Taking the limit for σ → 0+,
in this case we obtain

lim
σ→0+ s+

n (mσ
1 , mσ

M ) = zn, and lim
σ→0+ s−

n (mσ
1 , mσ

M ) = zn−1, (4.16)

where we set

zn = 2n + 1 − M

M
.

The limit function is then given by

lim
σ→0+ Qmσ f (z) =

⎧⎪⎨
⎪⎩

(1 + z)2 if z � z0(
z + (1 − 2θn)

)2 if zn−1 � z � zn

(1 − z)2 if zM � z,

or, equivalently,

lim
σ→0+ Qmσ f (z) = min

0�n�M

{(
z + (1 − 2θn)

)2} = min
0�n�M

{Qm f (θn, z)}.

Note that in this case the limit differs from f but coincides with the minimum
among P M,n(z)−2mM M2z2 (see Fig. 20), whose convexification still equals f ∗∗.

In Fig. 21 we picture in the z- 1
σ

-plane the zones where θ(z) = θn for some
n ∈ {0, . . . , M} and those where θ(z) is affine for fixed σ (in grey).
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Fig. 21. Representation of θ in the z- 1
σ plane for M = 4 (case m1 = 0)

5. Relaxation with Exponential-Kernel Penalization

The case of concentrated kernels studied in the previous section allowed us
to highlight some properties of Qm f , in particular we were able to characterize
the locking states using explicit formulas. Now, we analyze the effect of the su-
perposition of spatially distributed long-range interactions, which bring additional
complexity to the structure of Qm f .

In Section 5.1 we sketch a method for obtaining bounds for a general kernel
m via higher-dimensional embeddings. This method is optimal in the case when
the non-local term

∑
i, j m|i− j |(ui − u j )

2 depending on the given kernel m can
be obtained by integrating out the variable v from the simplest additive energy
depending on two variables u and v; that is, a

∑
i (vi − vi−1)

2 + b
∑

i (ui − vi )
2.

To have this, we note that the kernel m must be exponential. Hence, the study
of general exponential kernels will constitute the main goal of this section. The
idea of rewriting the problems defining Q̂m f as additive problems in terms of
an auxiliary variable has been already used implicitly in the case of concentrated
kernels. Indeed, in that case we introduced coarse-grained energies depending only
on M-neighbour interactions ui+M − ui through the functions P M,n .

5.1. Higher-Dimensional Embeddings for General m

In this section we discuss the possibility of simplifying the quadratic penalty
term in Definition 2.3 for an arbitrary kernel m by introducing auxiliary variables.
This will be later applied to the exponential kernel defined in (5.12). The idea is to
view the long-range interactions parameterized by an arbitrary m as a projection of
short-range interactions operating in a higher-dimensional space. In other words,
we now suppose that the kernels m can be viewed as the Green’s functions of
some higher-dimensional local problems. Note however that the locality of the
corresponding higher-dimensional problem can be expected only for kernelsmwith
sufficiently fast rate of decay. To highlight the ideas, we discuss in detail only the
simplest class of projections, where the dimension of the extended configurational
space is doubled. As a result, the nonlocal scalar problem is transformed into a
local vector problem.
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For each fixed k ∈ N, we define a quadratic form depending on two variables
as follows. Let A be a (k + 1)× (k + 1) matrix and let s ∈ R be a scalar parameter.
We set

Hk[A, s](u, v) = 2s〈Av, v〉 + 2s〈u − v, u − v〉, (5.1)

where u, v : {0, . . . , k} → Z and 〈·, ·〉 denotes the scalar product in R
k+1.

The following result restates the definition of Q̂m f as a minimum problem
involving a quadratic form of type (5.1).

Theorem 5.1. (Higher-dimensional equivalent formulation) Letm satisfy (2.4) and
be such that the function n �→ mn is not increasing for n large enough. Then, there
exist a (k + 1)× (k + 1)-dimensional matrix Ak

m and a scalar sm such that, setting
Hk
m = Hk[Ak

m, sm] in (5.1), the following equality holds

Q̂m f (z) = lim
k→+∞

1

k
min

{ k∑
i=1

f (ui − ui−1) + Hk
m(u, v) : u, v ∈ A(k, z)

}

(5.2)

for all f : R → [0,+∞) satisfying growth conditions (2.5) and (2.6).

The proof of Theorem 5.1 is based on Lemma 5.2 which implies that asymp-
totically the quadratic part of the energies in the definition of Q̂m f can be viewed
as projections of functions of the form (5.1).

To shorten the notation, we introduce the quadratic function

J k
m(u) =

k∑
i, j=0

m|i− j |(ui − u j )
2, (5.3)

defined on u : {0, . . . , k} → Z.
To quantify the relation between J k

m and the corresponding Hk
m, we introduce

a notion of L2 norm for u : {0, . . . , k} → Z by setting

‖u‖2
k = 1

k

k∑
i=1

(ui )
2,

which coincides with the L2 norm of the piecewise-constant function ũ : (0, 1) →
R defined by ũ(t) = ui in ( i−1

k
i
k ].

Lemma 5.2. (Projection of the quadratic part of the energies) Let m satisfy (2.4)
and be such that the function n �→ mn is not increasing for n large enough. Let J k

m
be as in (5.3). Then, there exist a (k + 1) × (k + 1)-dimensional matrix Ak

m and a
scalar sm such that

min{Hk
m(u, v) : v : {0, . . . , k} → R} = J k

m(u) + ‖u‖2
k o

(1

k

)
(5.4)

for all u : {0, . . . , k} → R, where Hk
m is defined in Theorem 5.1.
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Proof. We introduce the (k + 1) × (k + 1) matrix Mk
m = (mi j ) given by mi j =

m|i− j |, i, j = 0, . . . , k. Note that the functional J k
m is independent of the choice of

m0, so that we can choose the value of m0 arbitrarily. We assume that this value is
such that the matrix Mk

m is invertible.
As a first step, we write the functional J k

m, up to an infinitesimal term, as the
sum of a suitable quadratic form depending on the whole series of mn and a residual
boundary term. By Lemma A.1 (see “Appendix A”), up to a change of variables
with L = 1 and ε = 1/k, we can suppose that u is constant in [0, kα] and in
[k − kα, k] with a fixed α ∈ ( 3

β
, 1), where β is the decay parameter of m given

by (2.4). Up to translations, we can assume u0 = 0 and hence ui = 0 for i � kα .
Setting

sm = m0 + 2
+∞∑
n=1

mn and si
m =

k∑
j=0

mi j ,

we get

si
m − sm = −

+∞∑
n=i+1

mn −
+∞∑

n=k−i+1

mn,

so that, using the decay condition mn = o(n−β), we obtain

J k
m(u) = 2sm

〈
u − 1

sm
Mk

mu, u

〉
+ 2

k∑
i=0

(si
m − sm)(ui )

2

= 2sm

〈
u − 1

sm
Mk

mu, u

〉
− 2tm(uk)

2 +
k∑

i=0

(ui )
2 o(k1−αβ)

= 2sm

〈
u − 1

sm
Mk

mu, u

〉
− 2tm(uk)

2 + ‖u‖2
k o(k2−αβ),

where tm = ∑+∞
n=0 n mn . Note that 2 − αβ < −1 since α > 3

β
.

The matrix Ak
m will be obtained by modifying the matrix sm

(
Mk

m
)−1 − I , which

gives a minimum for Hk
m in v = 1

sm
Mk

mu, so as to take into account the boundary

contribution. This is done by changing the values (Ak
m)11 and (Ak

m)kk in such a
way that they compensate the boundary terms. We set

Ak
m = sm

⎛
⎜⎜⎜⎜⎝

cm 0 . . . . . . 0
0 1 0 . . . . . .

. . . . . . . . . . . . . . .

. . . . . . 0 1 0

. . . . . . 0 0 cm

⎞
⎟⎟⎟⎟⎠
(
Mk

m
)−1 − I, with cm = sm + m0

2tm + sm + m0
.

(5.5)

We can write

Ak
m = sm

(
Mk

m
)−1 − I − 2tmsm

2tm + sm + m0
(e0 ⊗ e0 + ek ⊗ ek)

(
Mk

m
)−1

,
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and we prove that the minimum of Hk
m(u, v) coincides, up to an infinitesimal term,

with J k
m(u). This minimum is attained for vk,min given by

vk,min = (Ak
m + I )−1u = 1

sm
Mk

mu + 2tm
sm(sm + m0)

uk

⎛
⎜⎜⎝

mk

mk−1
. . .

m0

⎞
⎟⎟⎠ . (5.6)

Then, recalling the decay assumption on mn , we get

Hk
m(u, vk,min) = 2sm

〈
u − vk,min, u

〉

= 2sm

〈
u − 1

sm
Mk

mu, u

〉
− 2(uk)

2tm + |uk |
√

k‖u‖k o(k−αβ)

= 2sm

〈
u − 1

sm
Mk

mu, u

〉
− 2(uk)

2tm + ‖u‖2
k o(k

1
2 −αβ), (5.7)

concluding the proof of (5.4) since α > 3
β

. �

Remark 5.3. Let uk be constant on [0, kα] and [k − kα, k]. Then the corresponding

vk,min given by (5.6) satisfies |vk,min
0 −uk

0|+|vk,min
k −uk

k | = o(k
1
2 −αβ)‖uk‖k . Hence

it can be modified so as to obtain v̂k equal to uk in 0 and k and |vk,min
i − vk

i | =
o(k

1
2 −αβ)‖uk‖k for all i . By (5.7) we can estimate

Hk
m(u, v̂k) � Hk

m(u, vk,min) + ‖uk‖2
k o(k1−αβ).

If ‖uk‖k are equibounded, then the last term is o( 1
k ) since α > 3

β
. Note that we

may also construct v̂k so that v̂k
i = uk

0 for i � kα′
and v̂k

i = uk
k if i ≥ k − kα′

with
α′ < α.

Proof of Theorem 5.1. We write

Q̂m f (z) = lim
k→+∞

1

k
min

{ k∑
i=1

f (ui − ui−1) + J k
m(u) : u ∈ A(k, z)

}
. (5.8)

Let uk denote a minimizer of the problem above, and note that ‖uk‖k are equi-
bounded in view of the growth condition on f (z)+m1z2. Note that thanks to Lemma
A.1 we may suppose that the function uk is constant on [0, kα] and [k − kα, k].
Then, applying Lemma 5.2 and Remark 5.3, we obtain the desired result. �

In general, the advantage of the rewriting in Theorem 5.1 is not clear. However,
thanks to the two-variable formulation, we can obtain some general lower bound
in suitable hypotheses. In the next section, we will see that for exponential kernels
functionals Hk

m can be rewritten as nearest-neighbour energies, which will allow
to make these bounds sharp.
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Remark 5.4. (Lower bounds with additive vector energies) Suppose that there exists
C > 0 such that for all v ∈ A(k; z)

〈Ak
mv, v〉 ≥ C

k∑
i=1

(vi − vi−1)
2 + ‖v‖2

k o(1)k→+∞. (5.9)

Then, by (5.2), we can bound Q̂m f (z) from below with limits of scaled minimum
problems for energies of the form

k∑
i=1

f (ui − ui−1) + 2smC
k∑

i=1

(vi − vi−1)
2 + 2sm

k∑
i=1

(ui − vi )
2.

We will see in the next section that this holds with some particular choices of the
kernel m; namely, the exponential kernels.

In view of Remark 5.4, we now focus on bounds for problems involving energies
of the form

E(u, v; [0, k]) =
k∑

i=1

f (ui − ui−1) + a
k∑

i=1

(vi − vi−1)
2 + b

k∑
i=1

(ui − vi )
2

with a, b > 0.
We suppose that there exist z∗ and η such that f is convex for z � z∗ and

f (z) ≥ η for z > z∗. For any N ≥ 1 we define

gN (z) = 1

N

(
min

{
N∑

i=2

f (ui − ui−1) + a
N∑

i=1

(vi − vi−1)
2 + b

N∑
i=1

(ui − vi )
2

v0 = 0, vN = N z, ui − ui−1 � z∗ for i ≥ 2
}+ η

)
, (5.10)

where we limit the interactions vi − v j only to nearest neighbours, and we allow
ui − ui−1 > z∗ only for i = 1. Note that if N = 1 then g1(z) = az2 + η.

We also set g∞(z) = f (z) + az2 with domain z � z∗, which corresponds to
minimal states with ui − ui−1 � z∗ for all i .

Proposition 5.5. (Lower bound with nearest-neighbour energies) We have

lim
k→+∞

1

k
min

{
E(u, v; [0, k]) : uk − u0 = vk − v0 = kz

}
≥
(

inf
N

gN (z)
)∗∗

.

(5.11)

Proof. The proof is obtained giving a lower bound for the minima

1

k
min

{
k∑

i=1

fη(ui − ui−1) + a
k∑

i=1

(vi − vi−1)
2

+b
k∑

i=1

(ui − vi )
2 : uk − u0 = vk − v0 = kz

}
,
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where

fη(z) =
{

f (z) if z � z∗

η if z > z∗.

Consider a minimizer u for such problem. If ui − ui−1 � z∗ for all i then by the
convexity of f this minimum equals the value g0(z). If otherwise ui − ui−1 > z∗
for some i , note that we can always suppose that this holds for i = 1, by splitting
the discrete interval {0, . . . , k} into subsets {ik j−1 . . . , ik j }, j = 1, . . . , r , in which
ui − ui−1 > z∗ only for i = ik j−1 + 1, we obtain a lower estimate with

r∑
j=1

N j

k
gN j (z j )

where N j = k j −k j−1 and z j = uk j −uk j−1
N j

, so that we have the convex combination

r∑
j=1

N j

k
z j = z.

From this estimate (5.11) follows. �
We will prove general properties of the functions gN in Section 5.3, which will

allow us to describe the structure of their convex envelope and their optimality in
computing Q̂m f .

5.2. Reduction to a Local Problem for the Exponential Kernel

We now introduce some notation for the exponential kernels. We define

m = mσ = {mσ
n } = {e−σn}, (5.12)

where σ > 0 is a given constant. Highlighting the dependence on the parameter σ ,
we set

Q̂σ f (z) = lim
k→+∞

1

k
inf

{ k∑
i=1

f (ui − ui−1) +
k∑

i, j=0

e−|i− j |σ (ui − u j )
2 : u ∈ A(k; z)

}
,

(5.13)

and introduce the corresponding mσ -transform of f

Qσ f (z) = Q̂σ f (z) − amσ z2 = Q̂σ f (z) − 2e−σ (1 + e−σ )

(1 − e−σ )3 z2. (5.14)

Let Fσ
ε denote the non-local functionals

Fσ
ε (u; I ) = ε

∑
i∈I∗

ε (I )

f
(ui − ui−1

ε

)
+ ε

∑
i, j∈Iε(I )

e−σ |i− j |(ui − u j

ε

)2
,
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(5.15)

with exponential kernel mn = e−σn , where Iε(I ) = {i ∈ Z : εi ∈ I }, I∗
ε (I ) =

{i ∈ Z : εi, ε(i −1) ∈ I } and the function u belongs to Aε(I ) = {u : εIε(I ) → R}
as defined in (2.2). Following the general approach formulated in Section 5.1, given
a, b > 0 we define the local two-variable energies

Eε(u, v; I ) = ε
∑

i∈I∗
ε (I )

f
(ui − ui−1

ε

)
+ a

ε

∑
i∈I∗

ε (I )

(vi − vi−1)
2

+b

ε

∑
i∈I∗

ε (I )

(ui − vi )
2 (5.16)

for u, v ∈ Aε(I ). We will prove an asymptotic equivalence result between Fσ
ε

and Eε; more precisely, that the �-limits of the two sequences are the same for
a suitable choice of a = aσ and b = bσ . The �-limit of Eε is computed with
respect to the convergence uε, vε → u defined as the convergence in L2(I ) of the
piecewise-constant extensions of uε and vε to the function u ∈ H1(I ). The result
is obtained, in the spirit of Section 5.1, by explicitly integrating out the variable v.

Theorem 5.6. (Asymptotic equivalence) Let

aσ = amσ = 2(1 + e−σ )e−σ

(1 − e−σ )3 , bσ = 2(1 + e−σ )

(1 − e−σ )
, (5.17)

and set Eσ
ε = Eε as defined in (5.16) with a = aσ and b = bσ . Then the sequence

Eσ
ε �-converges to the same �-limit as the sequence Fσ

ε .

Remark 5.7. (Asymptotic behaviour controlled by σ ) We can interpret the extremal
regimes of strong and weak additivity in terms of the parameters of the two-
parameter energies (5.16). Let aσ , bσ be given by (5.17). As σ → 0 we have
both aσ → +∞ and bσ → +∞, with an increasing strength of the effect of
the term involving the distance of u from the affine function zi . Conversely, when
σ → +∞ we have aσ → 0, and the role of this distance term gradually diminishes.

Remark 5.8. (Equivalence with arbitrary coefficients) The equivalence result in
Theorem 5.6 can be extended to arbitrary pairs a, b > 0 up to considering the
non-local functionals with kernel mn = �e−σn ; that is, the functionals given by

F�,σ
ε (u; I ) = ε

∑
i,i−1∈Iε(I )

f
(ui − ui−1

ε

)
+ ε �

∑
i, j∈Iε(I )

e−σ |i− j |(ui − u j

ε

)2
,

with the choices

σ = σa,b = 2 sinh−1
(1

2

√
b

a

)
and � = �a,b = b2

4a sinh(σa,b)
. (5.18)

Indeed, with this definition we get

a

�a,b
= 2(1 + e−σa,b )e−σa,b

(1 − e−σa,b )3 = aσ and
b

�a,b
= 2(1 + e−σa,b )

1 − e−σa,b
= bσ ,
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so that we can apply Theorem 5.6 obtaining the equivalence between 1
�

F�,σ
ε and

1
�

Eσ
ε . The corresponding (trivial) generalization of Qσ f in (5.14) can be obtained

by defining

Q̂σ,� f (z) = lim
k→+∞

1

k
inf

{
k∑

i=1

f (ui − ui−1)

+�

k∑
i, j=0

e−|i− j |σ (ui − u j )
2 : u ∈ A(k; z)

⎫⎬
⎭ , (5.19)

and setting Qσ,� f (z) = Q̂σ,� f (z) − aσ �z2, with aσ as in (5.17).

The proof of Theorem 5.6 is based on the following lemma, which allows to
integrate out the variable v by applying the general result of Lemma 5.2 to the case
of exponential kernels:

Lemma 5.9. Let L > 0 and kε = � L
ε
�. We fix α ∈ (0, 1) and set nε = �(kε)

α�.
Let Fσ

ε be given by (5.15) and Eσ
ε be given by (5.16) with aσ , bσ as in (5.17) and

I = [0, L]. Then, if uε ∈ Aε = Aε([0, L]) satisfies uε
i = uε

0 for i � nε, uε
i = uε

kε

for i ≥ kε − nε, we have

min{Eσ
ε (uε, v; [0, L]) : v ∈ A#

ε(u
ε)} = Fσ

ε (uε; [0, L]) + ‖uε‖2
L2 o(1)ε→0

(5.20)

where A#
ε(u

ε) = {v ∈ Aε : v0 = v1 = uε
0, vkε = vkε−1 = uε

kε
}.

Proof. For u, v ∈ Aε, we set

Hε(u, v) = aσ

ε

kε∑
i=1

(vi − vi−1)
2 + bσ

ε

kε∑
i=1

(ui − vi )
2

= Eσ
ε (u, v; [0, L]) − ε

kε∑
i=1

f (ui − ui−1)

Jε(u) = 1

ε

kε∑
i, j=0

e−σ |i− j |(ui − u j )
2 = Fσ

ε (u, v; [0, L]) − ε

kε∑
i=1

f (ui − ui−1).

Up to translations, we can assume uε
0 = 0 (and hence uε

i = 0 for i � Lε−α). We
introduce the (kε + 1) × (kε + 1) matrix Mε

σ = (mi j ) given by mi j = mσ|i− j | =
e−σ |i− j |, i, j = 0, . . . , kε. Note that mσ

n = e−σn satisfies mσ
n = o(n−β) for any β

and in particular for β > 3
α

. In order to apply Lemma 5.2, we compute sσ = smσ

and the matrix Aε
σ = Akε

m given by formula (5.5), obtaining

sσ = mσ
0 + 2

+∞∑
n=1

mσ
n = 1 + e−σ

1 − e−σ
and Aε

σ = Dε
σ (Mε

σ )−1 − I, (5.21)
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where Dε
σ is the (kε +1)×(kε +1) diagonal matrix with diagonal {1+e−σ , sσ , . . . ,

sσ , 1 + e−σ }. Moreover, in this case we can compute the inverse of the matrix Mε
σ ,

which is the tridiagonal (kε + 1) × (kε + 1) matrix given by

(Mε
σ )−1 = 1

1 − e−2σ

⎛
⎜⎜⎜⎜⎝

1 −e−σ 0 . . . 0
−e−σ 1 + e−2σ −e−σ 0 . . . 0

0 −e−σ 1 + e−2σ −e−σ 0 . . .

. . . . . . . . . . . . . . . . . .

0 . . . . . . 0 −e−σ 1

⎞
⎟⎟⎟⎟⎠ .

(5.22)

Now, to each u ∈ Aε we associate the corresponding function defined on
{0, . . . , kε} by i �→ u(εi); with a slight abuse of notation, we still denote this
function by u. Setting

Hkε
σ (u, v) = 2sσ

ε
〈Aε

σ v, v〉 + 2sσ

ε
〈u − v, u − v〉

for u, v : {0, . . . , kε} → R, we can then apply Lemma 5.2 with k = kε, obtaining

min{Hkε
σ (uε, v) : v : {0, . . . , kε} → R} = Jε(u

ε) + ‖uε‖2
L2 o(1)ε→0. (5.23)

We conclude by proving that, up to an infinitesimal term, the minimum of Hkε
σ (ũε, ·)

on Aε coincides with the minimum of Hε(uε, ·) on A#
ε . Indeed, given u, v ∈ Aε

we can write

Hkε
σ (u, v) = − sσ

ε

kε∑
i, j=0

(Aε
σ )i j (vi − v j )

2 + 2sσ

ε

kε∑
i=0

⎛
⎝ kε∑

j=0

(Aε
σ )i j

⎞
⎠ v2

i

+2sσ

ε

kε∑
i=0

(ui − vi )
2

= 2(1 + e−σ )e−σ

ε(1 − e−σ )3

kε∑
i=1

(vi − vi−1)
2 + 2(1 + e−σ )

ε(1 − e−σ )

kε∑
i=0

(ui − vi )
2

= Hε(u, v), (5.24)

since
∑kε

j=0(Aε
σ )i j = 0 for any i by (5.21) and (5.22). This formula in particular

implies

〈Aε
σ v, v〉 = e−σ

(1 − e−σ )2

kε∑
i=1

(vi − vi−1)
2;

that is, estimate (5.9) with C = e−σ

(1−e−σ )2 , which in this case is an equality.
Finally, recalling Remark 5.3 we obtain

min{Hkε
σ (uε, v) : v : {0, . . . , kε} → R} = min{Hε(u

ε, v) : v ∈ A#
ε(u

ε)}
+‖uε‖2

L2 o(1)ε→0

and the claim follows by (5.23). �
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Proof of Theorem 5.6. Upper estimate. Let Fσ (u; [0, L]) be the �-limit of the se-
quence Fσ

ε . Let u ∈ L2(0, L) be such that Fσ (u; [0, L]) < +∞ and let uε ∈ Aε

be a recovery sequence for the �-limit Fσ (u; [0, L]). Let ûε be the sequence given
by Lemma A.1 and vε,min be obtained by minimization of the minimum problem
in (5.20) with uε = ûε. Recalling Lemma 5.9, we get

lim sup
ε→0

Eσ
ε (ûε, vε,min; [0, L]) � lim sup

ε→0
Fσ

ε (ûε, [0, L])
� lim sup

ε→0
Fσ

ε (uε; [0, L]).

This gives the upper estimate for the �-limit of Eσ
ε .

Lower estimate. Let u ∈ H1(0, L) and let uε, vε converge to u in L2(0, L) and be
such that sup Eσ

ε (uε, vε; [0, L]) � S < +∞. Let ûε, v̂ε be the sequences given by
Lemma A.1(B). Hence

lim inf
ε→0

Eσ
ε (ûε, v̂ε; (0, L)) � lim inf

ε→0
Eσ

ε (uε, vε; (0, L)). (5.25)

Applying Lemma 5.9 we obtain

lim inf
ε→0

Eσ
ε (uε, vε; [0, L]) ≥ lim inf

ε→0
Eσ

ε (ûε, vε,min(ûε); [0, L])
≥ lim inf

ε→0
Fσ

ε (ûε; [0, L]).

This concludes the proof. �
By the results in Section 5.1 we can use the equivalence above to give a useful

characterization of Q̂σ f .

Remark 5.10. (Representation of Q̂σ f in terms of local functionals) Formula (5.2)
in Theorem 5.1 and equality (5.24) prove the following formula for the function
Q̂σ f defined in (5.13):

Q̂σ f (z) = lim
N→+∞

1

N
min{Eσ

1 (u, v; [0, N ]) : u0 = v0 = 0, uN = vN = N z},
(5.26)

where Eσ
1 is defined by (5.16) with ε = 1 and a = aσ , b = bσ satisfying (5.17).

Remark 5.11. (Representation of the constrained relaxation in terms of local func-
tionals) Formula (5.26) can be extended to constrained problems; namely, we have

Q̂σ f
( p

q
, z
)

= lim inf
k→+∞

1

kq
min

{
Eσ

1 (u, v; [0, kq]) : u, v ∈ A(kq; z), u ∈ V
(

kq; p

q

)}
,

(5.27)

where, in accordance with the notation above, Q̂σ f (θ, z) denotes the constrained
relaxation Q̂mσ f (θ, z), and V(kq; p

q ) is the set of admissible constrained functions
defined in (3.2). Indeed, we note that Theorem 5.1 also holds for constrained re-
laxation, since we can apply Lemma 5.2 to u satisfying a volume constraint (see
Lemma 3.3).
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Remark 5.12. (Non-exponential kernels) For a general kernel m the matrix Mk =
(mi j )

k
i, j=0 is a symmetric Toeplitz matrix. Under decay conditions on mn we can

apply the arguments in Section 5.1. However, since (Mk)−1 now is not of the form
(5.22) (for some insight on the problem of the inversion of a general symmetric
Toeplitz matrix we refer, e.g., to [18]), the resulting functional Hk

ε does not depend
on nearest neighbours only and the argument showing the optimality of the bounds
can not be completed as above. However, for particular classes of kernels m the
resulting functionals Hk

ε may be still amenable to analysis, even if they involve
next-to-nearest-neighbour interactions and beyond. The analytical transparency of
such functionals will then allow one to extract useful information on the form of
the corresponding Q̂m f .

5.3. Truncated Convex Potential

In this section we show some properties of Q̂σ f and of the corresponding phase
function θ if f is a general truncated convex function; that is,

f (z) =
{

f̃ (z) ifz � z∗

f̃ (z∗) ifz > z∗,
(5.28)

where z∗ > 0 and f̃ : R → [0,+∞) is strictly convex and such that f̃ (0) = 0.
Note that we can suppose that f̃ satisfies the growth condition

f̃ (z) ≥ c1z2 − c2

in [0,+∞) for some c1, c2 > 0. Using the notation of Section 3, we set A =
[z∗,+∞).

Remark 5.13. (More general f ) Note that the condition f̃ (0) = 0 can be substituted
by the hypothesis that f̃ has a minimum point zmin < z∗, since affine changes of
variables are compatible with the definition of Q̂m f by Remark 2.25.

5.3.1. Characterization of Q̂σ f in Terms of Periodic Arrangements Given
the local form of the problem (5.26) formulated in terms of the two-variable func-
tional Eσ

1 (u, v; [0, N ]), the relaxed energy Q̂σ f can be obtained by optimizing the
location of ‘broken bonds’; that is, of indices i such that ui − ui−1 ∈ A, similarly
to what done in the case of concentrated kernels. The fact that these bonds can be
always considered as either isolated or organized in a ‘broken island’ makes the
structure of oscillations (microstructure) compatible with the lattice. This makes
the problem analytically tractable.

Note first that on the complement of the broken bonds the energy coincides
with its ‘convex part’, defined as follows: given a, b > 0, for a bounded interval I
and u, v ∈ Aε(I ) we introduce the functional Ẽε given by

Ẽε(u, v; I ) = ε
∑

i∈I∗
ε (I )

f̃
(ui − ui−1

ε

)
+ a

ε

∑
i∈I∗

ε (I )

(vi − vi−1)
2 + b

ε

∑
i∈Iε(I )

(ui − vi )
2,

(5.29)
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where we recall that I∗
ε = {i ∈ Z : εi, ε(i −1) ∈ I }. Note that, since these energies

will be used to compute minimum problems with Dirichlet boundary conditions,
we consider the last term of the sum in the whole Iε(I ) = {i ∈ Z : εi ∈ I }.

In view of Section 5.1, for all N ≥ 2 we can write the functions gN introduced
in (5.10) with η replaced by f̃ (z∗) as

ga,b
N (z) = gN (z) = 1

N

(
f̃ (z∗) + min

{
av2

1 + Ẽ1(u, v; [1, N ]) : vN = N z
})

.

(5.30)

They represent the minimal energy of an array of N bonds, of which the first one
is broken, with given average gradient. By uniformity of notation, we also set

g1(z) = f̃ (z∗) + az2 and g∞(z) = f̃ (z) + az2. (5.31)

If a = aσ and b = bσ are given by (5.17), then we set

gσ
N (z) = gN (z) and Ẽσ

ε (u, v; I ) = Ẽε(u, v; I ).

Note that, by using ui = vi = zi as test function in the definition of gσ
N (z), we get

lim
N→+∞ gσ

N (z) � f̃ (z) + aσ z2.

In the next proposition, based on the analysis of the distribution of broken
bonds in minimizers, we show that Q̂σ f (z), considered as the infimum of the
corresponding constrained functions, can be described by only using the values
θ = 1

N , which will be proved to be the locking states. The full description of this
structure will be given in Proposition 5.23, after a delicate analysis of the general
properties of gN .

Proposition 5.14. (Characterization of Q̂σ f in terms of periodic arrangements)
Fixed σ > 0, let a = aσ and b = bσ be given by (5.17). If f is a truncated convex
potential as in (5.28), then

Q̂σ f (z) =
(

inf
N∈N{gσ

N }
)∗∗

(z). (5.32)

Remark 5.15. Note that, recalling Remark 5.8, Proposition 5.14 holds for any a, b >

0 with ga,b
N in place of gσ

N and a in place of aσ , up to substituting Q̂σ f with
Q̂σa,b,�a,b f as defined in (5.19), with σa,b and �a,b given by (5.18).

Proof of Proposition 5.14. The lower bound is a consequence of Proposition 5.5.
To conclude the proof we show that Q̂σ f (z) � (infn∈N{gσ

n })∗∗(z). Since Q̂σ f is
convex, it is sufficient to prove that Q̂σ f (z) � infn∈N{gσ

n (z)}.
We fix δ > 0. For z ∈ R there exists n ∈ N such that gσ

n (z) � infn∈N{gσ
n (z)}+δ.

If n = 1, then we can take as test functions u, v given by ui = vi = i z. For any
N ≥ 1 we get

1

N
Eσ

1 (u, v; [0, N ]) � 1

N
Ẽσ

1 (u, v; [0, N ]) = f̃ (z) + aσ z2 = gσ
1 (z)
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Fig. 22. Shape of a minimizer of (5.33) in a ‘broken island’

and the result follows by taking the limit for N → +∞. Otherwise, let u, v ∈
A1([1, n]) be such that vn = nz and

f̃ (z∗) + aσ v2
1 + Ẽσ

1 (u, v; [1, n]) = n gσ
n (z).

We extend u and v in 0 by setting u0 = nz − un and v0 = 0. It follows that

Eσ
1 (u, v; [0, n]) � Eσ

1 (u, v; [1, n]) + bσ (u1 − v1)
2 + aσ v2

1 + f̃ (z∗)

� Ẽσ
1 (u, v; [1, n]) + aσ λ

2 + f̃ (z∗)
= n gσ

n (z).

For any N ≥ 1 we choose uN and vN as test functions in [0, nN ] defined by setting
uN

i equal to ( j − 1)nz + ui−( j−1)n in each [( j − 1)n, jn), j ∈ {1, . . . , N − 1} and
in [(N − 1)n, Nn] and correspondingly vN

i . We get

1

nN
Eσ

1 (uN , vN ; [0, nN ]) = 1

nN
N Eσ

1 (u, v; [0, n]) � gσ
n (z) � inf

n∈N{gσ
n (z)} + δ.

Letting N → +∞ the claim follows by the representation formula for Q̂σ f given
in (5.26). �

Remark 5.16. (Simplification of the minimal configurations) Given u ∈ A1([0, N ]),
we say that i ∈ {1, . . . , N } belongs to B(u) (the set of broken indices of u) if
ui − ui−1 > z∗.

For future reference we show that the solutions of

min
{

Eσ
1 (u, v; [0, N ]) : v0 =0, vN = N z, #B(u) = n

}
(5.33)

can be regrouped and rearranged. Let (u, v) solve (5.33). Note that in the union
of the non-isolated ‘broken intervals’ we can assume that u and v are affine and
equal. More precisely, the convexity of the square and a translation argument allow
to prove that there exists z0 such that if i + k + 1 ∈ B(u) for k ∈ {0, . . . , k}, with
k ≥ 1 then

v(i + k) = v(i) + z0k for k = 0, . . . , ..., k + 1
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Fig. 23. Construction of (u, v) with isolated broken bonds

Fig. 24. Distribution of broken bonds

v(i + k) = u(i + k) for k = 1, . . . , k

(see Fig. 22). As a second step, we show that if (u, v) solves (5.33) we can assume
that there is at most one ‘broken zone’ for u with length greater than 1. To this
end, we extend u and v by periodicity by setting u(N + j) = u( j) + N z and
u(− j) = u(N − j) − N z for j = 1, . . . , N , and correspondingly for v.

Now we show that the minimum is attained at (u, v) such that if i ∈ B(u), then
i − 1 
∈ B(u) and i + 1 
∈ B(u), or j ∈ B(u) for all j ∈ {i + 1, . . . , N }. To show
this, we suppose that i0, i0 + 1, i0 + k and i0 + k + 1 belong to B(u) for some
i0 ≥ 1, k ≥ 2 and i0 + k � N , while i0 + j + 1 
∈ B(u) for j ∈ {1, . . . , k − 2}.

We modify u and v by setting for j = 0, . . . , k − 1

ũ(i0 + j) = u(i0 + j + 1) − z0 and ṽ(i0 + j) = v(i0 + j + 1) − z0

(see Fig. 23). With this definition

Eσ
1 (ũ, ṽ; [0, N ]) � Eσ

1 (u, v; [0, N ]).
Thanks to the periodic extension of u and v, this proves that in minimum

problem (5.33) we can assume that there exist n0, n1, ..., nr ∈ N with nl > 1 for
any l ∈ {1, . . . , r}, r + n0 = n(N , z) and n0 = N −∑r

l=1 nl , such that

i ∈ B(u) for all i ∈ {1, . . . , n0} and
j∑

l=1

nl + 1 ∈ B(u) for all j ∈ {1, . . . , r}

(5.34)

(see Fig. 24).
This reduces the problem of the computation of the minimum value (5.33)

to the solution of the minimum problem on each (translated) island [0, n j ], j ∈
{1, . . . , r},

min
{

Eσ
1 (u, v; [0, n j ]) : v0 =0, vn j = z j n j , B(u) = {1}

}
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and in the broken island [0, n0], where

min
{

Eσ
1 (u, v; [0, n0]) : v0 =0, vn0 = z0n0, #B(u) = n0

}
= n0g1(z0), (5.35)

with suitable boundary conditions z j satisfying
∑r

j=0 n j z j = N z.

Since Eσ
1 (u, v; [0, n −1]) = Ẽσ

1 (u, v; [0, n −1])−bσ (u0 −v0)
2 if #B(u) = 0,

for n > 1 and z ∈ R we have

min
{

Eσ
1 (u, v; [0, n]) : v0 =0, vn =nz, B(u) = {1}

}

≥ min
w∈R

{
min

{
Ẽσ

1 (u, v; [1, n]) : v1 = w, vn = nz
}

+ aσ w2 + f̃ (z∗)
}

= ngσ
n (z).

5.3.2. General Properties of the Periodic Bounds gN In order to relate the
constrained relaxation Q̂σ f (θ, z) to gσ

N (z) and to characterize the locking states of
f , we analyze the properties of gσ

N (z) in dependence on both N and z. Note that in
the following results we may consider general values of a, b > 0 and not limit to
aσ , bσ , so that the results of this section hold for a general gN as defined in (5.10).

Proposition 5.17. (Convexity of gN ) The functions gN are uniformly strictly con-
vex. More precisely, we have

1

2
gN (z) + 1

2
gN (z′) ≥ gN

( z + z′

2

)
+ a

( z − z′

2

)2
(5.36)

for all z, z′ ∈ R and N ∈ N.

Proof. If u, v and u′, v′ are minimizers for gN (z) and gN (z′) we can use the func-
tions 1

2 (u + u′), 1
2 (v + v′) as test functions for gN ( 1

2 (z + z′)). Using the convexity
of f̃ and the quadraticity of the other terms; more precisely, that for all i we have
(after setting v0 = 0)

a(vi − vi−1)
2 + a(v′

i − v′
i−1)

2 = a

2
((vi + v′

i ) − (vi−1 + v′
i−1))

2

+a

2
((vi − vi−1) − (v′

i − v′
i−1))

2,

we get

1

2
gN (z) + 1

2
gN (z′) ≥ gN

( z + z′

2

)
+ 1

N

a

4

N∑
i=1

((vi − vi−1) − (v′
i − v′

i−1))
2

≥ gN

( z + z′

2

)
+ a

(1

2

1

N

N∑
i=1

((vi − vi−1) − (v′
i − v′

i−1))
)2

= gN

( z + z′

2

)
+ a

( z − z′

2

)2
,

as desired. �
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Remark 5.18. From the previous proposition we deduce that g′′
N (z) ≥ 2a at all z

where gN is twice differentiable. In particular, we obtain that gN (z) ≥ f̃ (z∗)
N + az2

for all N ≥ 1.

Remark 5.19. (Symmetry of solutions) The solutions u, v of the minimum problem

min

{ N∑
i=2

f̃ (ui − ui−1) + a
N∑

i=2

(vi − vi−1)
2

+b
N∑

i=1

(ui − vi )
2 : v1 = v1, vN = vN

}
(5.37)

are symmetric with respect to the centre of the interval, in the sense that

v j+1 − v j = vN− j+1 − vN− j , u j+1 − u j = uN− j+1 − uN− j (5.38)

for 1 � j � N − 1. Furthermore, if N = 2M + 1 is odd then

vM+1 = uM+1 = vN + v1

2
(5.39)

while, if N = 2M is even then

vM+1 + vM

2
= uM+1 + uM

2
= vN + v1

2
. (5.40)

Indeed, first note that we may state the boundary condition equivalently as
vN − v1 = V := vN − v1. Then, condition (5.38) is a direct consequence of the
strict convexity of the energy and is obtained using

vi = vi − vN+1−i

2
, ui = ui − uN+1−i

2
(5.41)

as test functions. To check, e.g., (5.39), note that from (5.38)

vM+1 = v1 +
M∑

j=1

(v j+1 − v j ) = v1 +
M∑

j=1

(vN− j+1 − vN− j )

= v1 +
N−1∑

k=M+1

(vk+1 − vk) = vN − vM+1 + v1,

from which the first equality in (5.39) follows. To check the second one, note that
from (5.38) we obtain vi + v2M+2−i − 2vM+1 = ui + u2M+2−i − 2uM+1 = 0 for
all i , from which

1

N

N∑
i=1

ui = uM+1,
1

N

N∑
i=1

vi = vM+1. (5.42)



  107 Page 82 of 113 Arch. Rational Mech. Anal.         (2023) 247:107 

Fig. 25. Construction of the test function v

Now, considering in place of ui the function

ui = ui + v1 + vN

2
− uM+1,

as test functions, the only change in the problem in (5.37) is in the last sum, for
which, using (5.42) and the already proved equality in (5.39) for v, we have

N∑
i=1

(ui − vi )
2 =

N∑
i=1

(ui − vi )
2 − N

(v1 + vN

2
− uM+1

)2
,

which contradicts the minimality of u, v if the second equality in (5.39) does not
hold. The proof of (5.40) follows the same line with minor modifications.

Proposition 5.20. (Convexity properties with respect to N with given parity) For
all N1, N2 ≥ 1 such that N1 + N2 is even and N1 
= N2, for all z1, z2 ∈ R\{0} we
have

N1

N1 + N2
gN1(z1) + N2

N1 + N2
gN2(z2) > gN (z), (5.43)

where N = N1+N2
2 and z = N1z1+N2z2

N1+N2
. In particular, we have the convexity

property in N

N1

N1 + N2
gN1(z) + N2

N1 + N2
gN2(z) > gN (z), where N = N1 + N2

2
and z 
= 0.

(5.44)

Proof. We consider the case of N1 and N2 odd, the case of N1 and N2 even following
the same line with minor modifications. Let u1, v1 be minimizers for gN1(z1) and
let u2, v2 be minimizers for gN2(z2). We define u, v by setting

vi =
⎧⎨
⎩

v1
i + v2

1−v1
1

2 if 1 � i � N1+1
2

v2
i+ N2−N1

2

+ 1
2 (N1z1 + N2z2) if i ≥ N1+1

2 ,

ui =
⎧⎨
⎩

u1
i + v2

1−v1
1

2 if 1 � i � N1+1
2

u2
i+ N2−N1

2

+ 1
2 (N1z1 + N2z2) if i ≥ N1+1

2

(see Fig. 25). Thanks to Remark 5.19 this is a good definition,v(N1+1)/2 = u(N1+1)/2,
and we have vN = 1

2 (N1z1+N2z2), so that these are test functions for gN (z). Again,
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by the symmetry properties of v1 and v2 in Remark 5.19 we obtain (5.43). Note the
strict inequality, which is proved by noting that vi , ui do not satisfy the properties
of minimizers in Remark 5.19. �

From Proposition 5.20 we deduce a general convexity property which holds also
if N1 and N2 have different parity. Note that this implies that broken bonds will be
equidistributed up to oscillations of a unit, due to incommensurability phenomena.

Corollary 5.21. (Convexity properties with respect to arbitrary N ) Let k, N ≥ 2
be integers, and wk, w0 ∈ R\{0}. Then

(N + k)gN+k(wk) + NgN (w0) > (N + k − 1)gN+k−1(wk−1) + (N + 1)gN+1(w1)

(5.45)

for some wk−1, w1 such that (N +1)w1 + (N + k −1)wk−1 = Nw0 + (N + k)wk .
Moreover wk−1, w1 belong to the interval with endpoints w0 and wk .

Proof. Let (w1, . . . , wk−2) be the solution of the linear system given by the equa-
tions

(N + h)wh + (N + h − 2)wh−2 = 2(N + h − 1)wh−1

for h = 2, . . . , k. We can repeat the application of (5.43) to each pair N1 = N + h,
N2 = N + h − 2 with h = 2, . . . , k, by fixing at each step z1 = wh, z2 = wh−2,
obtaining

(N + k)gN+k(wk) − (N + k − 1)gN+k−1(wk−1)

(N + k − 1)gN+k−1(wk−1) − (N + k − 2)gN+k−2(wk−2)

(N + 1)gN+1(w1) − NgN (w0).

The last part of the claim follows by induction. �
Now we can show an ordering property of the functions gN which allows to

describe the structure of Q̂σ f in terms of the locking states.

Remark 5.22. If we define the auxiliary functions g̃N (z) = gN (z) − η
N , then we

have g̃N (z) < g̃N+1(z) for all N ≥ 1 and z > 0. This is proved by induction using
Proposition 5.20 with N1 = N − 1, N2 = N + 1 and z1 = z2 = z, after noting
that for N = 1 the inequality g̃1(z) < g̃2(z) is implied by Proposition 5.17 since
g̃1(z) = az2.

5.3.3. Characterization of Locking States The convexity properties of gN (z)
allow to characterize the locking states of the function f and to give a description
of Qσ f (z).

Theorem 5.23. (Locking states of Qσ f ) Let f be as in (5.28) and let mσ
n = e−σn.

Then the set of locking states of Qσ f is given by
{ 1

N
: N ∈ N, N ≥ 1

}
∪ {0}.
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Proof. Step 1. We prove by induction the monotonicity of the sequence gN (z) for
z large enough. By Proposition 5.20 we obtain that if gN (z) ≥ gN−1(z) then

N − 1

2N
gN (z) + N + 1

2N
gN+1(z) ≥ N − 1

2N
gN−1(z) + N + 1

2N
gN+1(z) > gN (z);

hence,

N + 1

2N
gN+1(z) >

(
1 − N − 1

2N

)
gN (z) = N + 1

2N
gN (z).

Hence, iterating this argument, we get that the sequence k �→ gk(z) is not decreasing
for k ≥ N − 1 and strictly increasing for k ≥ N .
Step 2. Now we show that for z large enough then g2(z) ≥ g1(z). By the growth
hypothesis f̃ (z) ≥ c1z2 − c2 we get

g2(z) ≥ f̃ (z∗)
2

− c2

2
+ 1

2
min

{
c1(u2 − u1)

2 + a(2z − v1)
2 + a(v1)

2

+b(u2 − 2z)2 + b(u1 − v1)
2 : u1, u2, v1 ∈ R

}
.

By computing the minimum, we obtain

g2(z) ≥ f̃ (z∗)
2

− c2

2
+ 1

2

(a(2c1 + b) + bc1

2c1 + b
(2z − v1)

2 + a(v1)
2
)

with

v1 = a(4c1 + 2b) + 2bc1

a(4c1 + 2b) + bc1
z.

Hence for z large enough

g2(z) ≥ f̃ (z∗)
2

− c2

2
+ a

(
1 + bc1(a(4c1 + 2b) + bc1)

(a(4c1 + 2b) + bc1)2

)
z2

> f̃ (z∗) + az2 = g1(z).

From this property and Remark 5.18 we deduce that there exists a unique z1 such
that g2(z1) = g1(z1), and hence g1(z) = minN gN (z) in [z1,+∞) by Step 1.
Step 3. By Step 1 we know that gN (z1) > g2(z1) = g1(z1) for all N ≥ 3. Let
[z2, z1] be the maximal interval containing z1 where g2(z) = minN≥1 gN (z) =
minN≥2 gN (z). Since in particular g3 > g2 in the interval (z2, z1] by Remark 5.22,
we have gN > g4 > g3 for all N > 4 in the closed interval [z2, z1] always by Step
1. This implies that g3(z2) = g2(z2). Moreover, note that g4(z2) > g2(z2), since
otherwise we would have g3(z2) < g2(z2) by (5.44) with z = z2, N1 = 2 and
N2 = 4.
Step 4. We define z3 = max{z : g4(z) � min{g3(z), g2(z), g1(z)}. This is well
defined since g4(0) < min{g3(0), g2(0), g1(0)} and we have z3 < z2. Note that in
(z4, z3) we have min{gN (z) : z ∈ N} ∈ {g2(z), g3(z)}. We then define iteratively
zn = max{z : gn+1(z) � min{gk(z) : k � n}. Again, this is a good definition and
zn < zn−1. In (zn, zn−1) we have that min{gN (z) : N ∈ N} ∈ {gn(z), gn−1(z)}.
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Fig. 26. Pictorial description of Theorem 5.23 for a single choice of σ (shape of Q̂σ f and
θ , not to scale)

Fig. 27. Relative behaviour of gσ
N and the final resulting θ

Indeed, by Corollary 5.21 if gk(z) = g
(z) at some z then |k − 
| � 1. Since
min{gN (zn−1) : N ∈ N} = gn(zn−1) and we cannot have gn(z) = gn+1(z) if
z ∈ (zn, zn−1), the claim follows.
Step 5. Inequality (5.44) shows that the graph of gN lies below the graph of the
convex envelope of the minimum between gN−1 and gN+1 in an open interval. By
Proposition 5.14 this proves that 1

N is a locking state. �

In order to highlight the dependence on σ , for any σ > 0 and for any N ≥ 1, in
the sequel zN (σ ) will denote the corresponding value zN given by Theorem 5.23.
Moreover, for any σ we set z0(σ ) = +∞.

Remark 5.24. (shape of Qσ f (z) and θ(z)) The graph of the function Qσ f (z) pos-
sesses infinitely many concave parabolic arcs, corresponding to the intervals where
Q̂σ f (z) is affine, which accumulates in z∗(σ ) = inf N zN (σ ) > 0. Correspond-
ingly, the phase function θ(z) is affine, interpolating between consecutive values
1/N (see Fig. 27).

Summarizing, the behaviour of the penalized energy Qσ f (z) in terms of the
macroscopic gradient z has the following features:
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• (‘unfractured zone’) for z � z∗(σ ) optimal sequences take into account only
the convex part of f ; i.e., there are no broken bonds;

• (‘completely microfractured zone’) there exists z∗(σ ) = s−
1 (σ ) > z1(σ ) such

that for z ≥ z∗(σ ) (that is, in I1(σ ) = [z∗(σ ),+∞)) the part of the energy
involving the function f is identically f̃ (z∗); i.e., we have broken bonds for all
values of the index i ;

• (increasingly segmented behavior of the relaxed energy) for values of the macro-
scopic gradient between z∗(σ ) and z∗(σ ) the energy Q̂σ f behaves as a super-
position of infinitely many ‘damaged materials’ indexed by the parameter N
representing the microscopic optimal spacing of broken bonds. For the values
z where Q̂σ f (z) is affine, optimal sequences mix the damaged materials pa-
rameterized by N and N − 1. The point z∗(σ ) is an accumulation point for the
different behaviors as N → +∞.

Remark 5.25. (limit behaviours of the damaged zones) By Proposition 2.38, high-
lighting the dependence on the parameter σ , we deduce that

(i) lim
σ→0

z∗(σ ) = lim
σ→0

z∗(σ ) = z∗, corresponding to the extreme non-additivity
case,

(ii) lim
σ→+∞ z∗(σ ) = 0 and lim

σ→+∞ z∗(σ ) = +∞, corresponding to full additivity.

Remark 5.26. (Generic non differentiability) Note the generic non differentiability
of Q̂σ f (θ, z) with respect to θ at the locking states. This is due to the different
definitions of this function in left and right neighbourhoods of each locking state 1

N .
Indeed, the definition of Q̂σ f (θ, z) uses gσ

N (z), gσ
N+1(z) in a left neighbourhood

and gσ
N−1(z), gσ

N (z) in a right neighbourhood of θ = 1
N , respectively, in analogy

with the case of concentrated kernels, as seen in Section 4 (see Remark 4.5).

5.4. Properties of Optimal Microstructures

In the previous section we showed that θ of the form 1
N with N ∈ N are locking

states. We now show that such values correspond to energy wells, and characterize
all Q̂σ f (θ, ·).

5.4.1. Microstructures as Interpolations of EnergyMeta-Wells The following
proposition reinterprets gσ

N as the energy of periodic minimizers for θN = 1/N :

Proposition 5.27. (gσ
N as an energy meta-well) Let gσ

N be defined as in (5.30) with
a = aσ and b = bσ satisfying (5.17). The following equality holds for any N ∈ N

and z ∈ R:

�N
m f

( 1

N
, z
)

= gσ
N (z)

where �N
m f is defined in (3.21) with A = [z∗,+∞), f−1 = f̃ , f1 = f̃ (z∗) if

z ∈ A and +∞ otherwise, and mn = e−σn.
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Proof. We first observe that �N
m f ( 1

N , z) = R̂N
m f (s N , z) where s N = (1,−1,−1,

. . . ,−1) and R̂N
m f is defined in (3.20) with

F#(u, s; [0, N ]) =
N∑

i=1

fsi (ui − ui−1) +
N∑

i=1

∑
j∈Z

e−σ |i− j |(ui − u j )
2.

By extending s N by N -periodicity, we have

R̂N
m f (s N , z) = 1

N
min{F#(u, s N ; [0, N ]) : ui − zi N -periodic}

= lim
k→+∞

1

k N
min{F#(u, s N ; [0, k N ]) : ui − zi N -periodic}

= lim
k→+∞

1

k N
min

{
f̃ (z∗)k +

k∑
r=1

N∑
l=2

f̃ (uN (r−1)+l − uN (r−1)+l−1)

+aσ

k N∑
i=1

(vi − vi−1)
2 + bσ

k N∑
i=1

(ui − vi )
2 : ui − zi, vi − zi N -periodic

}
,

the last equality being a consequence of (5.4), the equivalence result of Lemma 5.9
and the characterization of the minima given by (5.6), which ensures that also the
minimizing v can be chosen periodic. Hence by the periodicity we get

�N
m f

( 1

N
, z
)

= 1

N
min

{
f̃ (z∗) +

N∑
i=2

f̃ (ui − ui−1)

+aσ

N∑
i=1

(vi − vi−1)
2 + bσ

N∑
i=1

(ui − vi )
2 :

ui − zi, vi − zi N -periodic
}
.

Finally, noting that we can remove the periodicity condition on u and that we can
rewrite the condition on v as a boundary condition, we get the claim. �

Let IN = IN (σ ) = {z ∈ R : Q̂σ f (z) = gσ
N (z)}. Note that Remark 5.11

implies that Q̂σ f (θ, ·) can be described in terms of the convex combination of the
functions gσ

N (z). In particular, by the convexity of gσ
N (z) with respect to N , we

have

Q̂σ f
( 1

N
, z
)

= gσ
N (z) (5.46)

in the whole R.
We are now in a position to characterize Q̂σ f (θ, ·) as an interpolation between

consecutive energy meta-wells (corresponding to the locking states), as in Lemma
4.4 for the concentrated kernels.
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Proposition 5.28. (Interpolation between energy wells) Given σ > 0, suppose that
a = aσ and b = bσ are as in (5.17). Then, for any θ ∈ Q ∩ (0, 1) and for any
z ∈ R the following equality holds:

Q̂σ f (θ, z) = min
{

t (θ)gσ
Nθ

(z′) + (1 − t (θ))gσ
Nθ+1(z

′′) : t (θ)z′ + (1 − t (θ))z′′ = z
}
,

(5.47)

where

Nθ =
⌊1

θ

⌋
and t (θ) = Nθ

(
θ(Nθ + 1) − 1

)
. (5.48)

Proof. We divide the proof in two steps.
Step 1: θ = 1

N . In this case, the claim becomes (5.46) for all z ∈ R. We note that
for each N the formula is proved for z ∈ IN . Moreover, for arbitrary z it can be
further simplified as follows. Let k ∈ N be fixed and let (u, v) be a minimizer in
(5.27) with p = 1 and q = N . Since Q̂σ f ( 1

N , z) can be expressed as in (5.27), it
is sufficient to show that for all k

1

k N
Eσ

1 (u, v; [0, k N ]) ≥ gσ
N (z).

It is not restrictive to suppose that u1 − u0 ≥ z∗. By grouping the interactions, we
estimate

Eσ
1 (u, v; [0, k N ]) ≥

k∑
j=1

N j g
σ
N j

(z j )

where
∑k

j=1 N j = k N and
∑k

j=1 N j z j = k N z. By Proposition 5.20, we infer that
all even N j are equal to some Ne, and the corresponding z j coincide with some ze,
and the same holds for odd N j with No and corresponding z j with zo, so that there
exist integers ke and ko such that

Eσ
1 (u, v; [0, k N ]) ≥ ke Negσ

Ne
(ze) + ko Nogσ

No
(zo)

where

ke Ne + ko No = k N and ke Neze + ko Nozo = k N z.

Since u ∈ V(k N , 1
N ), we also have ke + ko = k. By (5.45) we deduce that |Ne −

No| = 1, and this is only possible if either ke or ko vanishes, from which we
conclude.

Step 2:general case. We fix θ = p
q with p and q coprime integers satisfying

1 < p < q. Let k ∈ N be fixed and let (u, v) be a minimizer in (5.27). By grouping
the interactions as in the case θ = 1

N , thanks to (5.45) we obtain that there exists
N ∈ N such that

k1 + k2 = kp, k1 N + k2(N + 1) = kq (5.49)
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for some k1, k2 ∈ N, and

Eσ
1 (u, v; [0, kq]) ≥ k1 Ngσ

N (z′) + k2(N + 1)gσ
N+1(z

′′)

where z′, z′′ satisfy k1 N z′ + k2(N + 1)z′′ = kqz. Since (5.49) implies q
p ≥ N >

q
p − 1, we deduce that N = Nθ is the unique integer solution of the equation (with
k1 = k(p(Nθ + 1) − q) > 0 and k2 = k(q − pNθ ) > 0). Hence

Eσ
1 (u, v; [0, kq]) ≥ k1 Nθ gσ

Nθ
(z′) + k2(Nθ + 1)gσ

Nθ+1(z
′′). (5.50)

Noting that

k1 Nθ

kq
= t (θ) and

k2(Nθ + 1)

kq
= 1 − t (θ),

since Q̂ fσ (θ, z) can be expressed as in (5.27) we obtain, by using (5.50),

Q̂σ f (θ, z) ≥ min
{

t (θ)gσ
Nθ

(z′) + (1 − t (θ))gσ
Nθ +1(z

′′) : t (θ)z′ + (1 − t (θ))z′ = z
}
.

The opposite inequality follows by the equality gσ
N (z) = Q̂σ f ( 1

N , z) proved
in the case θ = 1

N and by the convexity of Q̂σ f (θ, z). Indeed, noting that

t (θ)

Nθ

+ 1 − t (θ)

Nθ + 1
= θ,

for all pairs (z′, z′′) such that t (θ)z′ + (1 − t (θ))z′′ = z, we have

t (θ)gσ
Nθ

(z′) + (1 − t (θ))gσ
Nθ+1(z

′′)

= t (θ)Q̂σ f
( 1

Nθ

, z′)+ (1 − t (θ))Q̂σ f
( 1

Nθ + 1
, z′′)

≥ Q̂σ f
( t (θ)

Nθ

+ 1 − t (θ)

Nθ + 1
, t (θ)z′ + (1 − t (θ))z′′)

≥ Q̂σ f (θ, z)

as desired. �

5.4.2. A Canonical Optimal Microstructure Uniform at All Scales The de-
scription of Q̂σ f that we have obtained in terms of gσ

N highlights a number of
equivalent minimizers. However, in this class we can define a set of canonical
ground states. These states are characterized by the corresponding distribution of
spins, or, equivalently, the distribution of broken bonds. Similar sets have indepen-
dently appeared in the study of related dynamical systems [9,79].

In order to describe this optimal distribution of broken bonds, for a given θ ∈
[0, 1] we define the set of integers

A(θ) = {k ∈ Z : �kθ� 
= �(k + 1)θ�}.
A characteristic property of the set A(θ) is its ‘uniformity at all scales’; that is, the
property that for each M ∈ N each interval of length M contains either �Mθ� or
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�Mθ� + 1 elements of A(θ). The set A(θ) can be described as the most uniformly
distributed among sets with such property (up to translations). Note, for instance,
that if 1

N+1 < θ < 1
N then the difference between two consecutive elements of A(θ)

is either N or N + 1. The set A(θ) is periodic if and only if θ is rational; otherwise
it follows a pattern reminiscent of quasiperiodic functions (see e.g. [16,74]).

The following proposition states that in the computation of Q̂σ f (z) we can
consider the corresponding minimum problems only on functions u whose broken
sites coincide with A(θ(z)):

Proposition 5.29. (Optimality of A(θ)) Let f be as in (5.28). Then, for any σ > 0
and z ∈ R, the following equality holds:

Q̂σ f (z) = lim inf
k→+∞

k∈A(θ(z))

1

k
min{Eσ

1 (u, v; [0, k]) :

v0 = 0, vk = zk, ui − ui−1 ≥ z∗ ⇔ i ∈ A(θ(z))}.
Proof. For each N , we can suppose that the set where Q̂σ f (z) = gσ

N (z) is a closed
interval IN , which we let IN = [s−

N , s+
N ]. Note that the intervals are ordered as in

Fig. 26; that is, s+
N+1 < s−

N .
Let z ∈ (s+

N+1, s−
N ). Then, writing

z = ts−
N + (1 − t)s+

N+1, (5.51)

we have that

Q̂σ f (z) = rσ
N+1(z) = tgσ

N (s−
N ) + (1 − t)gσ

N+1(s
+
N+1). (5.52)

Recalling the definition of the phase function θ(z) (see Definition 3.6) and the fact
that θ(z) is affine in each open interval where Q̂σ f is affine, as stated in Proposition
3.10, we deduce

Q̂σ f (z) = Q̂σ f (θ(z), z) and θ(z) = t
1

N
+ (1 − t)

1

N + 1
,

where the link between z, t and N is given by (5.51). Hence, using the local repre-
sentation given by (5.27), for all k ∈ A(θ(z)) we can split the minimum

min{Eσ
1 (u, v; [0, k]) : v0 = 0, vk = zk, ui − ui−1 ≥ z∗ ⇔ i ∈ A(θ(z))}

into the sum of the minima

M j = min{E1(u, v; [i j−1, i j ]) : vi j−1 = 0, vi j = (i j − i j−1)z j ,

ui − ui−1 ≥ z∗ ⇔ i = i j },
where A(θ(z)) ∩ [0, k] = {i0, i1, . . . , ink } with 0 = i0 < · · · < ink = k, and z j are
such that

∑nk
j=1(i j − i j−1)z j = kz.

Furthermore, noting that M j = (i j − i j−1)gσ
i j −i j−1

(z j ), we obtain by convexity
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Fig. 28. Representation of two periodic minimizers

1

k
min{E1(u, v; [0, k]) : v0 = 0, vk = zk, ui − ui−1 ≥ z∗ ⇔ i ∈ A(θ(z))}

≥ 1

k

nk∑
j=1

(i j − i j−1)g
σ
i j −i j−1

(z j ) ≥ 1

k

nk∑
j=1

(i j − i j−1)Q̂σ f (z j ) ≥ Q̂σ f (z).

(5.53)

Conversely, fixed k ∈ A(θ(z)), let IN = { j � nk : i j − i j−1 = N } and
IN+1 = { j � nk : i j − i j−1 = N + 1} and z±

k be such that

N#IN z−
k + (N + 1)#IN+1z+

k = kz

and z−
k → s−

N , z+
k → s+

N+1 as k → +∞. Then, using the minimizers of gσ
N (z−

k )

and of gσ
N+1(z

+
k ) to test the minimum problem in (5.53), we get the upper bound

N#IN gσ
N (z−

k ) + (N + 1)#IN+1gσ
N+1(z

+
k ).

Taking the limit as k → +∞, by (5.52) we obtain the claim. �
Remark 5.30. (optimality of A(θ) for the constrained relaxation) The same proof
shows that for any θ

Q̂σ f (θ, z) = lim inf
k→+∞
k∈A(θ)

1

k
min{Eσ

1 (u, v; [0, k]) :

v0 = 0, vk = zk, ui − ui−1 ≥ z∗ ⇔ i ∈ A(θ)}.
For the sake of illustration, in Fig. 28 we represent two periodic minimizers

(the black dots representing broken bonds) for θ = 2/5. In the first case we have a
15-periodic minimizers, the second array is the ‘canonical’ one, alternating broken
bonds at distance two and three.

Remark 5.31. (The M-th neighbour case) In the case of M-th only interactions, we
focus first on θ = θk = k

M , with k ∈ {0, . . . , M}, that is, on locking states, or,
equivalently, on energy wells. The construction in Proposition 4.4 shows that all
periodic spin configurations with period a submultiple of M compatible with θk ,
correspond to optimal laminates. Indeed, the only requirement on minimizers is
that for all intervals of length M we have an equal number of spins of either type
(which is trivially true). Note in particular that we may choose minimizers with
ui − ui−1 > z∗ exactly for i ∈ A(θ) since this set is M-periodic. Now if θ is not
of the form k/M , we do not have periodic optimal minimizers. This is in contrast
to the exponential case, where we do have periodic minimizers for all θ ∈ Q.
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Fig. 29. Representation of two periodic minimizers

In Fig. 29 we represent two 5-periodic minimizers (the black dots representing
the elongations larger than z∗) for M = 5 and θ = 2/5. The second array is the
‘canonical’ one, alternating broken bonds at distance two and three.

We note that in some of our examples illustrating periodic minimizers with
‘global’ properties, the canonical periodic microstructures, epitomizing a general-
ized Cauchy–Born (GCB) states, are unique. This is true, for instance, in the case of
the exponential kernel m. Instead, for concentrated kernels we may have more than
one minimal (GCB-type) microstructure. Note also that in the case of exponential
kernels, outside the special regimes where the minimizers are periodic, we can mix
GCB states and, since different GCB states do not interact, the mixing process is
bringing arbitrariness. In particular, GCB states could be mixed canonically, even
though in the examples of interest in this paper this does not bring any advantages.
However, this is not the general case and when different GCB states interact, their
mixtures can become suboptimal, as in the case of concentrated kernels. We ar-
gue that in such ‘strongly non-additive’ cases the non-periodic GCB states with
the properties of our canonical microstructures can become the preferred ones if
interaction happens at all scales (which is not the case for concentrated kernels).

5.5. Explicit Constructions

In this section we explicitly compute Qσ f in a meaningful case, using the
general results of the previous section. This also allows us to treat some classes of
energies more general than truncated potentials.

5.5.1. The Novak–Truskinovsky Model Let f be the truncated quadratic po-
tential defined as in (5.28) with f̃ (z) = z2; that is,

f (z) =
{

z2 if z � √
η

η if z ≥ √
η

(5.54)

with η > 0 fixed. By using the computations in [84] and the results of this section,
we obtain an explicit formula for gσ

N (z), and hence Qσ f (z).

Remark 5.32. (Explicit computation of minima) Let Ẽ1 be defined as in (5.29) with
f̃ (z) = z2 and a, b > 0. Then, by the computations in [84, Sec. 3] we get

min{Ẽ1(u, v; [0, N ]) : v0 = 0, vN = N } = N 2a(a + 1)

Na + tanh((N + 1)ζ ) coth(ζ ) − 1

where

ζ = 2 sinh−1
(1

2

√
b(a + 1)

a

)
. (5.55)
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By using (5.30), we obtain

gN (z) = cN z2 + η

N
, (5.56)

where

cN = Na(a + 1)

Na + tanh(Nζ ) coth(ζ )
(5.57)

and ζ as in (5.55).

Since we are interested in the analysis of Qσ f , if a = aσ and b = bσ satisfy
(5.17) we write gσ

N , cσ
N and ζσ in place of gN , cN and ζ , respectively. The interval

where Q̂σ f (z) = gσ
N (z) is given by IN (σ ) = [s−

N , s+
N ], where

s+
N = s+

N (σ ) =
√

η

N (N − 1)(cσ
N − cσ

N−1)

√
cσ

N−1

cσ
N

if N ≥ 2; s+
1 = s+

1 (σ ) = +∞

s−
N = s−

N (σ ) =
√

η

(N + 1)N (cσ
N+1 − cσ

N )

√
cσ

N+1

cσ
N

if N ≥ 1.

(5.58)

Hence,

z∗(σ ) = lim
N→+∞ s±

N =
√

aσ η

(aσ + 1) coth(ζσ )
and

z∗(σ ) = s−
1 =

√
η(2aσ + bσ (aσ + 1))

aσ bσ

. (5.59)

Note that z∗(σ ) >
√

aσ η. Concluding, we have

Qσ f (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z2 if z � z∗(σ )

gσ
N (z) − aσ z2 if s−

N � z � s+
N for some N ≥ 2

rσ
N+1(z) − aσ z2 if s+

N+1 � z � s−
N for some N

η if z ≥ z∗(σ ),

(5.60)

where rσ
N+1(z) is the common tangent to gσ

N+1(z) and gσ
N (z).

The phase function θ corresponding to this example is pictured in Fig. 30, where
the grey zones between pair of curves denote the pairs in the z- 1

σ
plane in which θ

is affine for fixed σ between consecutive value of the form 1
N .

5.5.2. Interpolation Between Varying Degrees of Non Convexity In this set-
ting it is also of interest to consider a broader class of non convex convex-affine
functions f which includes the convex-constant functions as particular cases. More
specifically, consider the functions 
τ

f defined by


τ
f (z) =

{
f (z) if z � z∗

f (z∗) + τ f ′(z∗)(z − z∗) if z > z∗ (5.61)
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Fig. 30. Representation of θ in the z- 1
σ plane and a cross section at fixed σ

with 0 < τ < 1. In this way we construct an interpolation between the constrained
relaxation of the truncated-convex potential and of the convex potential which is
obtained if beyond z∗ we smoothly extend f in an affine way. Accordingly, in
(5.61) we have the truncated-convex potential as above at τ = 0, while at τ = 1
the function 
1

f is convex.
We can write 
τ

f (z) = �τ (z) + �τ (z), where

�τ (z) = f (z∗) + τ f ′(z∗)(z − z∗)

and

�τ (z) =
{

f (z) − τ f ′(z∗)(z − z∗) if z � z∗

f (z∗) if z > z∗.

The function �τ is a truncated convex potential to which we can apply the results
above, while, by Remark 2.25(iii) we have

Qσ 
τ
f = Qσ (�τ + �τ ) = Qσ (�τ ) + �τ .

We can carry on this computation for the quadratic-affine functions 
τ defined
in (3.18); that is, 
τ

f with f (z) = z2 and z∗ = √
η. Note that we can equivalently

rewrite 
τ (z) = �̃τ (z) + �̃τ (z), where �̃τ (z) = 2τ z − τ 2 and

�̃τ (z) =
{

(z − τ)2 if z � 1

(1 − τ)2 if z > 1,

which can be seen as a translation by τ of the function �τ given by

�τ (z) =
{

z2 if z � 1 − τ

(1 − τ)2 if z > 1 − τ.
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The latter is exactly of the form considered in Example 5.5.1 with η = ητ =
(1 − τ)2. Its constrained relaxation is then described in (5.60), and we eventually
have

Qσ 
τ (z) = (Qσ �τ )(z − τ) + 2τ z − τ 2.

Note that by (5.59) the endpoints of the interval where the corresponding θ(z) is
not 0 or 1 are

z∗,τ (σ ) = τ + (1 − τ)

√
aσ

(aσ + 1) coth(ζσ )
and

z∗,τ (σ ) = τ + (1 − τ)

√
2aσ + bσ (aσ + 1)

aσ bσ

,

with aσ , bσ , ζσ as in Example 5.5.1. Note that z∗,τ (σ ) < 1 < z∗,τ (σ ), and
lim

τ→1− z∗,τ (σ ) = lim
τ→1− z∗,τ (σ ) = 1.

6. Asymptotically Equivalent Continuum Models

The goal of the relaxation of the discrete problems discussed in this paper was to
obtain a homogenized continuum model. We have seen that generically the presence
of nonlocal interactions prevents even the simplest non-convex 1D problem from
being fully characterized by a bulk continuum energy. It follows from our analysis
that the exceptions, when the ‘local’ description also has ‘global’ features and the
generalized Cauchy–Born rule is applicable, are extremely rare. Then the question
arises regarding the very nature of the continuum model which could be considered
as asymptotically equivalent to a discrete model carrying both non-convexity and
incompatibility induced by nonlocal interactions. In this section we present an
explicit example showing that the answer to this question may be nontrivial. While
our analysis here will not be exhaustive, it points towards a new class of hybrid
discrete-continuum variational problems which may be of a considerable interest
per se.

In the interest of analytical transparency we focus on the specific homogeniza-
tion problem for energies Eε with the truncated quadratic potential f given by
(5.54); that is, the NT model analyzed in Example 5.5.1. Our goal will be to find a
continuum analog of this problem allowing one to approximate both the minimal
energy and the optimal microstructure. More specifically we search for the con-
tinuum problem which will be asymptotically �-equivalent to Eε in the sense of
[34]. In other words, the challenge is to construct a quasi-continuum problem still
carrying some elements of the ‘lost’ discreteness of the original problem.

To show that the task of constructing such a problem is nontrivial we first present
a naive approach to ‘continualization’ in this setting which has been proposed
phenomenologically and studied extensively in applications [12]. We show the
shortcomings of such an approach and then correct it to match the exact solution
of the discrete problem presented in Section 5.5.
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6.1. Naive Construction

We recall that the original problem is defined on a bounded interval I and in-
volves two functions u, v ∈ Aε(I ). We can write the corresponding energy function
in the form of a sum

Eε(u, v; I ) = E∗
ε (u; I ) + E∗∗

ε (u, v; I ) (6.1)

where

E∗
ε (u; I ) = ε

∑
i∈I∗

ε (I )

f
(ui − ui−1

ε

)
(6.2)

with I∗
ε = {i ∈ Z : εi, ε(i − 1) ∈ I } and

E∗∗
ε (u, v; I ) = a

ε

∑
i∈I∗

ε (I )

(vi − vi−1)
2 + b

ε

∑
i∈Iε(I )

(ui − vi )
2, (6.3)

Assuming now that I is a bounded interval and ε > 0, we can construct for each of
the entries in the sum (6.1), viewed independently, the asymptotically �-equivalent
functionals, defined, respectively, for u ∈ SBV (I ) and v ∈ H1(I ). This equiva-
lence can be interpreted as a uniform (with respect to boundary data) approximation
up to order ε of problems with fixed boundary data for E∗

ε and E∗∗
ε by the corre-

sponding problems for some functionals G∗
ε and G∗∗

ε , respectively.
A natural choice for such independently equivalent functionals (see [34] for

details) is

G∗
ε(u; I ) =

∫
I
γ (u′)2 dt + ηε#S(u), (6.4)

and

G∗∗
ε (u, v; I ) =

∫
I

(
α(v′)2 + β

(u − v

ε

)2
)

dt (6.5)

for suitable α, β, γ, η > 0. We recall that here u is a piecewise-Sobolev function
with jump set denoted by S(u). Given (6.4) and (6.5) it seems natural to assume
that the functional

Gε(u, v; I ) =
∫

I

(
γ (u′)2 + α(v′)2 + β

(u − v

ε

)2
)

dt + ηε#S(u) (6.6)

represents the desired (quasi) continuum analog of the original problem.
We recall the convergence result proved in [24].

Remark 6.1. (asymptotic behaviour of the energies Gε) The �-limit of Gε with
respect to the convergence uε, vε → v in L2(I ) is given by

Ghom(v) =
∫

I
ghom(v′) dt.
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Fig. 31. Comparison between the graph of the function ghom (below) and that of Qm f after
subtraction of the quadratic part

The integrand ghom is characterized as

ghom(z) = inf
S>0

{
λSz2 + η

S

}
(6.7)

where

λS = (α + γ )ωS
2

ωS
2 + γ

α
tanh(ωS

2 )
and ω2 = (α + γ )β

αγ
. (6.8)

The function ghom(z) is strictly convex, and the following properties hold:

(i) ghom(z) = (α + γ )z2 in [0, zc], where zc =
√

2ηωα
4γ (α+γ )

;

(ii) ghom(z) ∼ αz2 +Cz2/3 as z → +∞, where C > 0 depends only on α, β, γ, η.

6.2. Lattice Induced Interdependence of E∗
ε (u; I ) and E∗∗

ε (u, v; I )

Now we show that using the above approach, we obtain the discontinuous
function u which provides only formal approximations for the ‘jump sets’ of the
original discrete problems.

Remark 6.2. (Non-equivalent scaling behavior) Note first that the critical value z∗
in the NT discrete model, defined in (5.59), is different from the corresponding
critical value in the continuum problem discussed above. Indeed, if we choose
γ = 1 as in the discrete case, in order for the discrete and continuous energies
to be equivalent up to z∗ we need to ‘correct’ the continuum fracture energy by
substituting η with an effective fracture toughness η

cosh ζ
with ζ given by (5.55).

However, such a correction will not extend the equality of the energy functions
beyond the threshold. In particular, note the different scaling behavior of the two
models as z diverges, see Fig. 31.

It is clear that the proposed lattice-independent approximation of E∗
ε (u; I ) and

E∗∗
ε (u, v; I ) fails because in general separate uniform approximations of minima

for two functionals does not provide a uniform approximation for the minimum of
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the sum. More specifically, in our case functionals G∗
ε favor the onset of (at most)

one jump point of u, while functionals G∗∗
ε , not involving jump sets, allow for an

unbounded number of jumps. While in the correspondingly tailored regimes we can
have good separate approximations, the sum of the two energies in Eε optimizes
the number and location of jumps accounting for the lattice induced interaction
between E∗

ε (u; I ) and E∗∗
ε (u, v; I ) and therefore in a different way than Gε which

does not account for such lattice induced interaction.
Note that while in the discrete case we have interaction constrained by the

lattice discreteness, in the naive continuum problem such interaction is lattice-
unconstrained, which allows in principle for a richer class of microstructures. That
is why we can obtain in this way at most a lower bound.

6.3. A Lattice-Compatible Construction

As we have seen above, the limit of the energies defined in (6.4) when ε → 0
has different properties from those of its discrete counterpart and the failure of
this approach is related to the discrete-to-continuum transition-induced loss of the
constraint on the location of the jumps.

To construct the asymptotically equivalent [34] continuum theory the approach
should be more subtle because the corresponding relaxation procedure should in-
volve a delicate interplay between continuum limit and discrete energy minimiza-
tion, which are tightly coupled.

Indeed, as we have seen above decoupling discrete-to-continuum transition
from the relaxation of a non-convex energy gives rise to a quantitatively and quali-
tatively incorrect asymptotic behavior. Apparently the discrete-to-continuum limit
and the incompatibility-constrained non-convex minimization do not commute and
by performing the former independently of the latter we at best underestimate the
relaxed energy. In other words, by neglecting the discrete constraint we may be
able to construct lower bounds (using the naive approximation). We do not system-
atically analyze this issue here.

To get an insight on how to fix the problem, it is instructive to compare (6.7)
with formulas (5.56) and (5.57). Note, in particular, that in the latter the parameter
N is discrete while in the former the parameter S is continuous. This highlights
that the discreteness, fundamental in the construction of the m-relaxation in the
original problem, is underestimated in the computation of ghom. In other words,
the internal physical scale and the lattice scale tend to zero simultaneously but the
value of their ratio is not remembered in the limit.

With this remark in mind, we now look for a modification of the ‘naive’ con-
tinuum energies which corrects the non-equivalent behavior, while maintaining
the relevant features associated with the discreteness in the original functional Eε.
Since the energies defined in (6.4) cannot be equivalent to Eε mainly because of
the discrete location of the jump points, it is natural to add the constraint that the
jump set S(u) be contained in εZ.

As we show below, this simple modification is indeed sufficient to obtain equiv-
alence. Here we imply that the energies depending on three parameters α, β and
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γ (instead of a, b and 1, respectively), can be tuned appropriately to construct the
correct limiting energy.

More specifically, for any ε > 0 we define for u ∈ SBV (I ) and v ∈ H1(I ) the
functional

GZ

ε (u, v; I ) =
{

Gε(u, v; I ) if S(u) ⊂ εZ

+∞ otherwise.
(6.9)

By the general homogenization theorem [24, Th. 3] we get the following �-
convergence result:

Proposition 6.3. The sequence GZ
ε (u, v; I ) �-converges with respect to the con-

vergence uε, vε → v in L2(I ) to

GZ

hom(v) =
∫

I
gZ

hom(v′) dt (6.10)

where

gZ

hom(z) = lim
N→+∞

1

N
inf{GZ

1 (u, v; (0, N )) :
u(0) = v(0) = 0, u(N ) = v(N ) = N z}. (6.11)

The proof of Proposition 6.3 can be obtained by following the steps of the
proof of [24, Theorem 3]. Indeed, in the blow-up procedure the jump set S(uε) is
not modified, and the lim inf inequality follows. Concerning the upper estimate, by
density we can consider a piecewise-affine target function v such that S(v′) ⊂ Q;
then, the construction of the recovery sequence can be done by following the same
steps as in the proof of [24, Theorem 3], and the scaling argument gives uε such
that S(uε) ⊂ εZ. Note that the function gZ

hom is convex.
Now we will show that the sequence GZ

ε (u, v; I ) has the same �-limit as the
discrete sequence Eε for a suitable choice of the parameters α, β, γ . We define

g(N , z) = 1

N
min{G̃1(u, v; (0, N )) : u, v ∈ H1(0, N ), v(0) = 0, v(N ) = N z},

(6.12)

where, in analogy with (5.29), we denote by G̃1 the (non scaled) functional given
by

G̃1(u, v; I ) =
∫

I

(
γ (u′)2 + α(v′)2 + β(u − v)2

)
dt.

By solving the Euler–Lagrange equations for G̃1 and minimizing on the boundary
values of u, it follows that

g(N , z) = λN z2 (6.13)

with λN defined in (6.8). Note that the (unique) solution (uN , vN ) of the minimum
problem defining g(N , z) satisfies the symmetry property u( N

2 ) = v( N
2 ) = N

2 z.
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Proposition 6.4. For any z ∈ R the following equality holds:

gZ

hom(z) =
(

inf
N∈N

{
λN z2 + η

N

})∗∗
. (6.14)

Proof. We fix z ∈ R and N ∈ N; let (uN , vN ) be the solution of the minimum
problem defining ψ(N , z). We define ũN ∈ SBV (0, 2N ) by setting

ũN (t) =
{

2uN ( t+N
2 ) − N z if t ∈ (0, N )

2uN ( t−N
2 ) + N z if t ∈ (N , 2N )

(6.15)

and correspondingly ṽN ∈ H1(0, 2N ). Since uN ( N
2 ) = vN ( N

2 ) = N
2 z, then

S(ũN ) = {N }, ũN (0) = ṽN (0) = 0 and ũN (2N ) = ṽN (2N ) = 2N z; by con-
struction

1

2N
G̃1(ũN , ṽN ; (0, 2N )) = 1

N
G̃1(uN , vN ; (0, N )) = λN z2.

Let k ∈ N. We define ũ in (0, 2k N ) by setting

ũ(t) = ũN (t − 2 j N ) + 2 j N z in (2 j N , 2( j + 1)N ), j = 0, . . . , k − 1

and in the same way we define ṽ. By construction, S(ũ) ⊂ N and #S(ũ) = k − 1;
hence, since the boundary conditions for ũ and ṽ hold, we have

λN z2 + η

N
= 1

2k N
G̃1(ũ, ṽ; (0, 2k N )) + η(k − 1)

k N
+ η

k N

= 1

2k N
GZ

1 (ũ, ṽ; (0, 2k N )) + η

k N

≥ 1

2k N
inf

{
GZ

1 (u, v; (0, 2k N )) :
u(0) = v(0) = 0, u(k N ) = v(k N ) = 2k N z

}
+ η

k N
,

and, by taking the limit as k → +∞,

λN z2 + η

N
≥ gZ

hom(z).

Hence, since gZ

hom is convex,

(
inf
N∈N

{
λN z2 + η

N

})∗∗ ≥ gZ

hom(z).

Next we need to prove the opposite inequality. Let u ∈ SBV (0, N ) and v ∈
H1(0, N ) be such that the boundary conditions u(0) = v(0) = 0, u(N ) = v(N ) =
N z hold and S(u) ⊂ N. We denote the jump points of u by Ni , i = 1, . . . k, with
Ni < Ni+1 for any i = 1, . . . , k − 1. Setting N0 = 0 and Nk+1 = N , we define

ni = Ni − Ni−1 and zi = v(Ni ) − v(Ni−1)

ni
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for i = 1, . . . k + 1. We then have

1

ni
G̃1(u, v; (Ni−1, Ni )) ≥ g(ni , zi ) = λni z

2
i

for any i , so that

1

N
GZ

1 (u, v; (0, N )) ≥
k+1∑
i=1

ni

N
λni z

2
i + ηk

N
=

k+1∑
i=1

ni

N

(
λni z

2
i + η

ni

)

≥
k+1∑
i=1

ni

N
inf
n∈N

{
λnz2

i + η

n

}

Since
∑k+1

i=1 ni = N and
∑k+1

i=1 ni zi = N z, an application of Carathéodory’s
Theorem gives

1

N
GZ

1 (u, v; (0, N )) ≥
(

inf
n∈N

{
λnz2 + η

n

})∗∗
.

Taking the inf over the admissible functions and the limit for N → +∞ we get
the inequality

gZ

hom(z) ≥
(

inf
n∈N

{
λnz2 + η

n

})∗∗

concluding the proof. �
Now, if we choose

α = a(a + 1)

a + ζ coth(ζ )
, β = 4a(a + 1)ζ 3 coth(ζ )

(a + ζ coth(ζ ))2 , γ = (a + 1)ζ coth(ζ )

a + ζ coth(ζ )

(6.16)

it follows that ω = 2ζ, where ζ is defined in (5.55), and for any N the following
equality holds

λN = cN = N (a + 1)a

aN + tanh(Nζ ) coth(ζ )
.

We can then state the following equivalence result, whose proof follows from the
equivalence between Eε and Fε (Theorem 5.6 and Remark 5.8) and the results
above:

Theorem 6.5. (Equivalence with the Novak–Truskinovsky model) Choosing the
coefficients as in (6.16), the sequence GZ

ε defined in (6.9) �-converges with respect
to the L2-convergence to the same �-limit of the sequence of discrete functionals
Eε in the truncated quadratic case.

We reiterate that in general, the above result can be viewed as a cautionary tale,
showing that relaxation and homogenization (discrete-to-continuum limit) do not
always commute.
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7. Conclusions

In this paper, we systematically explored the possibility of using some auxiliary
‘local’ considerations to obtain minimizers with ‘global’ features for nonlocal vari-
ational boundary-value problems on lattices. Having in mind some known cases
when asymptotically (i.e. in continuum limit) such boundary-value problems ex-
hibit periodic minimizers, we associated the possibility of ‘local’ description with
applicability of the GCB rule and posed the question of the pertinence of such a
rule for a generic variational problem in our class. It is clear that the GCB rule is
not applicable in general, for instance, it clearly fails in the case of minimization
with concentrations, appearing in non-coercive problems of fracture mechanics.
Here we extended the known class of non-GCB problems by incorporating into the
analysis some general non-convex energy densities with quadratic growth.

More specifically, we used the simplest examples of functionals with quadrat-
ically penalized non-convexity, we demonstrated various facets of frustration and
incompatibility in one-dimensional discrete variational problems computed on an
increasing and diverging number of nodes. In the chosen class of non-convex lat-
tice problems with energy density f , linear long-range interactions were introduced
through an infinite matrix m. We studied relaxation of such problems with given
boundary conditions on intervals with a large number of nodes. This operation can
be interpreted as a discrete-to-continuum m-transform of the function f and we
studied the dependence of such a transform on the parameter z describing boundary
conditions.

We addressed the question whether the minimizers for a given functional are
close to functions with ‘global’ properties, for instance, to periodic functions, where
closeness can be understood as having the same energy up to an asymptotically
negligible quantity as the number of nodes diverges. The answer is in general
negative, for example, this is not true in the case of minimizers describing transitions
between two energy wells, when the parameter z lies in some intervals. Still, we
were able to identify interesting cases when the knowledge of the minimizers,
that are asymptotically of a ‘global’ form, are sufficient to determine the whole
m-transform of the function f through some form of convexification.

Outside our general considerations, we mostly focused on potentials f with a
bi-convex form; i.e., which have a convex restriction to two complementary phase
sets. For boundary-value problems involving such potentials and prescribed z it is
natural to define phase functions θ(z). We have shown that of particular interest
are values of θ for which the set {z : θ(z) = θ} contains a non-degenerate interval
(locking states). We studied the main properties of both, the functions θ(z) and of
locking states, and showed that for some combinations of f and m the minimizers
representing the locking states are periodic and hence of a ‘global’ (or GCB) nature
in the sense that they determine the whole m-transform of the function f . We also
showed that the optimal periodic minimizers whose structure may depend delicately
on f and m are not necessarily unique. Among different optimal minimizers we
identified universal periodic microstructures, which exist for all values of θ and have
fascinating analogs in the theory of dynamical systems (see [9] and a mechanical
analog in [84]).
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The concept of m-transform, introduced in this paper for the first time, was
shown to be rather rich. The complexity of the ensuing transformations suggests
that even in scalar one-dimensional problems, the interplay of long-range interac-
tions, non-convexity and discreteness can be highly nontrivial. We presented several
examples where the m-transform of a given non-convex function could be either
computed explicitly or narrowly bounded. Some of the obtainedm-transforms were
shown to be singular exhibiting the ‘devilish’ features with locking on some but
not all rational microstructures.

The analytical accessibility of the m-transforms in the presented examples, as
well as the associated non-uniqueness of the optimal micro-structures, hint towards
a certain degeneracy of the chosen problems. We can associate such a degeneracy
with the absence of ‘strong’ geometrical frustration representing some fundamental
incommensurability between the non-convexity, the long range interactions and
the discreteness. It is clear that more complex optimal minimizing sequences, not
reducible to periodic states or combinations of periodic states, can be expected in
cases when such incommensurability is present.

The ‘strong’ frustration of this type may be driven, for instance, by the com-
peting interactions inside the kernel m, for instance, by the combination of ferro-
magnetic and antiferromagnetic interactions acting on incommensurate scales. The
frustration can be also ‘strong’ even in the apparently simple case when different
scales are ‘favored’ by antiferromagnetic interaction involving the first and the third
nearest neighbors. ‘Strong’ frustration may also be brought by the structure of the
non-convex function f carrying the ‘characteristic strain’ which is incompatible
with the strain emerging through the interplay between the loading and the long-
range interaction kernel, see for instance [84] where a ‘complete devil staircase’
emerges in a problem involving a non-degenerate bi-quadratic potential and an
exponential kernel.

In a separate paper we will show that the presence of ‘strong’ frustration may
eliminate the degeneracy and bring the uniqueness to the problem of finding the
optimal microstructure. More generally, our preliminary analysis of problems with
‘strong’ frustration reveals an even deeper link between lattice variational prob-
lem and the discrete nonlinear mappings where the analog of constructing the
m-transform turns out to be the problem of classifying all quasi-periodic trajecto-
ries.
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A. Appendix: Variations of Boundary Data

In this appendix we state and prove some technical results which allow the mod-
ification of boundary values of test functions for the minimum problems used in
various characterization of Qm f . In particular, these results allow to assume that
test functions be constant close to the endpoints of the domain.

Let m = {mn}n be such that mn ≥ 0 for any n, and there exists n such that
mn is not increasing for n ≥ n. Moreover, we assume the decay condition mn =
o(n−β)n→+∞ for some β > 2.

Let Fε be defined as in (2.8); that is,

Fε(u; I ) =
∑

εi,ε(i−1)∈I

ε f
(ui − ui−1

ε

)
+

∑
εi,ε j∈I

ε m|i− j |
(ui − u j

ε

)2

for I interval and u ∈ Aε(I ).

Lemma A.1. Let L > 0 and Nε = � L
ε
�. Let α ∈ ( 2

β
, 1). Assume that u ∈ L2(0, L)

and uε ∈ Aε = Aε(0, L) be such that (the piecewise-affine extension of) the
sequence uε converges to u in L2(0, L), and supε(Fε(uε; [0, L])+‖uε‖2

L2) = S <

+∞. Then, there exists ûε ∈ Aε converging to u such that

(i) ûε
i = ûε

0 for i � ε−α , ûε
i = ûε

Nε
for i ≥ Nε − ε−α;

(ii) Fε(ûε; [0, L]) � Fε(uε; [0, L]) + r(ε), where the remainder r depends only
on S and f (0), and r(ε) → 0 as ε → 0.

Proof. We choose α′ ∈ (0, 1 − α) and define λε = εα′
and Mε = �εα+α′−1� − 1.

For ε small enough we divide (0, λε] and [L −λε, L) in Mε +1 intervals by setting

I k
ε =

( kλε

Mε + 1
,
(k + 1)λε

Mε + 1

]
,

J k
ε =

[
L − (k + 1)λε

Mε + 1
, L − kλε

Mε + 1

)
, k ∈ {0, . . . , Mε}.

Since

1

ε

Mε∑
k=1

∑
εi∈I k

ε ,ε j∈I k−1
ε

m|i− j |(uε
i − uε

j )
2 � Fε(u

ε; [0, L]) � S,
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then there exists k−
ε ∈ {1, . . . , Mε} such that

1

ε

∑
εi∈I

k−
ε

ε ,ε j∈I
k−
ε −1

ε

m|i− j |(uε
i − uε

j )
2 � S

Mε

. (A.1)

The same argument allows to find k+
ε ∈ {1, . . . , Mε} such that the same inequality

holds for εi ∈ J
k+
ε

ε , ε j ∈ J
k+
ε −1

ε . Setting j−ε = min{ j : ε j ∈ I
k−
ε

ε } and j+ε =
max{ j : ε j ∈ J

k+
ε

ε }, we define ûε by setting

ûε
i =

⎧⎪⎨
⎪⎩

uε

j−ε
if i � j−ε

uε
i if j−ε � i � j+ε

uε

j+ε
if i ≥ j+ε .

(A.2)

Since j−ε ≥ Lε−α and j+ε � Nε − Lε−α , then ûε satisfies claim (i). Moreover,
ûε → u as ε → 0. To prove this, for simplicity we suppose that mn is not increasing
for n ≥ 1. Then,

ε

j−ε∑
i=1

(uε
i − ûε

i )
2 = ε

j−ε∑
i=1

(uε
i − uε

j−ε
)2 � ε

j−ε∑
i=1

j−ε
j−ε∑

j=i+1

(uε
i − uε

i−1)
2

� S

m1
ε2( j−ε )2 � S

m1
λ2

ε,

and correspondingly ε
∑�L/ε�

i= j+ε
(uε

i − ûε
i )

2 � S
m1

λ2
ε . Setting, nε = � λε

ε(Mε+1)
�, since

∑
|i− j |≥nε

m|i− j |(uε
i − uε

j )
2 � 2

ε
mnε‖uε‖2

L2
� 2

ε
m�ε−α�‖uε‖2

L2
,

and recalling (A.1), we obtain

Fε(û
ε; [0, L]) � Fε(u

ε; [0, L]) + 2λε f (0) + C

ε2 m�ε−α� + C

Mε

,

where C denotes a constant depending only on supε Fε(uε; [0, L]) and supε ‖uε‖L2 .
Setting

r(t) = 2 f (0)tα
′ + Ctαβ−2 + Ct1−α−α′

,

we conclude the proof since mn = o(n−β) and α > 2
β

. �
Let a, b > 0. We define the functional Eε(u, v; I ) by setting

Eε(u, v; I ) =
∑

εi,ε(i−i)∈I

ε f
(ui − ui−1

ε

)

+a

2

∑
εi,ε(i−i)∈I

ε
(vi − vi−1

ε

)2 + b

2ε

∑
εi∈I

(ui − vi )
2 (A.3)

for I interval and u, v ∈ Aε(I ).
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Lemma A.2. Let L > 0 and Nε = � L
ε
�. Letα ∈ ( 2

β
, 1). Assume that uε, vε ∈ Aε be

such that (the piecewise-affine extensions of) uε and vε converge to u in L2(0, L)

and supε(Eε(uε; [0, L]) + ‖uε‖2
L2) = S < +∞. Then there exist ûε, v̂ε ∈ Aε

converging to u such that

(i) ûε
i = v̂ε

i = ûε
0 for i � ε−α , ûε

i = v̂ε
i = ûε

Nε
for i ≥ Nε − ε−α;

(ii) Eε(ûε, v̂ε; [0, L]) � Eε(uε, vε; [0, L])+r(ε), where the remainder r depends
only on S and f (0), and r(ε) → 0 as ε → 0.

Proof. We choose λε and Mε as in the proof of Lemma A.1, and divide (0, λε] and
[L −λε, L) in Mε +1 intervals, denoted by I k

ε and J k
ε respectively, as above. Then,

there exist kε and hε in {1, . . . , Mε} such that

1

2ε

∑
εi∈I kε

ε ∪J hε
ε

(
a(vε

i − vε
i−1)

2 + b(uε
i − vε

i )
2) � S

Mε

. (A.4)

Setting j−ε = min{ j : ε j ∈ I kε
ε } and j+ε = max{ j : ε j ∈ J hε

ε }, we define

ûε
i =

⎧⎪⎨
⎪⎩

uε

j−ε
if i � j−ε

uε
i if j−ε < i < j+ε

uε

j+ε
if i ≥ j+ε

and v̂ε
i =

⎧⎪⎨
⎪⎩

uε

j−ε
if i � j−ε

vε
i if j−ε < i < j+ε

uε

j+ε
if i ≥ j+ε ,

so that ûε and v̂ε converge to u in L2, and satisfy (i). Recalling (A.4), we get in
particular that

a

2ε
(v̂ε

j−ε +1
− v̂ε

j−ε
)2 � a

ε
(vε

j−ε +1
− vε

j−ε
)2 + a

ε
(vε

j−ε
− uε

j−ε
)2 � C

Mε

,

where C denotes a positive constant depending only on a, b and S. The same bound
holds for a

2ε
(v̂ε

j+ε
− v̂ε

j+ε −1
)2. Hence

Eε(ûε, v̂ε; [0, L]) � 2λε f (0) + Eε(u
ε, vε; (0, L))

+ a

2ε
(v̂ε

j−ε +1
− v̂ε

j−ε
)2 + a

2ε
(v̂ε

j+ε
− v̂ε

j+ε −1
)2

� 2λε f (0) + Eε(u
ε, vε; [0, L]) + 2C

Mε

,

concluding the proof as above. �

Remark A.3. In the hypotheses of Lemma A.2, if there exists α ∈ (0, 1) such that
uε

i = ûε
0 for i � ε−α and uε

i = ûε
Nε

for i ≥ Nε − ε−α for some α > 0, then

the function v̂ε can be chosen such that it coincides with uε for i � ε−α′′
and for

i ≥ Nε − ε−α′′
with α′′ < α.
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Fig. 32. Envelope of two consecutive functions P M,n(z)

B. Appendix: Formulas for P M,n in the Concentrated Case

In this appendix we include some explicit computations of the functions P M,n

defined in (3.1), which are the energies of the locking states n
M in the concentrated

case. The formulas of these functions have been used in Sections 4.2.1 and 4.2.2 to
highlight the structure of Qm f (z) in the truncated-parabolic and double-well case,
respectively. Here, we include the corresponding computations.

Truncated-parabolic case. Let f be given by (4.10). In view of (4.3), the domains
of P M,0 and P M,M are {z � 1} and {z ≥ 1}, respectively. We recall that here

P M,0(z) = z2 + 2(m1 + mM M2)z2 and P M,M (z) = 1 + 2(m1 + mM M2)z2.

For n = 1, . . . , M − 1, we can also write

P M,n(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2m1 + 1

1 − θn

(
z2 − θn(2z − 1)

)+ 2mM M2z2 if z � T −
n

θn + 2m1(2m1 + 1)

2m1 + θn
z2 + 2mM M2z2 if T −

n � z � T +
n

1 + 2m1

θn

(
(z − 1)2 + θn(2z − 1)

)+ 2mM M2z2 if z ≥ T +
n ,

(B.1)

where

T −
n = 2m1 + θn

2m1 + 1
and T +

n = 2m1 + θn

2m1
.

Note that while the formula defining P M,n changes form at z = T −
n and z = T +

n ,
the computation of the common tangent points of P M,n and P M,n+1 involves only
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the central formula in (B.1). Consequently, the points s+
n and s−

n in Theorem 4.1
are

s+
n = s+

n (m1, mM ) = 2m1 + θn√
2m1(2m1 + 1)

√
m1(2m1 + 1) + mM M2(2m1 + θn+1)

m1(2m1 + 1) + mM M2(2m1 + θn)

s−
n = s−

n (m1, mM ) = 2m1 + θn√
2m1(2m1 + 1)

√
m1(2m1 + 1) + mM M2(2m1 + θn−1)

m1(2m1 + 1) + mM M2(2m1 + θn)
.

(B.2)

In Fig. 32 we illustrate the envelope of two consecutive functions P M,n(z), bridging
energies of consecutive locking states with an affine function.

Finally, since s+
n ≥ T −

n and s−
n � T +

n , we have the formula

Qm f (z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z2 if z � s+
0

r M,n(z) − 2(m1 + mM M2)z2 if s+
n � z � s−

n+1
2m1(1 − θn)

2m1 + θn
z2 + θn if s−

n � z � s+
n

1 if s−
M � z,

(B.3)

where r M,n is the affine function

r M,n(z) = P M,n(s+
n ) + 2(z − s+

n )

M(s−
n+1 − s+

n )
.

Bi-quadratic double-well case. Let f be given by f (z) = (1 − |z|)2. By using
(4.3) the domains of P M,0 and P M,M are {z � 0} and {z ≥ 0}, respectively, where

P M,0(z) = (1 + z)2 + 2(m1 + mM M2)z2 and

P M,M (z) = (1 − z)2 + 2(m1 + mM M2)z2.

For n = 1, . . . , M − 1

P M,n(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 + 2m1

1 − θn
+ 2mM M2

)
z2 + 2z + 1 if z � T −

n

(1 + z)2 + 2(m1 + mM M2)z2 − 4θn

(
z + 1 − θn

1 + 2m1

)
if T −

n � z � T +
n(1 + 2m1

θn
+ 2mM M2

)
z2 − 2z + 1 if z ≥ T +

n ,

where in this case the points T −
n and T +

n where the formula changes are given by

T −
n = −2(1 − θn)

1 + 2m1
and T +

n = 2θn

1 + 2m1
.

Consequently,

s+
n (m1, mM ) = s+

n = 2m M M

(1 + 2m1)(1 + 2m1 + 2mM M2)
+ 2θn − 1

1 + 2m1

s−
n (m1, mM ) = s−

n = − 2mM M

(1 + 2m1)(1 + 2m1 + 2mM M2)
+ 2θn − 1

1 + 2m1
.

(B.4)
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Since s+
n ≥ T −

n and s−
n � T +

n , we obtain

Qm f (z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 + z)2 if z � s+
0

r M,n(z) − 2(m1 + mM M2)z2 if s+
n � z � s−

n+1

z2 + 2(1 − 2θn)z + 1 − 4θn(1 − θn)

1 + 2m1
if s−

n � z � s+
n

(1 − z)2 if s−
M � z,

where r M,n is the affine function

r M,n(z) = P M,n(s+
n ) + M(1 + 2(m1 + mM M2))

2(
P M,n+1(s−

n+1) − P M,n(s+
n )
)
(z − s+

n ).
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