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Active matter, exemplified by adaptive living materials such as the actomyosin cytoskeleton, can
navigate material parameter space dynamically, leading to unconventional mechanical responses.
In particular, it can self-drive toward elastic spinodal regimes, where inhomogeneous floppy modes
induce elastic degeneracy and enable a controlled interplay between rigidity loss and recovery. Prox-
imity to such marginal states leads to stress localization and the formation of force chains that can
be actively assembled and disassembled. Here, we extend the classical notion of spinodal states
to active solids and demonstrate how these extreme mechanical regimes can be actively accessed.
Moreover, we show that in a nonlinear setting, crossing elastic spinodals generates new energy wells
and makes force channeling an intrinsic feature of the emerging microstructure.

1. INTRODUCTION

In passive systems elastic rigidity usually emerges as a
result of breaking continuous symmetry [1]. It can also
appear in the process of introducing overconstraining in-
teractions [2–6] or as a result of tuning of the pre-stress
[5, 7–12]. Similarly, it is known that rigidity can be lost
in passive systems due to symmetry restoration [1, 13],
through underconstraining [14, 15] and by relaxing the
pre-stress [1, 7, 14, 16, 17].

Living materials, operating far from equilibrium, can
be more flexible in manipulating the partial loss and re-
covery of elastic rigidity [1, 7, 14]. This process is often
driven by the transduction of metabolic resources into
functional work [18–30]. Specifically, active systems can
tune their elastic response by modifying their effective
energy landscape, thereby, developing soft modes endoge-
nously [28–32]. In particular, due to the presence of ac-
tivity, the dynamic realizations of fragile matter become
possible [15, 33, 34], with marginality successfully main-
tained despite the fact that the overall stability of the
system is compromised [35–38]. One may argue that liv-
ing systems would be retained in a controlled marginally
stable state if the emerging soft modes facilitate function
[11, 39–44].

A prototypical context for such behavior is the vast
repertoire of rigidities exhibited by the active cellular cy-
toskeleton [46, 47] whose continuous reconfiguration gen-
erates a range of mechanical responses [48, 49]. Behind
this remarkable mechanical performance is the activity
of molecular motors that can either stiffen the cytoskele-
ton through actively generated pre-stress or fluidize it by
facilitating remodeling [12, 18, 19, 22, 25–27, 50].

A closely related manifestation of the highly non-
conventional elastic response in such systems is the emer-
gence of extreme stress and strain concentration which
takes the form of force channeling – as, for instance, in
actomyosin ‘stress fibers’ [51, 52] or ‘dense tethers’ dur-
ing active remodeling of the extracellular matrix [53–61].
The emerging localized structures can channel forces and
can be both assembled and disassembled [62–66]. Ulti-

mately the ability of active systems to generate highly
adaptable spatial patterns of densification and alignment
is behind long distance mechanotransduction indicating
the emergence of mechanical pathways which may be as
important as the biochemical ones [12, 67–72].
At the microscopic level, the accessibility of the under-

lying marginally rigid configurations can be attributed
in cytoskeleton to buckling of the constituent semiflex-
ible actin filaments[16], loss of crosslinkers, resulting in
their relative sliding [73], to wrinkling [74] and can also
be linked to the stretching-to-bending transition [75–
79]. The underlying ideas, allowing cytoskeletal sys-
tems to maintain the elastically extreme regimes, are cur-
rently of considerable interest for the design of artificial
biomimetic materials and devices [80–91].
In this paper, we identify some of the strategies

that enable active solids to reach elastically degenerate
regimes characterized by partial rigidity loss. While such
regimes have been explored for passive solids [15, 33,
38, 92–95], we demonstrate how active solids, by tuning
their internal activity to navigate the material parameter
space, access these states. Additionally, we explore the
richness of emerging soft modes by examining inhomoge-
neous deformations that arise in marginal regimes due to
endogenous driving.
Our analysis of the elastically marginal states builds

on the concept of elastic spinodals, distinguishing them
from the conventional thermodynamic spinodals. This
distinction is due to the presence of long range interac-
tions in elastic systems, arising from the gradient nature
of the order parameter and the attendant compatibil-
ity constraints [96]. While the conventional thermody-
namic spinodals are associated with the appearance of
zero eigenvalues of the finite dimensional elastic stiffness
matrix [97], elastic spinodals emerge due to the appear-
ance of zero eigenvalues of the (infinite dimensional) elas-
tic differential operator [94, 95]. We show that the cor-
responding inhomogeneous soft modes representing, for
instance, incipient force chains, would emerge from inter-
nal loading in constrained environments. The latter can
be potentially realized in living cells embedded in conflu-
ent tissues or attached to patterned substrates [51, 52].
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To keep the analysis transparent, we deal with the sim-
plest case of isotropic solids, and address in full detail the
accessibility of the corresponding limits of elastic sta-
bility. In particular, we classify all finite wave-vector
instabilities in such systems. Reaching such stability
thresholds usually means termination of an equilibrium
branch and indicates a transition from statics to dynam-
ics [94, 95]. The general vectorial criterion of weak local
stability is given by the Legendre–Hadamard conditions,
related also to ellipticity loss of the equations of elasto-
statics [92, 98, 99].

The possibility of reaching elastically marginal states,
which lie beyond the realm of ordinary materials, has
been so far under-emphasized in the literature. In this
paper, we show that such states can be realized in active
matter. Furthermore, we demonstrate that active sys-
tems can potentially cross the elastic spinodal thresholds,
provided that the model ensures proper stabilization of
these marginal states through nonlinear and higher gra-
dient terms. A central focus of this paper is to establish
that an important consequence of proximity to marginal
thresholds is the emergence of force channeling along
transient structures that can be actively assembled and
disassembled.

As part of our analysis, we demonstrate that the
macroscopic active drive toward marginal states is un-
derpinned by a microscopic stochastic mechanism that
destabilizes certain energy minima while generating new
ones in the effective free energy landscape. Specifically,
we provide an explicit example of stochastic dynamics in
a prototypical system exposed to non-equilibrium noise,
which effectively renormalizes linear elastic moduli from
positive to negative values.

In summary, our study highlights the adaptive nature
of active matter, where endogenous activity can dynam-
ically alter its elastic response. Such ‘smart’ materials
can operate near rigidity thresholds, using a rich spec-
trum of soft modes to regulate the balance between so-
lidity and fluidity. Moreover, our results suggest that me-
chanical feedback pathways – capable of being built up
and broken down as needed – allow active materials to
self-drive toward marginal stability, where partial rigid-
ity loss enables the emergence of non-affine, low-energy
‘mechanisms’.

The paper is organized as follows. In Section 2, we
focus on linear elastic isotropic solids and show that, by
coupling the activity level to the current state of pas-
sive stress or strain, the system can renormalize its elas-
tic response in a broad range, potentially reaching both
thermodynamic and elastic spinodals. Thermodynamic
spinodals are addressed in Section 3 where we discuss the
level of elastic degeneracy in such regimes. Section 4 is
dedicated to the study of elastic spinodals where we ad-
dress the issue of extreme stress concentration in these
regimes and also discuss various approaches allowing one
to regularize the emerging singularities. Nonlinear active
solids are the subject of Section 5 where we consider in
full detail a prototypical model extended beyond the lim-

its of linearized marginality. To complement this largely
phenomenological approach, we present in Section 6 a
microscopic stochastic model showing how the introduc-
tion of a correlated noise can modify the structure of the
energy landscape. Finally, in Section 7 we summarize the
obtained results and present our conclusions.

2. LINEAR ELASTIC ACTIVE SOLIDS

To elaborate the idea of active accessibility of elastic
spinodals it is sufficient to consider the simplest case of an
isotropic linear elastic solid in 2D. We start with writing
the total stress σ (say, of an active meshwork) as a sum
of elastic and active terms,

σ = Ceϵ+ σa. (1)

Here, ϵ = (∇u + ∇uT )/2 is the strain tensor and u(x)
is the displacement field. The fourth order elastic tensor
Ce has the standard isotropic form,

Ce
ijkl = Be δijδkl + µe(δikδjl + δilδjk − δijδkl), (2)

where Be and µe are the passive bulk and shear moduli,
respectively.

According to (1), in the presence of activity, the total
stress σ has an inelastic additive component σa first in-
troduced in [100, 101]. We consider a special case when
the active stress can be represent in the form

σa = AM , (3)

where M(x) is a symmetric second order fabric ten-
sor field characterizing the density distribution of active
agents and encoding, for instance, a locally diffused dipo-
lar mass anisotropy of active elements, such as myosin
[102–104] density distribution. The fourth order tensor
A is again assumed to be isotropic

Aijkl = ζ δijδkl + ξ (δikδjl + δilδjk), (4)

where now the coefficients ζ and ξ characterize the levels
of spherical and deviatoric activity, respectively.

The constitutive turnover of active elements can be in-
corporated into the model through the assumption that
the anisotropy represented by the tensor M is not ar-
bitrary but is instead enslaved to the anisotropy of the
current value of stress. It is implied that the stress state
is felt by the fabric and that the latter can be re-orientd
in the former. For instance, we assume in this way that
stress anisotropy can locally re-orient cytoskeletal mesh-
works [49, 105, 107–109]. Here it may be also appropri-
ate to mention highly relevant studies of tensegrity mod-
els, where load induced stiffening of living cells has been
linked to alignment/remodelling of stress fibers along the
loading direction [12].
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2.1. Stress induced regulation

The simplest quantitative assumption which expresses
this type of stress regulation is [102, 103]

M(x) = M0 + Lσ(x), (5)

where M0 is a constant second order tensor and L is the
fourth order tensor which is again assumed to be isotropic

Lijkl = L̄b δijδkl + Ls (δikδjl + δilδjk), (6)

now with coefficients L̄b and Ls representing the level of
stress-texture coupling. In view of the linearity assump-
tion in (5), we effectively renormalize the isotropic linear
elastic moduli.

Indeed, if we eliminate M from the stress-strain rela-
tion for the total stress σ, we obtain

σ = Ceϵ+ σa = Ceϵ+ AM
= Ceϵ+ A(M0 + Lσ). (7)

After algebraic reorganization, this yields

σ = (I− AL)−1Ceϵ+ (I− AL)−1AM0, (8)

which shows that

C = (I− AL)−1Ce (9)

can be viewed as activity renormalized linear elastic stiff-
ness tensor; the second term in (8) plays the role of active
prestress.

Note that in the cytoskeletal setting, we are essen-
tially postulating in (5) that the tensorial kinetic rate
of binding of active crosslinkers kb = kb I is balanced by
a Bell-type stress dependent unbinding rate kuM with
[106, 110–114]

ku(σ) = ku(I+ eL̂σ), (10)

where L̂ is again a standard isotropic forth order tensor
characterized by two constant coefficients. Under these
assumptions we obtain that in the limit of small stress,
L = −(kb/4ku)L̂ and M0 = (kb/2ku)I.
More generally, in the approximation of weak activity,

we obtain from (9)

C ≈ (I+ AL)Ce, (11)

where

(AL)ijkl = AijpqLpqkl

= 2
(
ζ(L̄b + Ls) + ξLs

)
δijδkl + 2ξLs(δikδjl + δilδjk)

=: 2ζL̃b δijδkl + 2ξLs(δikδjl + δilδjk), (12)

and L̃b := L̄b +
(
1 + ξ

ζ

)
Ls. Furthermore, since

(ALCe)ijkl = (AL)ijpqCe
pqkl

= 4
(
ζL̃b(λ

e + µe) + ξLsµ
e
)
δijδkl

+ 4ξLsµ
e(δikδjl + δilδjk), (13)

the renormalized isotropic elastic moduli take the form

B = Be(1 + 4ζLb), (14)

and

µ = µe(1 + 4ξLs), (15)

where Be := λe + µe and

Lb := L̄b +
(
2 +

ξ

ζ

(
1 +

µe

Be

))
Ls.

Note that the sign of Lb,s determines whether activity
leads to a stiffening or softening of the elastic material.

2.2. Strain induced regulation

In an alternative case when the fabric tensor M is
regulated by strain ϵ (rather than the stress σ), we can
similarly assume that

M = M0 +Kϵ, (16)

where the tensor K is again assumed to be isotropic with
parameters Kb,s

Kijkl = K̄b δijδkl +Ks (δikδjl + δilδjk). (17)

Then the effective ( renormalized) linear elastic response
is

σ = Ceϵ+ σa = Ceϵ+ AM
= Ceϵ+ A(M0 +Kϵ) = (Ce + AK)ϵ+ AM0, (18)

In the low activity level limit the renormalized stiffness
tensor is

C = Ce + AK, (19)

while the second term in (18) again represents active pre-
stress. To obtain the expressions for the renormalized
isotropic linear elastic moduli we write

(AK)ijkl = AijpqKpqkl

= 2
(
ζ(K̄b +Ks) + ξKs

)
δijδkl + 2ξKs(δikδjl + δilδjk)

=: 2ζK̃b δijδkl + 2ξKs(δikδjl + δilδjk), (20)

where K̃b := K̄b +
(
1+ ξ

ζ

)
Ks. The resulting expressions

of the effective isotropic elastic moduli are

B = Be + 2ζKb, (21)

and

µ = µe + 2ξKs, (22)

where again Be := λe + µe and

Kb := K̃b +
(
1 +

ξ

ζ

)
Ks.
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FIG. 1. (a) Regime diagram in the space of elastic moduli for the classical isotropic linear elastic solid. (b-e) Contours of the
linear elastic strain energy density w(ϵ1, ϵ2) for different B and µ; white line indicates zero ‘valleys’. In (b) we see a single strain
energy minimum. It transforms into a continuous distribution of minima in the thermodynamic spinodal regimes: (c) elastic
fluid and (e) conformal material. In (d), we show the two soft mode branches of elastic aether det[ϵ] = 0: no compression
aether: tr[ϵ] > 0 (red dotted line) and no tension aether: tr[ϵ] < 0 (blue dotted line).

2.3. Experimental evidence

As we have seen, in the proposed model the effective
moduli B and µ can vary in broad limits characterized
by the accessible range of the activity coefficients ζ or ξ.
Such variations have been indeed recorded in experiments
on living systems.

For instance, the implied stiffening or softening re-
sponse induced by endogenous (active) loading, was ob-
served in crosslinked actin mesh [16, 22, 27, 50, 107, 115–
119]. In particular, it was shown that both the effective
bulk and shear moduli, B and µ, can stiffen from 1Pa to
100Pa in response to significant increase in motor activity
upto 10-30 fold.

Initial softening followed by stiffening of crosslinked ac-
tomyosin in solution after activating the motors by ATP
addition was observed in [120, 121]. It was shown that
after ATP addition, the effective shear modulus µ ini-
tially abruptly drops from ∼80 Pa to almost ∼0 Pa due
to increased mobility of the elements. At later times,
the shear modulus rose to ∼350 Pa as the myosin hy-
drolyzed the ATP and the formation of rigor bonds with
actin filaments took place [120, 121].

To corroborate our assumption of enslavement of the
fabric tensor to the local stress/strain state we refer to in
vivo studies of self-organization of actomyosin cytoskele-
tal structures in mammalian cells [122] which showed
that the dissociation of individual non-muscle myosin
IIA filaments takes place with rate ku ∼ 0.01 s−1. On
the other hand, the macroscale formation and reorienta-
tion dynamics of actomyosin stress fibers depend on fac-
tors at several levels of organization, such as crosslinking
density and anisotropy, filament stiffness, substrate an-
choring and local adaptive regulation mechanisms, and,
hence, it is much slower, taking several minutes to hours
[51, 52].

Finally, we mention that in the case of ‘catch’ bonds
we may expect that Lb,s < 0 or Kb,s < 0 [31, 32, 107].
This suggests that the values of the elastic moduli can
potentially reach the elastic stability limits specified in
the next Section. However, to corroborate such a possi-
bility at a quantitative level, much more extensive exper-
imental studies would be needed. Those are expected to
confirm with certainty the proposed time scale separation
and link more securely the increase of endogenous activ-
ity in say, actomyosin cytoskeleton, with the attendant
changes in the (quasi)elastic properties of the meshwork.

3. THERMODYNAMIC SPINODALS

We recall that reaching thermodynamic spinodal
means the loss of convexity of the (activity renormalized)
effective energy density viewed as a function of strain
tensor ϵ. In the linear elastic setting this is equivalent to
the loss of the positive definiteness of the effective elastic
stiffness tensor. Note that in the definition of thermo-
dynamic spinodals the constraint of strain compatibility,
curl curl ϵ = 0, is irrelevant. This is a consequence of the
fact that only homogeneous deformation are taken into
account.
In the simplest nontrivial case of a 2D isotropic linear

elastic material the elastic energy can be written in the
form

w(ϵ1, ϵ2) = B (ϵ1 + ϵ2)
2/2 + µ (ϵ1 − ϵ2)

2/2, (23)

where the strain tensor is represented by the principal
strains ϵ1,2 := (tr ϵ±

√
(tr ϵ)2 − 4 det ϵ)/2. From (23) it

is clear that convexity of energy requires positive definite-
ness of the moduli, B > 0 and µ > 0. These inequalities
ensure that the elastic body is stable independently of
the type of the boundary conditions. In this sense, they
are sufficient but not necessary for elastic stability.
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We recall that for isotropic materials in 2D the fourth
order elastic stiffness tensor C can be represented as a
3 × 3 matrix with eigenvalues 2B, 2µ and 2µ. To iden-
tify the (homogeneous) floppy modes activated at the
corresponding thermodynamic stability thresholds (ther-
modynamic spinodals)

B = 0 (24)

and

µ = 0 (25)

we first observe that at µ = 0 there are two degener-
ate eigenvalues while at B = 0 there is one. It is then
easy to see that at the ‘elastic fluid’ threshold µ = 0
two shear modes soften, while at the ’conformal’ thresh-
old B = 0 (see the explanation for this term below),
a single dilatation mode becomes floppy. We can now
illustrate the degeneracies of the energy landscape asso-
ciated with these two thermodynamic spinodal regimes.
In view of the isotropy, it is again convenient to use the
space of principal strains (ϵ1, ϵ2). Since we are in the
linear elastic framework, the implied degeneracies always
take the form of a transformation of a single minimum of
the quadratic elastic energy at ϵ1 = ϵ2 = 0, see Fig. 1(a),
into the zero energy ‘valleys’ representing continuously
degenerate minima. Thus, we obtain a zero dilatation
valley

ϵ1 + ϵ2 = 0 (26)

in the case of an elastic fluid which can be then viewed
as a ‘unimodal material’ and a zero shear valley

ϵ1 − ϵ2 = 0 (27)

in the case of dilatation-insensitive (conformal) solid
which is then a ‘bimodal material’, see Fig. 1(c,e). We
use here the language of unimodal and bimodal materials
taken from the theory of composite materials [81].

To illustrate the emergence of inhomogeneous soft
modes at the thermodynamic spinodals it is sufficient to
consider the threshold B = 0. As we have seen in such
a limiting regime, purely dilatational deformations with
ϵxx − ϵyy = 0 and ϵxy = 0 cost no energy. If we express
these conditions in terms of displacements, we obtain

ux,x = uy,y,
ux,y = −uy,x.

(28)

In view of (28), the two components of the displacement
field (ux, uy) are both harmonic functions. Moreover,

∇u =

(
uy,y −uy,x

uy,x uy,y

)
= RU (29)

where

U =
√
a2 + b2I

is a pure dilatation with a = uy,y, b = uy,x, and R is
a rotation by angle tan−1(b/a). Such purely dilatational
inhomogeneous soft displacement modes are then angle
preserving. It is in view of these features, that the mate-
rial with B = 0 is called the conformal material [82, 123].
Note also that the stress in a ‘conformal’ solid is nec-

essarily trace free,

tr[σ] = 0. (30)

This makes the force balance problem

divσ = 0, (31)

statically determinate (isostatic) [15, 69, 124–127].
While the equations of elasticity remain elliptic at the

conformal threshold B = 0, the elastic body still be-
comes unstable in the presence of an unconstrained part
of the boundary. This is because of the failure of the
‘complementing condition’ at B = 0, which marks the
effective ‘loss of ellipticity on the boundary’ [128]. This
means, for instance, that for a solid body with B = 0 the
traction free boundary is always unstable against surface
wrinkling of the form

u(x) = Re[z(s)eiq·x], (32)

where q is an arbitrary wave vector representing lateral
wiggles while the function

z(s) = µ(iq ν + q)e−qs (33)

describes the exponential decay away from the free sur-
face. Here x is a spatial coordinate on the (free) surface
with normal ν and s is the coordinate perpendicular to
this surface [129]. Since any unconstrained segment of
the boundary can be expected to undergo a surface insta-
bility as the limit B = 0 is reached, active materials with
free boundaries, e.g., cells in suspension [130], are poten-
tially susceptible to such instabilities [39, 86, 129, 131]. It
is interesting that despite the presence of these instabil-
ities, thermodynamic spinodals, corresponding to both
µ = 0 and B = 0, have been successfully achieved by
meta-material constructions [81–87, 132–138].

4. ELASTIC SPINODALS

Next we define the elastic spinodals while remaining
in the simplest setting of 2D isotropic linear elasticity. If
we Fourier transform the Navier’s equilibrium equations:

divσ = µ∇2 u+B∇(divu) = 0, (34)

we obtain

Q(q) û(q) = 0, (35)

where

û(q) = (1/2π)

∫
R2

u(x) e−2πix·q dx.
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In (35) we introduced the acoustic tensor [98, 139]

Q(q) = (B + µ)q⊗ q+ µ(I− q⊗ q). (36)

In terms of acoustic tensor we can formulate the condi-
tions of elastic marginality in the form

detQ(q) = 0. (37)

In view of (37) marginality is defined here as the condi-
tion when at least one of the eigenvalues of the elasticity
operator (35) is equal to zero.

It is straightforward to see that the condition (37) is
satisfied whenever either

µ = 0 (38)

or

B + µ = 0 (39)

The conditions (38, 39) can be then interpreted as defin-
ing the elastic spinodal limits [92, 94, 95].
Note that reaching the thresholds (38, 39) indicates

that our Navier’s equations (34) lose their conventional
elliptic nature. As we show below, they also and sig-
nal that the character of stress propagation undergoes a
fundamental change [98, 99, 139–144].

We further observe that the threshold (38) corresponds
to the state where the material has just lost shear re-
sistance and in what follows we refer to such regimes
as “elastic liquids”. In contrast, at the second thresh-
old (39) it is the resistance to longitudinal deformation
that is lost and in what follows, respecting a long tradi-
tion [99, 145, 146], we refer to such regimes as “elastic
aethers”.

Note further that the stability limits (38, 39), which
we illustrate in Fig. 1(d), are necessarily weaker than
the limits (24, 25) delineating thermodynamic spinodals.
We reiterate that the reason is that the latter deal only
with homogeneous (affine, finite dimensional) perturba-
tions while the former address a much broader class of in-
homogeneous (non-affine, infinite dimensional) perturba-
tions. In particular, only the thresholds (38, 39) account
for the gradient nature of the order parameter (strain
tensor) and the corresponding elastic compatibility con-
straints. Therefore thermodynamic spinodals always lie
inside the elastic spinodals. As we have already seen,
the elastic regimes located between the elastic and the
thermodynamic spinodals, where the material respect the
strong ellipticity conditions while violating the thermo-
dynamic stability conditions, are stable only as long as
their boundary is fully constrained [129, 147]. Therefore
an artificial synthesis of non-biological materials reach-
ing the elastic spinodals remains highly challenging, even
though some design ideas for spinodal metamaterial with
B+µ = 0, which is peculiar due to its ‘infinitely auxetic’
response, have been already proposed in the literature,
e.g. [80].

To understand the physical consequences of having an
active material at the elastic spinodal limits, we observe
that due to the scale-free nature of continuum elastic-
ity, at these thresholds all wavelengths become unstable
simultaneously [123, 148]. Therefore the ensuing insta-
bilities are massive: in the elastic liquid regime (µ = 0)
the emerging soft modes are all solenoidal fields

divu = 0. (40)

Similarly, in the case of elastic aether regime (B+µ = 0),
the emerging soft modes are comprised of all irrotational
fields

curlu = 0. (41)

Note also that the mechanical response at elastic spin-
odals becomes isostatic (jammed, critical) [69]. Specif-
ically, in the elastic liquid regime the deviatoric stress
must necessarily vanish

σ − (1/2)tr[σ] I = 0. (42)

Similarly, in the elastic aether regime the determinant of
the stress tensor must necessarily vanish

det[σ] = 0. (43)

We recall that in isostatic states the system is highly
coordinated so that both, the nontrivial zero modes and
the states of self-stress, are only marginally constrained.

4.1. Green’s functions

The tendency towards the formation of displacement
discontinuities in elastic spinodal regimes can be illus-
trated most simply by the special structure of the corre-
sponding 2D Green’s functions.
To this end, consider the response of an infinite lin-

ear elastic body subject to concentrated forces. In the
Fourier space the Green’s function is just the inverse of
the elastic acoustic tensor and in the case of 2D isotropic
linear elasticity, characterized by parameters B and µ,
we obtain [149]

Ĝij(qx, qy) = [B qiqj + µ qkqk δij ]
−1

=

 µq2x+(B+µ)q2y
µ(B+µ)(q2x+q2y)

2 − Bqxqy
µ(B+µ)(q2x+q2y)

2

− Bqxqy
µ(B+µ)(q2x+q2y)

2

(B+µ)q2x+µq2y
µ(B+µ)(q2x+q2y)

2

 .

(44)

In real space, the obtained result can be illustrated by
presenting a displacement field generated by a pure shear
quadrupole at the origin. Suppose that the latter involves
a contractile dipole along the x-axis generated by the
point forces f (1) = (1, 0) and f (2) = (−1, 0) which act at
the points (∓1, 0), respectively, and an extensile dipole
along the y-axis, generated by the point forces f (3) =
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(0,−1) and f (4) = (0, 1) which act at the points (0,∓1).
The ensuing displacement field takes the form,

u(x, y) = u(1)(x+ 1, y) + u(2)(x− 1, y) + (45)

+ u(3)(x, y + 1) + u(4)(x, y − 1), (46)

where the corresponding displacement components are

u(α)
x (x, y) = Gxx(x, y)f

(α)
x +Gxy(x, y)f

(α)
y , (47)

and

u(α)
y (x, y) = Gxy(x, y)f

(α)
x +Gyy(x, y)f

(α)
y , (48)

where α ∈ [1, 4] and the real space Green’s functions
Gij(x, y) are given by (see, for instance , [150])

Gxx(x, y) =
1

4π

[
− 1

2

( 1
µ
+

1

B + µ

)
log(x2 + y2)

+
( 1
µ
− 1

B + µ

) x2

x2 + y2

]
,

Gxy(x, y) =
1

4π

( 1
µ
− 1

B + µ

) xy

x2 + y2
,

Gyy(x, y) =
1

4π

[
− 1

2

( 1
µ
+

1

B + µ

)
log(x2 + y2)

+
( 1
µ
− 1

B + µ

) y2

x2 + y2

]
. (49)

The regular case, when the elasticity equations remain
elliptic, is illustrated in Fig. 2(a). The singular behavior
of the functions (49) at elastic spinodal limits B + µ →
0 and µ → 0 is shown in Fig. 2(b,c), see also [151–
153]. The developing jump discontinuities, as either the
elastic aether or the elastic liquid limits are approached,
point towards the unavoidable reduced smoothness of the
limiting equilibrium fields.

|u| |u| |u|

(a) (b) (c)

FIG. 2. Elastic response to a force quadrupole placed in an
infinite domain in (a) the stable regime, and in the (b,c) elastic
spinodal regimes. The displacement field u, is represented by
its direction (arrows) and magnitude (color) in (a) the stable
material, (b) close to the elastic liquid regime, and (c) close
to the elastic aether regime, which show the formation of the
localized singularities of the displacement field u.

4.2. Singular stress fields

To emphasize the ubiquity of stress concentration phe-
nomena at elastic spinodals, we now recast the isostatic
conditions (42) and (43) in terms of classical Airy stress
function σxx = ∂2

yyχ, σyy = ∂2
xxχ, σxy = −∂2

xyχ.
We recall that in the case of elastic aether (B+µ = 0)

the iso-energy lines ϵ1 = 0 and ϵ2 = 0 in Fig. 1(d) rep-
resent the floppy configurations of the reference state.
This degeneracy of the energy landscape implies that ei-
ther of the two principal stresses is zero, so σ1σ2 = 0.
This means that the stress field σ is necessarily uniax-
ial. This property is ultimately behind the isostaticity
of this limit suggesting that the equilibrium problem is
statically determinate. We recall that in this limit the
stress distribution can be indeed found without invoking
any notion of strain field using the equations

divσ = 0, det[σ] = 0. (50)

Using Airy stress function we can reduce this system to
a degenerate-elliptic Monge-Ampère equation for χ:

∂2
xxχ∂2

yyχ− (∂2
xyχ)

2 = 0. (51)

The equation (51) is known to admit (static) shock
wave type solutions with discontinuous gradients of the
Airy function χ [133, 154–156]. In fact, the equation
(51) can be solved geometrically and it is known that its
general solution contains piecewise smooth developable
surfaces with zero Gaussian curvature, linked through
folds which can also form corners with singular Mean and
Gaussian curvatures [154, 157]. The folds would then in-
dicate the locations of stress channeling [155, 157, 158].
Note that the same folds are also indicative of the pres-
ence of displacement discontinuities JuK ̸= 0 suggesting,
for instance, the emergence of self penetration.
Finally, we stress that equation (51) does not automat-

ically imply the classical strain compatibility condition

curl curl ϵ = 0,

which in terms of Airy function χ would have been equiv-
alent to an elliptic biharmonic equation

∇4χ = 0.

Therefore the solution of (51) may be incompatible in the
sense that for such solutions, representing, for instance,
an energy-free, ‘inelastic’ self penetration, a global refer-
ence state would not exist.
In the case of the elastic liquid (µ = 0) the degener-

acy of the reference state leads to the requirement that
the deviatoric part of the stress field σ is zero (see the
degenerate energy line ϵ1 = −ϵ2 in Fig. 1(c)). Therefore
the stress equilibrium problem, which is again statically
determinate, can be closed as follows

divσ = 0, dev[σ] = 0. (52)
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Indeed, invoking the Airy stress function χ we obtain the
second order hyperbolic system

∂2
xxχ− ∂2

yyχ = 0, ∂2
xyχ = 0. (53)

The two scalar equations (53) describe the independent
shear modes associated with the strain variables ϵxx −
ϵyy and ϵxy. They simultaneously become floppy in our
isotropic model ensuring that in equilibrium necessarily
σxx − σyy = 0 and σxy = 0, see the second equation in
(52).

As is well known, in hyperbolic systems boundary con-
ditions specified on non-characteristic curves ‘propagate’
along the characteristics. The first equation in (53) has
characteristics x±y = const; its general solution is there-
fore of the form χ1(x, y) = f1(x+y)+g1(x−y). The sec-
ond equation in (53) has characteristics parallel to the co-
ordinate lines x = const and y = const. These character-
istics are orthogonal to the family of characteristics of the
first equation (53): the corresponding general solution is
of the form the form χ2(x, y) = f2(x) + g2(y). When the
the functions f1,2(x) and g1,2(y) are non-smooth, the cor-
responding surfaces χ1(x, y) and χ2(x, y) will have folds
‘propagating’ along the characteristics. The correspond-
ing singularities of either Gaussian or mean curvature or
both would then indicate the location of singular stress
fields.

(a)

(d) (e) (f)

(b) (c)

FIG. 3. Schematic representation of the singular mechan-
ical response on elastic spinodals. Reference configuration
(dashed line) transforms to: folded configuration in the elas-
tic aether regime (a); smooth configuration in the elastically
stable regime, µ > 0, B + µ > 0 (b); slipped configuration in
the elastic liquid regime (c). (d,e,f) Corresponding regular-
ized displacement fields.

To summarize, in both cases of the elastic aether
(B + µ = 0) and the elastic liquid (µ = 0) the system
of governing equations admits (static) shock-wave-type
solutions with discontinuous gradients of the Airy func-
tion χ(x), indicating the presence of displacement jumps
JuK ̸= 0. Outside the corresponding sharp folds elasticity
remains non-degenerate, the function χ remains smooth
and elastic compatibility holds.

To understand the physical meaning of the discontinu-
ous displacement field we can mention that in the case of

elastic liquids the emerging jumps would reflect a forma-
tion of slip lines, see Fig. 3(c). For elastic liquids similar
singular solutions with localized displacement disconti-
nuities are usually discussed in the dynamic framework
as weak solutions of Euler equations containing vortex
sheets and other singular structures, e.g. [159–164]. In-
stead, in the case of elastic aethers displacement discon-
tinuities may describe either an internal folding of the
material, see Fig. 3(a), or represent an internal unfold-
ing. In this sense the elastic aether can perform mechan-
ically as either a ‘no tension’ material [165–171] and a
‘no compression’ material [156, 172–175].

4.3. Fragile nature of elastic spinodals

As we have already seen, to reach an elastic spinodal
state in a body with finite geometry requires constraints
on the boundaries, such as in living cells belonging to
confluent tissues, and in cells adhered on micro-patterned
substrates [51]. In both cases the emergence of system-
spanning ‘force chains’ would depend on the anchoring at
the cell boundaries (through focal adhesions [176] or at
adherens junctions [177]). Since an arbitrary distribution
of the anchoring sites would not in general be compatible
with the equilibrium structure of the force chain network,
a dynamic reorganization of the anchoring configurations
and a concomitant reconfiguration of the force chains in
the bulk, could be expected until a stable force chain
network, compatible with the boundary anchoring distri-
bution, is established [33]. Such intermittent mechanical
adjustments through building and dismantling of load
supporting sub-structures, has been indeed recorded in
mechanically fragile living systems [178–180].
In the case of elastic aether the implied bulk-boundary

correspondence can be linked to the fact that the effective
energy density

w(ϵ) =

∫ ϵ

0

σ(ϵ′) · dϵ′ (54)

is a null-Lagrangian [181, 182]. Indeed, one can see that∫
Ω

w(ϵ) dA =

∫
∂Ω

τa(u,∇u,ν) dx (55)

where

τa(u,∇u,ν) = −µ eikejl∂iuj ukνl (56)

is a ‘live load’ type surface energy, eij is the Levi-Civita
symbol, and ν denotes the unit normal to the boundary.
In the case of elastic liquid, stress is hydrostatic and

the equilibrium problem reduces to finding a distribu-
tion of scalar pressure in the bulk. The pressure in the
bulk is fully controlled by the pressure distribution on the
boundary, which must be spatially constant for static sit-
uations. Once again we see that an arbitrary boundary
loading is not, in general, compatible with equilibrium
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configuration, requiring a dynamic adjustment. More
specifically, for elastic fluids the direct link between the
bulk and the surface at equilibrium can be illustrated by
the straightforward identity∫

Ω

w(ϵ) dA ≡
∫
Ω

B

2
∂iui ∂juj dA =

∫
∂Ω

τf (u,∇u,ν) dx,

(57)
where the ‘live load’ type surface energy is now

τf (u,∇u,ν) = (B/2)∂iui ujνj . (58)

One can see that in equilibrium, when ∂iui = const, the
energy depends only on the imposed change of the total
volume while all other types of loading are accommo-
dated dynamically.

We emphasize that such effectively ‘holographic’ re-
sponse [183], realized in particular cases through system
spanning stress singularities, but mediated in general by
the presence of inhomogeneous (collective) soft modes
[87, 88, 182], highlights the fragile nature of the mechan-
ical response at elastic spinodals [15, 36, 37]. It has been
argued that in the case of cytoskeleton, such fragility may
be supported by cellular machinery generating transient
tensegrity like networks of ‘stress fibers’ [12, 51, 184].

4.4. Regularized models

In Fig.3(a-c) we illustrated schematic structure of the
generic mechanical response on elastic spinodals, show-
ing separately (a) the potentially singular response in
elastic aether regime, B + µ = 0; (b) the non-singular
conventional regime µ > 0, B+µ > 0; (c) the potentially
singular elastic liquid regime, µ = 0. To analyze the
mechanical response further, we need to regularize these
emergent singularities. We note that the singularities ap-
pear in elastic aether and elastic liquid regimes because
the underlying continuum theories suffer from two types
of problems: (i) they are scale free, and (ii) they are elas-
tically degenerate. Therefore, to regularize such singular
response one can either bring into the theory an internal
(finite) length scale, or compromise the degeneracy.

In Fig. 3, we provide an illustrative example of the
first type of regularization. Our schematics in the panels
(d-f) show the same characteristic deformation patterns
as in panels (a-c) but in a regularized model containing
a small internal length scale. In such model an elastic
aether regime would be characterized by small but finite
size strain localization replacing singular folds. Elasti-
cally non-degenerate regime would be again described by
smooth maps which would be basically unchanged vis-
à-vis the non-regularized model. Finally, in the elastic
liquid regime singular slips would turn into finite size
shear bands. The implied ‘rounding’ of the displace-
ment discontinuities can be achieved by switching from
local to nonlocal theory, for instance, by bringing into
the model higher gradient elasticity (which we discuss
in detail later). Another option would be to replace the

continuum model by the discrete one. For comparison of
these two approaches to finite length scale regularization,
see for instance [185, 186].

We now consider the second type of regularization pro-
vided by a conventional linear elastic model which degen-
erates (saturates) after small but finite deformation takes
place [187]. To illustrate the idea, we present here a sim-
ple example.

Consider a 1D elastic bar, fixed at both ends, i.e., with
u(0) = u(L) = 0, where u(x) is the displacement field and
L is the reference length of the bar. Suppose that such
bar is subjected to a concentrated force f at its center,
see Fig. 4(a). Suppose further that the material of the
bar is ‘active’ in the sense that a passive linear elastic
response at small strain (characterized by the modulus
k), is followed by an activity-induced stress saturation
in both tension and compression. We assume that the
saturation takes place at σ = ±σ0, see Fig. 4(b).

σ0=0.05

k

f

σ

ϵ(b)

(a)

FIG. 4. Strain localization in a loaded active elastic bar: (a)
Loading by a body force f at the centre of the clamped bar.
(b) Stress-strain relation of the bar with stiffness k (red line)
and stress saturation at σ0 = 0.05 (blue).

In this model, the fully degenerate elastic spinodal
limit is reached in the limit σ0 → 0 when non-degenerate
elastic range disappears; in the opposite limit, σ0 → ∞,
the material behaves as a passive, purely linear elastic
medium with a positive stiffness k > 0. We stress that,
in contrast to the models with an internal length scale,
the regularization of a material at the elastic spinodal
through the introduction of small but finite σ0, does not
directly ‘round’ singularities, with stress concentration
taking place only in the limit of large enough L. As we
see in the next section, this mechanism of regularization
appears naturally in a theory of a nonlinear active solid
that includes binding/unbinding kinetics of myosin.

Turning back to our example, in the trivial non-
degenerate linear elastic limit σ0 → ∞ the displacement
field is piece-wise linear without showing any signs of lo-
calization,

u(x) =

{
f
2kx, 0 ≤ x ≤ L

2
f
2k (L− x), L

2 ≤ x ≤ L
. (59)
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(b)

ρ

(a)

ϵ

FIG. 5. (a) Strain field ϵ = du/dx, corresponding to Fig. 4, in
actual coordinates x̄ = x + u(x). (b) The deformed material
density ρ(x) = 1/(1 + ϵ(x)). Parameters k = 1, f = 1, σ0 =
0.05.

The corresponding strain field ϵ = du/dx is then

ϵ(x) =

{
f
2k , 0 ≤ x ≤ L

2

− f
2k ,

L
2 ≤ x ≤ L

. (60)

It is instructive to consider the density field of the de-
formed material (assuming that the uniform density of
the reference material is 1), defined as

ρ(x) =
1

1 + ϵ(x)
, (61)

and express it in the actual (deformed) configuration as
ρ = ρ(x̄) where

x̄(x) = x+ u(x). (62)

Explicitly,

ρ(x̄) =


(
1 + f

2k

)−1

, 0 ≤ x̄ ≤ L
2

(
1 + f

2k

)
(
1− f

2k

)−1

, L
2

(
1 + f

2k

)
≤ x̄ ≤ L

. (63)

We note that the magnitude of the force f must satisfy
the strict inequality f < 2k, so that the deformed length
of the right segment of the point of application of the
force is non-zero. The corresponding profiles are illus-
trated in Fig. 5 (red lines) for f = k = 1 and L = 1.
Consider next the case when the stress threshold is finite
0 < σ0 < ∞. Though the resulting equilibrium problem
is nonlinear, it can be solved analytically. In particular,
the displacement field becomes

u(x) =

{
f−σ0

k x, 0 ≤ x ≤ L
2

f−σ0

k (L− x), L
2 ≤ x ≤ L

. (64)

The corresponding strain field ϵ(x) and deformed density
field in the actual configuration ρ(x̄) are

ϵ(x) =

{
f−σ0

k , 0 ≤ x ≤ L
2

− f−σ0

k , L
2 ≤ x ≤ L

, (65)

and

ρ(x̄) =


(
1 + f−σ0

k

)−1

, 0 ≤ x̄ ≤ L
2

(
1 + f−σ0

k

)
(
1− f−σ0

k

)−1

, L
2

(
1 + f−σ0

k

)
≤ x̄ ≤ L

.

(66)

Finally, we consider the limit σ0 → 0, when the elas-
tic range around the reference state ϵ = 0 vanishes and
the resulting stress strain curve becomes completely flat
(elastic spinodal regime). For f = k = 1, we note that in
this limit, the length of the segment on the right of the
point of application of the force f , goes to zero

L− L

2

(
1 +

f − σ0

k

)
=

L

2
σ0 → 0 . (67)

However, the density (66) inside this segment of the bar
tends to infinity

ρ =
(
1− f − σ0

k

)−1

= σ−1
0 → ∞ , (68)

while the density in the rest of the bar remains small

ρ =
(
1 +

f − σ0

k

)−1

= (2− σ0)
−1 → 1/2 . (69)

To summarize, in the elastic spinodal limit σ0 → 0, the
density profile ρ(x̄) localizes around the right boundary.
Accordingly, the strains in the left and the right seg-
ments, tend to the limits

±f − σ0

k
= ±(1− σ0) → ±1 . (70)

As a result, the material of the bar concentrates around
one point while forming an effective rarefied void-like
state everywhere else, see blue line in Fig. 5(b).
We interpret this 1D example as perhaps the most ele-

mentary demonstration of the emergence of ‘force punc-
tae’ in the elastic spinodal limit. In 2D at the elastic
aether limit, one can expect a similar tendency towards
fraying (fragmentation) with a homogeneous state turn-
ing into a collection of sparsely distributed dense ‘force
chains’, see also [188].

5. NONLINEAR ELASTIC ACTIVE SOLIDS

While the analysis so far has been restricted to lin-
ear elastic response, it is imperative to understand ac-
tive elastic spinodals in a nonlinear setting. This is best
realised in the kinetic model, which relates the fields M
and ϵ via a Bell-type relation. Our main finding is that
without assuming weak activity, the renormalized stress-
strain response becomes inherently nonlinear and may
even turn nonmonotonic. In this case, the elastic spinodal
thresholds, isolated in strain space, can be still reached
actively, enabling access to entirely new states disappear-
ing if activity is suppressed.

5.1. 1D Model

To build intuition, we begin with the simplest case and
consider a 1D elastic medium carrying a scalar fabric-
field M(x, t) (as say, associated with myosin density).
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Suppose further that this field is fully enslaved to the
evolving strain field ϵ(x, t). Under this assumption, the
equation of chemical balance in the binding-unbinding
reaction for the field M(x, t) takes the form,

kb − ku(ϵ)M = 0, (71)

where kb is the binding rate which we assume to be strain
independent. We take the unbinding rate ku to be strain
dependent with a Bell-form

ku(ϵ) = ku0 (1 + eKϵ), (72)

where ku0 is a constant. The sign of K determines
whether the fabric field exhibits a ‘slip bond’ (K < 0)
or a ‘catch bond’ (K > 0) response [107], see Fig. 6(a,b).

ζ>>0, K<0

ε

σ(ε)

σ(ε)

M(ε)

M(ε)

M(ε)

σ(ε)

ε

ε

ζ>0, K>0 ζ>0, K<0

(a) (b)

(c)

FIG. 6. (a) Non-monotonic stress strain behaviour and ‘catch
bond’ response at small strains, with saturation at large |ϵ|,
of the contractile actomyosin bond for K > 0. (b) Mono-
tonic stress strain behaviour and ‘slip bond’ response at small
strains, with saturation at large |ϵ|, of the contractile acto-
myosin bond for K < 0. (c) The slip bond response K < 0
at large activity ζ ≫ 0 (here, ζ = 100, K = −10), tending
to the active material with finite elastic range set by a stress
threshold σ0.

The relations (71) and (72) give rise to the renormal-
ized nonlinear (quasi)elastic mechanical response, with
the following stress-strain relation

σ = µeϵ+ ζ M = µeϵ+M0ζ(1 + eKϵ)−1 . (73)

In the ‘slip bond’ case (K < 0), the stress-strain curve
σ(ϵ) remains monotonic with a positive tangent mod-
ulus σ′(ϵ) > 0, ensuring stability (Fig. 6(b)). At high
activity ζ ≫ 0, this behavior resembles (asymptotically)
the response adopted in the regularized model discussed
previously, where a linear elastic range at small strain
terminated in abrupt stress saturation (Fig. 6(c)). In the
‘catch bond’ case (K > 0), the stress-strain curve σ(ϵ) be-
comes non-monotonic, with a negative tangent modulus
σ′(ϵ) < 0 near the reference state, leading to instability
(Fig. 6(a)). Consequently, at sufficiently high activity of
catch bond type, the effective non-equilibrium energy de-
velops a double-well form, destabilizing the homogeneous

state ϵ = 0. This leads to an elastic decomposition into
contracted (ϵ < 0) and stretched (ϵ > 0) configurations
with high and low densities, respectively.

5.2. Multidimensional extension

In the full tensorial model we need to characterize
similar strain control, using the fabric tensor M(x, t).
The corresponding ‘slaving relation’ between M and the
strain field ϵ(x, t) takes the form of an algebraic system
expressing the conditions of chemical balance:

kb − ku(ϵ)M = 0, (74)

where kb = kbI is a second order tensor of (strain inde-
pendent) binding rates and ku(ϵ) is a second order tensor
of (strain dependent) unbinding rates. We assume a gen-
eralized Bell-form for the tensorial unbinding rate:

ku(ϵ) = ku(I+ eKϵ), (75)

where K is a fourth order tensor encoding the degree of
strain dependence of the unbinding kinetics and ku > 0
is a constant. This leads to the following tensorial stress-
strain relation

σ = Ceϵ+ AM = Ceϵ+ A(ku(ϵ))−1kb . (76)

The corresponding linearized response is characterized by
the active prestress

σpre = (kb/2ku)AI,

and the actively renormalized linear elastic stiffness ten-
sor

C = Ce − (kb/4ku)AK̂.

The remaining terms in (76) describes the activity-
induced nonlinear (quasi)elasticity.

5.3. 2D isotropic solid

To visualize the emergence of new active energy min-
ima, as the system crosses the elastic spinodal thresholds,
we now consider in detail the 2D isotropic case. Using
a polynomial approximation of the exponential in (75)
up to cubic order of strain we can present the associated
effective elastic energy density in the form of a Landau-
type quartic expansion

w(ϵ) = (B/2)ϵmmϵnn + µ ϵ̃mnϵ̃mn

+ (B′/4)ϵmmϵnnϵppϵqq + µ′ ϵ̃mnϵ̃mnϵ̃pq ϵ̃pq.(77)

where the linearized strain

ϵmn := (∂num + ∂mun)/2 (78)
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plays the role of a tensorial order parameter. In (77) we
used the standard tensorial notations: ϵmm (summation
is assumed over repeated indices) is the trace while ϵ̃mn =
ϵmn − (ϵkk)/2δmn is the deviatoric part of ϵmn. Note
we have included in (77), both the activity renormalized
linear elastic moduli B and µ and the the activity induced
third order moduli B′ > 0 and µ′ > 0. We have for
convenience ignored the cubic terms in (77), including a
dilation-shear coupling, because the analysis shows that
it has no effect on the discussion of elastic spinodals.
In terms of principal strains the expression (77) can be

rewritten as follows

w(ϵ) =
B

2
(ϵ1+ϵ2)

2+
µ

2
(ϵ1−ϵ2)

2+
B′

4
(ϵ1+ϵ2)

4+
µ′

4
(ϵ1−ϵ2)

4.

(79)
While using the energy density formulation in the scalar
case is well justified, in the tensorial case, the assump-
tion that there exists a single scalar function such that
w(ϵ) =

∫
σ ·dϵ effectively underplays the possibility that

activity disrupts the variational structure of the model
producing non-reciprocal mechanical interactions. A de-
tailed analysis of an interplay between the corresponding
‘odd’ effects [95] and the elastic spinodals is left for a
separate study.

Assuming as before that

K̂ijkl = K̂b δijδkl + K̂s(δikδjl + δilδjk) (80)

we can express the effective isotropic elastic moduli in
the form

B = Be − (ζkb/ku)Kb, (81)

µ = µe − (ξkb/ku)K̂s, (82)

where, again,

Be = λe + µe (83)

and

Kb = K̂b + 2
(
1 +

ξ

ζ

)
K̂s. (84)

To obtain the explicit expressions for the third order ef-
fective moduli B′ and µ′, we ignore the dilation-shear
couplings as mentioned before, and write the cubic term
in the small strain expansion for stress in the form

2(ζ + ξ)K̂3
b ϵ

3 I+ 8ζ K̂3
s (tr ϵ

3) I+ 16ξ K̂3
s ϵ

3. (85)

From (85) we obtain

B′ = (kb/24ku)(ζ + ξ)K̂3
b (86)

and

µ′ = (kb/12ku)ξ K̂3
s . (87)

5.3.1. Thermodynamic spinodals

To locate the thermodynamic spinodals we need to
determine the configurations where the effective elastic
energy (77) loses convexity. Consider an arbitrary lo-
cal state with a strain ϵ = ∥ϵmn∥ and introduce a small
affine strain perturbation characterized by the second or-
der symmetric tensorA = ∥aij∥. The requirement for the
tangential stiffness tensor to be positive definite, ensuring
the convexity of the elastic energy, can be formulated in
terms of the eigenvalues of the corresponding quadratic
form

CA ·A = B (trA)2 + µ
(
2|A|2 − (trA)2

)
+3B′ (tr ϵ)2(trA)2

+2µ′ |ϵ̃|2
(
2|A|2 − (trA)2

)
+ 8µ′ (ϵ̃ ·A)2 .

(88)

Here C = ∥Cijkl∥ is the strain dependent stiffness tensor
with components

Cijkl(ϵ) = ∂2w/∂ϵij ∂ϵkl =

B δijδkl + µ (δikδjl + δilδjk − δijδkl) + 3B′ (ϵmm)2δijδkl

+2µ′ ϵ̃pq ϵ̃pq(δikδjl + δilδjk − δijδkl) + 8µ′ ϵ̃ij ϵ̃kl. (89)

Choosing A to be a dilation, A = A I, we obtain

CA ·A = 16

(
B + 3B′ (ϵ1 + ϵ2)

2

)
A2, (90)

where ϵ1,2 are again the principal strains. This gives one
condition defining thermodynamic spinodal

B + 3B′ (ϵ1 + ϵ2)
2 = 0. (91)

If instead we choose A to be deviatoric, we get

0 ≤ CA ·A =

2µ |A|2 + 4µ′ |ϵ̃|2|A|2 + 8µ′ (ϵ̃ ·A)2

≤ 2
(
µ+ 6µ′ |ϵ̃|2

)
|A|2

≤ 2
(
µ+ 3µ′ (ϵ1 − ϵ2)

2
)
|A|2, (92)

where we used the Cauchy-Schwarz inequality (ϵ̃ ·A)2 ≤
|ϵ̃|2|A|2 to obtain the upper bound. If the right hand
sides of (92) vanishes, the corresponding strain state ϵ
lies on the thermodynamic spinodal and therefore we ob-
tain the second condition

µ+ 3µ′ (ϵ1 − ϵ2)
2 = 0. (93)

given that dilational and deviatoric deformations form
orthogonal basis in the space of symmetric tensors which
diagonalizes our quadratic form, we can conclude that
the two (strain dependent) equations (91) and (93) fully
characterize the thermodynamic spinodal in the model of
2D isotropic nonlinear elasticity (77).
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5.3.2. Elastic spinodals

We recall that elastic spinodals delineate the region in
the strain space ϵ where the strain-dependent acoustic
tensor Q(q) remains positive definite. In other words, at
an elastic spinodal, at least one eigenvalue of this tensor
vanishes.

In the material model (77) the expression for the
(strain dependent) acoustic tensor takes the form

Qik(q) = Cijklqjql

= B qiqk + µ δik + 3B′ (ϵmm)2 qiqk

+2µ′ |ϵ̃|2 δik + 8µ′ ϵ̃ijqj ϵ̃klql. (94)

As in (36), we can use here the orthonormal basis (q ⊗
q, q⊥ ⊗ q⊥), formed by the Fourier space wave vector q
and its orthogonal complement q⊥, to rewrite the above
expression in the form

Q(q) =(
B + 3B′ (tr ϵ)2 + µ+ 2µ′ |ϵ̃|2 + 8µ′ (ϵ̃q · q)2

)
q⊗ q

+
(
µ+ 2µ′ |ϵ̃|2 + 8µ′ (ϵ̃q · q⊥)

2
)
q⊥ ⊗ q⊥. (95)

From this orthogonal representation one can see that van-
ishing of the eigenvalue associated with the longitudinal
modes q⊗ q gives one branch of the elastic spinodal

B + 3B′ (tr ϵ)2 + µ+ 2µ′ |ϵ̃|2 + 8µ′ (ϵ̃q · q)2 = 0 , (96)

which under linearization (96) converges to the elastic
aether threshold. Similarly, vanishing of the eigenvalue
associated with the transverse/shear modes q⊥⊗q⊥ gives
the other branch of the elastic spinodal

µ+ 2µ′ |ϵ̃|2 + 8µ′ (ϵ̃q · q⊥)
2 = 0. (97)

Expectedly, under linearization (97) converges to the
elastic liquid threshold. If we now diagonalize the strain
tensor using the basis ϵ = ϵ1 q⊗q+ϵ2 q⊥⊗q⊥, Eqs. (96)
and (97) reduce, respectively, to the following equations
defining the segments of the elastic spinodal in the space
of principal strains:

B + µ+ 3B′(ϵ1 + ϵ2)
2 + 3µ′ (ϵ1 − ϵ2)

2 = 0, (98a)

µ+ µ′ (ϵ1 − ϵ2)
2 = 0. (98b)

From the expressions of the effective parameters B, µ, B′

and µ′, given in (81)-(87), we observe that if Be, µe >
0, and the system exhibits ‘catch bond’ type kinetics
(K̂b,s > 0), increasing activity levels ζ, ξ > 0 can drive
the effective linear elastic moduli B and µ to change the
sign and become negative, while the nonlinear elastic
moduli remain positive (B′, µ′ > 0). In other words,
activity alone can induce the emergence of elastic spin-
odals.

5.3.3. Active remodelling of the energy landscape

As the activity levels ξ > 0 and ζ > 0 change, the
energy landscapes (77, 79) evolve. In Fig. 7 we trace
the modifications in the location of the nonlinear elastic
spinodals in the space of principal strains as the system
crosses the ‘naive’ elastic spinodal thresholds µ = 0 and
B + µ = 0 of the linearized model. While the latter are
derived from a linearized analysis of the elastic energy
around the reference state, the ‘true’ elastic spinodals
are generically reached at a nonzero level of strain.

(a) (b) (c)

(d) (e) (f)

FIG. 7. Evolution of the effective energy landscape w(ϵ1, ϵ2)
as activities ζ, ξ increase, leading to the appearance of new
energy minima; (a) passive solid; active solid at (b) the ther-
modynamic spinodal, (c) aether, (d) post-aether, (e) elastic
liquid, and (f) elastic post-liquid regime. In (b-f), elastic and
thermodynamic spinodals are shown by solid and dotted lines,
respectively. White lines mark zero energy valleys.

Note that in the nonlinear regime, the ‘naive’ thresh-
olds µ = 0 or B + µ = 0 mark the points of activity-
induced second order phase transitions (critical points).
Specifically, when the elastic liquid threshold µ = 0 is
crosses at the activity level ξ = −µe/(2Ks), the two
new energy minima emerge along the shear axis, ϵ1 − ϵ2,
while along the perpendicular hydrostatic axis ϵ1 + ϵ2
the energy remains convex, see Fig. 7. Similarly, passing
the elastic aether threshold B + µ = 0 at the activity
level ζ = −(Be + µe)/2Kb generates two new minima
along the hydrostatic axis ϵ1 + ϵ2 while along the per-
pendicular shear axis ϵ1 − ϵ2 the convexity of the energy
is preserved. Note also that in the post-liquid regimes
with µ ≲ 0, the two emerging active energy minima,
shown in Fig. 7, are in fact connected and are, there-
fore, degenerate, as they represent a continuous family
of pure shears related through rigid rotations. The cor-
responding energy minimizing mixtures should resemble
microstructures encountered in nematic elastomers [189];
under some additional assumptions, a pronounced force
channeling has been observed numerically in such nonlin-
ear elastic models [61, 190]. Instead, in the post-aether
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regimes with B ≲ −µ, the emerging active nonlinear en-
ergy minima, shown in Fig. 7, are isolated and represent
configurations with different densities. The energy min-
imizing microstructures in such nonlinear elastic materi-
als with purely volumetric phase transitions are simple
laminates unless the shear modulus µ is extremely small
[191, 192].

The elastic spinodals of the nonlinear system (black
lines in Fig. 7) can also be reached by external me-
chanical loading [193]. In the cellular context, this can
be achieved by subjecting the body to external forces,
say through embedded magnetic beads, by using optical
tweezers [12], or by deforming the substrate [51]. Exter-
nal loading can be also be achieved by the presence of the
surrounding cells in a confluent tissue [103]. The same
marginal responses can be also realized in the cellular
context actively [194–200], for instance, through inter-
nal force transducers such as myosin or focal adhesions
[18, 22, 107]. We further observe that, as in linear case,
the thermodynamic spinodals of the nonliner model (gray
dotted lines in Fig. 7), lie ‘inside’ the elastic spinodals (if
one advances from the stable domain).

5.3.4. Force channeling

We now demonstrate the phenomenon of stress chan-
neling in the active material with a (quasi)elastic re-
sponse governed by (77). To this end, we choose a slightly
post-aether regime characterized by the dimensionless
parameters: B = −1.02, µ = 1, B′ = 1, µ′ = 0.005, see
Fig. 8(b). In this near-critical state, the reference con-
figuration is unstable, and the elastic spinodal bounds
a spinodal region dominated by small-strain pure shear
states ϵ1 + ϵ2 ≈ 0. Such unstable states can be ex-
pected to decompose into a mixture of two active energy
wells, corresponding to high- and low-density configura-
tions. In the resulting microstructures the force channel-
ing will then occur along ‘chain’ structures composed of
the denser material.

To ‘round’ the emerging singularities and control stress
concentration, we need to regularize the scale-free model
(77), which will also eliminate mesh dependence in our
numerical simulation. This is achieved by adding a
strain gradient term to the energy density, transforming
the Landau-type potential w(ϵ) into a Ginzburg-Landau-
type form:

w(ϵ,∇ϵ) = w(ϵ) + (κ/2)|∇ϵ|2. (99)

Here, the parameter κ introduces an internal length scale
into the model, capturing the degree of nonlocal effects.
To minimize interference of this nonlocality with the for-
mation of microstructure, we chose κ to be sufficiently
small, κ = 0.0001. With the regularized energy den-
sity (99), where the function w(ϵ) is taken from (77),
the expression of stress acquires a higher strain gradient

(a)

w

(b)

FIG. 8. (a) Contour plot of the effective energy landscape in
the space of principal strains w(ϵ1, ϵ2) in a weakly post-aether
regime B = −1.02, µ = 1, B′ = 1, µ′ = 0.005. Strain local-
ization in such post-aether regime is illustrated in (b), where
ρ is the density of the material, represented in the deformed
coordinates.

correction

σ(ϵ) =
[
B tr ϵ+B′(tr ϵ)3

]
I+ 2µϵ̃+ µ′ϵ̃3 − κ∇2ϵ.

(100)

We used (100) in an overdamped model

Γ
∂u

∂t
= divσ + f , (101)

where f(x) is an applied force field and Γ is the environ-
mental viscosity coefficient. In our numerical simulations
we used dimesnionless variables normilizing length with
(κ/µ)−1/2, and time with Γ−1(κ/µ)−3/2.
Solving (101) ensures local energy minimization at

each increment of quasi-static loading. The nature of dy-
namics changes only when the system reaches the end of
a continuous branch of elastic equilibria. In such points
the equation (101) describes fast (at the time scale of the
loading) mechanical relaxation towards the closest local
energy minimum.
The system (101) was integrated numerically in a 2D

square domain with periodic boundary conditions, which
allowed us to use a spectral method [201]. To mimic
endogenous body forces we considered the local loading
f =

∑4
α=1 f

(α) representing two perpendicular contrac-
tile force dipoles mimicking a center of active contraction.
In view of periodicity of the boundary conditions we ef-
fectively introduced a periodic lattice of quadrupoles, see
Fig. 8(b).
As initial conditions we chose a homogeneous initial

state representing an unstable reference configuration lo-
cated inside the narrow spinodal region, Fig. 8(a). A
intermediate outcome of the ensuing process of elastic
spinodal decomposition is illustrated in Fig. 8(b) where
we show the computed defomred density distribution

ρ(x) =
(
det (I+∇u)

)−1

; (102)

here, we have implicitly assumed that the uniform den-
sity of the reference material is 1. For better clarity, ρ is
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presented in the coordinates of the deformed configura-
tion

x̄ = x+ u(x). (103)

The corresponding time evolution can be seen in a movie
available at SMOV where we also visualize the dynamics
of dilational trσ and deviatoric |σ̃| stress measures.
The density localizations connecting contractile cen-

ters in Fig. 8(b) and the corresponding depletion outside
these regions can be interpreted as the formation of a
force-chain pattern. Given that our model presents only
a minimal prototypical framework, we do not attempt
here a detailed comparison with such patterns observed
experimentally [66, 202, 203].

Specifically, a more comprehensive, experimentally cal-
ibrated model describe the mechanical properties of ac-
tive actomyosin cytoskeleton should be tested against ob-
servations on cells adhered to micro-patterned substrates
[51], confluent tissues [31], and in vitro reconstituted sys-
tems with controlled mechanical constraints [204]. To
be realistic, such model should account for the fact that
in such active material the access to elastically degener-
ate regimes may arise from micromechanical phenomena
such as microbuckling [16], crosslinker loss leading to fil-
ament sliding [73], micro-wrinkling [74], and stretching-
to-bending transitions [75–79]. Capturing these mecha-
nisms requires microscopic modeling, incorporating the
dynamic assembly and disassembly of the cytoskeletal
elements. This would allow, for instance, for the descrip-
tion of the observed transient stress fiber formation and
their potential merging into force-carrying frames [12].

6. MICROSCOPIC STOCHASTIC MODEL

So far, the nonequilibrium nature of the drive towards
elastic spinodals was concealed behind the assumption
that active stresses could be represented by an effective
(quasi)elastic energy density. To address the out of equi-
librium aspects of the emerging (quasi)elastic behavior
we consider here the simplest zero dimensional model.
The goal here is to illustrate the idea that behind the
implied ‘renormalization’ of the elastic energy there is a
continuous energy exchange with a non-equilibrium en-
ergy reservoir. The analysis below can be viewed as an
elaboration of the model proposed in [28]; for other re-
lated developments see [29, 30, 40].

Consider an overdamped ratchet-type stochastic sys-
tem described by the Langevin equation and schemati-
cally illustrated in the inset in Fig. 9(a)

ẋ = −∂xG+
√
2Dη(t). (104)

Here η(t) is a standard white noise with unit variance, D
is a measure of temperature and

G(x, t) = V (x)− xf(t) + k(x− z)2/2 (105)

V(x)

k xz

(a) (b)

FIG. 9. The effective potential F (z) at different levels of
activity: (a) A = 0 and (b) A = 0.4, with D = 0.01.

where

V (x) = (1/2)(x2 − 0.1)(x2 − 0.5)2 (106)

is a polynomial Landau-type elastic energy (non-
renormalized) and f(t) is a time correlated rocking force
with zero average. Note that we have also implicitly as-
sumed that the configuration of this non-equilibrium sys-
tem is continuously probed through a spring with stiff-
ness k. In this case the variable z plays the role of an
external control parameter, see the inset in Fig. 9(a).
The effective force exerted on the spring and recorded

by the external loading device can be found by averaging
the response x(t) over ensemble and over time, which
gives

T (z) = k[z − lim
t→∞

(1/t)

∫ t

0

∫ ∞

−∞
xp(x, t′)dxdt′]. (107)

To find the probability distribution p(x, t) one must find
the corresponding time dependent solution of the Fokker-
Planck equation

∂tp = ∂x [p∂xG+D∂xp] . (108)

After the function T (z) is known, one can determine the
non-equilibrium (quasi)elastic energy simply by integra-
tion

F (z) =

∫ z

T (s)ds. (109)

The function F (z) would then play the role of an active
renormalization of the original passive elastic energy.
Suppose further that the correlated driving signal f(t)

is periodic and or analytical simplicity choose it the sim-
plest piece-wise constant form

f(t) = A(−1)n(t), (110)

where n(t) = ⌊2t/τ⌋. The advantage of this choice is
that the ensuing mathematical problem can be solved
analytically in the adiabatic approximation, see [205] for
a similar analysis.
To develop such an approximation, we assume that the

time scale τ is large comparing to the time scale of the
thermally induced barrier crossing in the original poten-
tial V (x). We can then focus on the time intervals where
the driving force is constant

f(t) ≡ A. (111)

https://drive.google.com/file/d/1Od7nseYqN14xETDUC7cpvzBVW3j2kvCW/view
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The solution of the corresponding time-independent
Fokker-Planck equation

∂x [p∂xG+D∂xp] = 0 (112)

can be written explicitly

pA(x) = Z−1e−G(x,z)/D, (113)

where we introduced the normalization constant

Z =

∫ ∞

−∞
e−G(x,z)/Ddx. (114)

Given our assumption of time scale separation, we can
now write the time-averaged probability distribution in
the form

pad(x) = (pA(x) + p−A(x))/2. (115)

Our results are illustrated in Fig. 9(a,b) where we show
the evolution of the elastic energy of the system as the
level of activity measured by the rocking amplitude A
changes from zero, A = 0, to a finite value A > 0. Note
that the energy minimum at z = 0 which corresponds to
stable equilibrium in the passive system is transformed by
activity into an unstable state representing a local energy
maximum. More specifically, under the growing activity
level (increasing A), the energy minimum at z = 0 first
flattens at a critical value A = Ac, which marks the state
of zero rigidity, and then disappears signaling a second or-
der phase transition. The subsequent growth of activity
level reconfigures the energy landscape further favoring
two symmetric actively-supported ground states.

While the proposed model is obviously oversimplis-
tic, it shows the possibility of active modification of en-
ergy landscapes due to exposure of mechanical systems
to nonequilibrium reservoirs. The model can be made
more comprehensive if we consider a network of such ac-
tive springs while representing activity not only through
correlated noise but also through hysteretic delays and
non-reciprocity [206]. The resulting model would serve
as a microscopic description behind the emerging fragility
at the coarse grained continuum scale.

7. CONCLUSIONS

In this paper we investigated mechanisms of rigidity
loss in isotropic elastic solids and explored how active
materials can be directed toward marginal and fragile
regimes. A key contribution of this work is refining in
the active matter context of the concept of elastic spin-
odals, while stressing their fundamental difference from
the more conventional thermodynamic spinodals. While
the emergence of degenerate acoustic modes at finite

wave numbers has been explored before [94, 95], the ac-
tive realization of materials where such modes can be-
come mechanically operative has been underplayed. It
has been also overlooked that at elastic spinodal thresh-
olds, inhomogeneous soft modes not only soften the over-
all rigidity but also shift the modality of stress propaga-
tion from diffusion-like to force channeling.
Unlike thermodynamic spinodals, elastic spinodals

emerge due to the long-range interactions inherent in
elastic systems, where strain — serving as the order pa-
rameter — has a gradient structure. In nonlinear elas-
ticity, such states describe minimally stable, marginal
deformation gradients. While the conventional engineer-
ing designs prioritize instead maximally stable equilibria,
there is a growing evidence that biological systems oper-
ate near marginal stability which allows them to exploit
a repository of zero energy modes. Moreover, as we show,
active systems can self-tune towards such states and then
exploit them for functional advantage.
Limiting attention only to the simplest case of elastic

marginality in isotropic solids, we were able to explore the
explicit mechanisms of actively reaching the mechanical
regimes with partial rigidity loss. The most striking man-
ifestation of such regimes is stress localization, leading
to force channeling along transient low-dimensional sub-
structures, such as stress tethers and force chains. Our
key conjecture is that in the presence of nonlinear adap-
tive feedback mechanisms these structures can be actively
assembled and disassembled. In particular, we argued
that cellular cytoskeleton exemplifies an active material
which is self-tuned towards marginal regime where it dy-
namically balances solidity and fluidity.
Our study suggests that artificial active materials,

equipped with appropriate feedback control mechanisms,
can be designed to operate at marginal stability, lever-
aging complex non-affine soft modes. While such be-
havior is absent in passive materials, the potential for
extreme mechanical responses could inspire bio-mimetic
implementations using existing metamaterial approaches
[90, 207–214]. On the theoretical front, extending these
results to anisotropic [187, 215, 216] and non-reciprocal
(odd) elastic materials [95] would likely reveal new frag-
ile soft modes and spinodal regimes. Additionally, future
studies should investigate fragility in active solids with
elastic incompatibility, where activity may drive defect
proliferation and quasi-plastic behavior [217].
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