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ABSTRACT

Localized phase transitions, as well as shock waves, can be modeled by material
discontinuities satisfying appropriate jump conditions. One can show that the classical
system of Rankine-Hugoniot jump conditions is incomplete in the case of subsonic phase
boundaries. The supplementary condition which generalizes the condition of phase
equilibrium, can be obtained from the traveling wave solution of the truly dynamic
system of equations describing the interface structure.

1. INTRODUCTION

There is a long history of studies of highly localized "switching" waves in contin-
uum mechanics; shock waves and combustion waves are among the most well known.
Dynamic phase changes (condensation and liquefaction shocks, crystallization fronts,
moving domain, martensitic, antiphase and twin boundaries, etc.) are similar to both
shocks and flames; in all these cases, one homogeneous state gains at the expense of the
other through the spatial advance of a transitional region. At a scale which is much
larger than the width of the transition zone, these processes can be described by the
motion of the surface of discontinuity. On this surface material parameters experience
abrupt changes, so that modeling is possible in terms of corresponding jump conditions.

The use of Maxwell, Gibbs-Thompson, Hertz-Knudsen, and similar (supplementary
to Rankine-Hugoniot) relations in the theory of dynamic phase changes suggest that the
classical system of jump conditions being satisfactory for shocks is at least incomplete in
the case of phase transitions [1]. We revisit the problem by considering a simple model
of the internal structure of the fast moving martensitic phase boundary (see also [2, 3]).
Our extended model of continuum, capable of describing a "thick" interface, incorpo-
rates a weak form of nonlocality together with a Maxwell type dissipative mechanism
which simulates interphase kinetics. Analysis of a model-type solution of the structure
problem clarifies the distinction between supersonic (shock) and subsonic (kink) dis-
continuities and provides explicit example of additional jump relation, different from
the "normal growth" condition. An interesting prediction based on a smooth interface
theory is the existence of a slow and a fast phase boundaries for a given state far ahead.
This prediction is possibly related to the observations of "schiebung" and "umklapp"
martensite [4].

2. JUMP CONDITIONS

Consider the classical Rankine-Hugoniot (RH) jump conditions on a moving sur-
face of discontinuity in a heat-conducting thermoelastic body. Assume that eulerian
cartesian coordinates are used and the moving interface is characterized by its normal
vector n and its material velocity D (mass flux). Introduce: e-specific internal energy,
v-velocity vector, P-Cauchy stress tensor and q-heat flux vector. The balances of mass,
momentum and energy on the jump take the form

D[v] - [Ps] =0, D [e+ ]- [Pn v-qqn] =0, (1)
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where the square brackets denote a jump: [ ] : =( )+ - ( )_ and n faces the side
+. Zeroes on the right hand sides of (1) indicate that we omit surface supplies of mass,
momentum and energy; in particular, we ignore surface tension. We may not however,
ordinarily ignore the surface entropy production R = D[s] + [-`], where s and T are
specific entropy and absolute temperature. According to the second law of thermody-
namics, R > 0, which yields an inequality-type restriction on the possible jumps in the
case of supersonic waves (shocks), and provides restrictions on the constitutive struc-
ture for the surface entropy production R in the case of subsonic waves (kinks) [5, 6, 7].
Thus, a natural assumption

R = R(D), (2)

offers an additional jump condition, which does not follow from (1) (kinetic relation).
One can show that (2) generalizes the classical Maxwell-Gibbs condition of phase

equilibrium, which says N = 0. To represent it in more familiar terms, let us specify
the model by taking a hyperelastic body with the energy e = e(F, s), where F is a
deformation gradient. Then T = 8e/8s, P = p(Oe/OF)FT. If both temperature and
displacement are continuous on the jump, (1,2) yields [5, 6, 8, 9]

RT D([ ] ýL -[])=_DG.

Here, f = e - Ts is a specific free energy and { } := ½ (()++( )-). Assuming R
to be quadratic in D, theories of "normal growth" provide a linear relation between
"thermodynamic force" G and the "flux" D. For a nondissipative process (R = 0),
one obtains the dynamic generalization of the Maxwell ("equal area") condition G=0,
which for stationary fluids further reduces to the classical Gibbs' equality of chemical
potentials. The main problem for the truly dynamical theory of the interphase structure
is the actual calculation of the function G = G(D), when D is not small [7, 8].

3. INTERPHASE STRUCTURE

To be specific, consider an isothermal one dimensional simple shear motion of an
elastic solid: x = x,, y = yo + y(x, t), z = zo. The governing equations in the absence
of body forces are ug -v = 0, vt - = 0 where v = y(x,t)t is a velocity, u =
y(x, t),, is the only nontrivial component of the deformation gradient F, and r(u) denotes
the corresponding component of the Piola stress tensor (sub-index denotes a partial
derivative with respect to the corresponding variable, reference density is unity). The
RH conditions take the form D[u] + [v] = 0, D[v] + [r] = 0, where D = x*(t), is the
interphase velocity.

In order to smooth out sharp discontinuities, one is motivated to consider a regu-
larized theory which includes the original model as a limiting case. There seem to be
two known ways for the system to cope with the (nonlinearity driven) profile steepening,
by dispersion and dissipation. Such a regularization can be accomplished by the intro-
duction of nonlocal and memory effects. Usually that means a singular perturbation
of an original system by terms with higher derivatives, which results in a formation of
internal boundary layers simulating the discontinuity structure. In the classical theory
of shock waves, the introduction of viscous dissipation is known to be sufficient to build
a structure. This is not always the case in the theory of phase boundaries, because
they may be nondissipative. Therefore, pure dispersive contributions to constitutive
relations appear to be necessary [2, 3, 7, 10].

Consider a weakly nonlocal free energy in the Van der Waals form f = fo(u) + euz,
where the local part fo, taken as a function of u may be nonconvex for solids undergoing
martensitic transformations. Although homogeneous spinodal states with - < 0 are
unstable, they would be expected to stabilize through evolution into narrow highly
inhomogeneous zones (with the width -,/e) within which the nonlocal term in the
energy dominates. The governing equation for the viscoelastic (Maxwell) solid with the
nonlocal energy f read

Ut = VZ, Vt = (T(u) - 2eUx, + 7/v7v)., (3)
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where r(u) = 2-t and 17 is the viscosity coefficient. For kink-like traveling wave solutions,
dependent on z = x - Dt only, the system (3) integrates to give

-r(u) + D 2
U + 2euz, + 7IDu, = 7r, (4)

where 7r is a constant of integration. Introduction of the extended coordinate z' = z/l/•
shows that 27 and e: will occur in (4) only in a non-dimensional combination

W = t1/v'.

Suppose that the state ahead of the discontinuity with u = u 2 transforms to the state
behind the discontinuity with u = ul. Hence the boundary conditions for the second
order O.D.E.( 4) are

u(z) {2, + (5)
U1, Z -00.

The equilibria of (4) clearly satisfy RH conditions -r 1 + D 2u, = -T2 + D 2u 2 = ,
One can see that the problem (4, 5) is overdetermined, and the jump velocity D

must be found as the eigenvalue from the condition of existence of the (traveling wave)
solution. The spectrum of the nonlinear boundary value problem (4, 5) contains both
continuous and discrete parts [11]. While points of the continuous spectrum (shocks) are
distinguished by inequalities, those of the discrete spectrum (kinks) provide new jump
relations, supplementary to the RH conditions. The analysis of nonlinear boundary
value problem (4, 5) can be found in [10, 11, 12].

Since supersonic martensitic phase boundaries are similar to regular shock waves,
we focus here on subsonic phase boundaries (kinks) and illustrates the idea of kinetic
equation on an example. Suppose that the isotherm T = To is given by the cubic
polynomial (Fig.1):

r(u) = To + K(u - up)(u - uc,) u- Up + U) (6)

where the parameters have been chosen in such a way that ua < up are Maxwell
(equilibrium) deformations of coexisting phases, r0 is a Maxwell pressure and K char-
acterizes the width of the pressure range Ar between binodal and spinodal (AT =

(V3-/144) K(Au) 3 , Au = u' - ua).

Uo
shoc

D U2
2 kint

Figure 1. A typical isotherm r=r(u,T=const) for the solid which allows
for martensitic phase transformation.

The desired solution of (4, 5) with r(u) taken from (6) is [8, 11]

u(z)=U2+U1 U2-uLUth[/K- U2- U1(Z- z)2 (7)2 2 2[ E 4 0 1J
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where D > 0 so that the wave transforms the state with u = u 2 into the state with
u = ul. Substitution of (7) into (4,5) provides a relation between ul and u 2

y2 + Cx2 = 1,

x=(U2 + UI -U -U))/AU, y = (U - u2)/Au.

where 3 (1 _ 12•-). This relation is represented in Fig.2 for different values of the
nondimensional parameter W.
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Figure 2. The deformation (ul/u) of the state behind the martensitic phase boundary,
as a function of the deformation (u2/Au) of the state in front of it. CJ regimes are
sonic with respect to the state in front.

According to Fig.2 kinetic curves for kinks lie inside the domain ABCD, where
AB corresponds to equilibrium (Maxwell) dynamic regimes, BC corresponds to the
metastable phase equilibria, while CD describes marginal (sonic) Chapman-Jouget (CJ)
regimes. We mention that for W 2 << 12, two kinks-slow and fast- are possible for
the given state far ahead [8, 11]. The straightforward calculation shows that D =
(3v/'/W)Au .x, which gives another type of kinetic curves (presented in Fig.3).

Now one can show that [8, 11]

-(D) = ±D2(1 + bD 2 )3 /2 = aD 2 3ab 4 D 6 ),W D + "D + O(D2T, (8)

where
a=WV/K(Au)

3 b= 12 -W2

12 3(Au)2K'

Relation (8) gives in explicit form of an additional jump condition required for kinks.
For slow kinks a quadratic (normal growth) approximation for the entropy production
is adequate up to the terms of fourth order in D, moreover it is exact if W 2 = 12. The
first term in the expansion (8) provides a mobility of the phase boundary.
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Figure 3. Phase boundary velocity (D/I.JKAu) as a function of the state of deformation
ahead of it (u2/Au) for different values of the non-dimensional parameter W.

0.2

Figure 4. Kinetic laws, following from the exact solution for a differenzt W; here F
is the "driving force" measuring the degree of the metastability while D is the
conjugate mass flux.
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It can be shown that the envelope of the family of kinetic curves G = RTo/D vs.
D parameterized by W, corresponds to the CJ regimes (D equals local characteristic
speed and uI + 2u 2 = 1.5(up + u,,)). Different kinetic relations between the normalized
thermodynamic "force" F = and the normalized "flux" b = D stemming
from (8), are presented in Fig.4.

An interesting property of this solution is that if the viscosity is sufficiently large
(W

2 > 12), then the phase transformation remains nearly "frozen" until the critical
driving traction is achieved. At this point the phase boundary travels at a speed close to
the local acoustic velocity. One can expect threshold phenomena to be associated with
this case for G* "z (3/64)K(Au)4 = (9V3/4)ArAu. This also explains "stability" of the
metastable states for 0 < G < G* in the limit of e --* 0, 17 -+ 0, but W = r72/c --+ 00.

4. SUMMARY

In this paper we deal with the problem of the internal structure of the interface for
both shock waves and phase boundaries. In terms of the structure analysis, the first
kind of discontinuity is associated with a continuous spectrum of the corresponding
boundary value problem, while a discontinuity of the second kind relate to points of a
discrete spectrum. Additional jump condition in the case of subsonic phase boundaries
(kinks) can be regarded as constitutive relation for the discontinuity surface. The fact
that kinks are subsonic and can adjust their velocity based on information from the state
ahead, creates a basis for such a constitutive behavior. An unusual general property
of the solutions of the truly dynamical problem is that two kinks-slow and fast-exist
for the given state in front of the discontinuity. For slow kinks we obtained "normal
growth" condition. An important prediction of this model is that the speed of the kink
can be negligible until a critical level of metastability is achieved. After this "ignition",
the speed suddenly increases considerably. This can explain burst-like transformation
following the "normal growth" too slow to be observed.
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