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THE EQUILIBRIUM BETWEEN A SPHERICAL NUCLEUS AND THE MATRIX

IN A SOLID-STATE TRANSFORMATION*
L. M. Truskinovskiy
Vernadskiy Institute of Geochemistry and Analytical Chemistry,

Academy of Sciences of the USSR, Moscow

The Gibbs approach [1] has been used [2] in considering the conditions

for chemical equilibrium in a nonhydrostatically stressed solid phase in con-
tact with solution or melt. A state of uniaxial stress may be characterized

by two pressures P and p, and for this it has been shown that the equilibrium
with liquid at pressure p can be considered as an example of a system with un-
equal pressures on the phases. The thermodynamic description of such a system,
however, does not reduce to assigning qifferent pressures to the phases and
using standard formulas. Here we consider a further example of nonhydrostatic
equilibrium where the phases are under different pressures. This situation
occurs in homogeneous nucleation in a solid.**

*Translated from Geokhimiya, No. 3, pp. 443-447, 1984,

*%Recently, there has been a substantial elucidation (see [3] for example) of the condi-

tions for equilibrium between nonhydrostatically stressed solid phases.
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. In a solid-state reaction accompanied by a nonzero volume change, nuclea-
tion gf a new phase produces elastic stresses in the matrix, which are of sub-
stantlglly nonhydrostatic character. The elastic strain energy may be compar-
able with the heat of the transformation [4], and it introduces some special
features into the description of the initial stages in solid-state reactions.
Nucleation of a new phase produces stress concentrations, which decrease rapid-
ly away from the inclusion. As a result, the pressure in the main volume of
the matrix corresponding to heterogeneous equilibrium with the nucleus is dif-

ferent from that predicted from the hydrostatic P—7T curve for equilibrium at
the given temperature.

The equilibrium between a nucleus and a matrix has been considered in [5-
8], mainly in describing partial melting. Here we derive new formulas for es-
timating the degree of metastability that may be attained in the synthesis of
high-pressure phases and during quenching. Numerical estimates are made for
the transition of forsterite to the g-spinel structure.

We consider the equilibrium conditions for a spherical nucleus in an in-
finite elastic matrix under some general pressure Pp. The materials in both
phases are considered as isotropic, and we assume that the solid-state reac-
tion amounts to a homogeneous density change, so the symmetry in the boundary
conditions makes it possible to define equilibrium configurations amongst the
spherically symmetrical ones. We neglect the nonhydrostatic components of the
stress tensor for the nucleus and assume that under equilibrium conditions
there is a certain hydrostatic pressure P in the newly formed phase. Weassume
for definiteness that the transformation is accompanied by an increase in vol-
ume, so P >Py. While the nonhydrostatic elastic deformations in the matrix
are small, and one can use the classical linear theory of elasticity, a non-
linear approach may be required to describe the deformations occurring on the
phase change. We use a quasiliquid (nonlinear) model for the internal problem
in order to avoid the difficulties in the nonlinear theory of elasticity.*

The classical solution to the Lamé problem [4] allows us to describe the
excess stresses and strains arising in an infinite matrix (P,=Pg) containing
a spherical hole of radius R, at which there is a pressure Pp=P:

P—P, R® R3
L &2 o R, sl P P
r w2 Orr ( o) -

1
P-—Pu_Ri L

2 £’

Ogp = Ogp =

where the reference state is that of hydrostatic compression by pressure Py,
Up is the radial displacement component, Oyys 9ggs and g, are the nonzero stress-
tensor components in a spherical coordinate system, and u; is the shear modulus
of the matrix material (phase 1). An infinite matrix in essence corresponds
to the approximation R/L< 1, where L is the characteristic dimension in the
initial problem, e.g., the distance between centers of nuclei. Therefore, in
this formulation we can consider only the initial stage of the transformation,
when the degree of transformation in the bulk is close to zero. Basic formu-
las are given in the appendix for the case where the size of the inclusion is
comparable with that of the matrix.

We will consider the following simplified scheme in order to describe the
phase transition. Out of the matrix we cut a spherical region of radius Rg at
p=Pp (the temperature Tgis fixed), and p;oduce a pressure Pp at th? outer
boundary of this cavity, thereby preventing the matrix from deforming. The
equilibrium transformation of phase 1 into phase 2 at P=Pp leads to anincrease
in radius, with Rg3p1(Pg, T0) =%3p2(Pg, To); 4p =p1(Pg, To) —p2(Pg, To)>0
being the change in density in the phase transition. We set up a pressure P
at the boundary of the removed region to get a sphere of radius R; the value
of R can be determined from the condition R3p2(P, To) =E3p2(Pg, To) where p2(P,

To) =p2(Pp» To) (L + (P—Py)/K3)3 Ky=py(3Py/30)) |p is the bulk modulus of phase 2. We

now produce a pressure P at the outer boundary of the cavity, which produces

— e = e

*For Ap/p~+0, where Ap is the density change in the phase tranmsition, one can use a lin-
earized formulation, which leads to homogeneity and a hydrostatic state of stress within the
nucleus [5]. It seems that the regularity condition at the center in an isotropic phase will
eliminate the nonhydrostatic components also in the nonlinear case.
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radial displacements Upin the matrix and the cavity acquires a radius R. The

;degzases_can thus be conjugate; the difference between coherent and inco-

placemegngggatlon [3, 4,8, 9]is eliminated because of the symmetry; the dis-

fac Th ave only a radial component, which is normal to the phase inter-
= e condition for continuity of the displacements R=Rp+Ur allows us to

ggtgzﬁine P. We use the approximate equation mﬂp2=(1+Upﬂn3(1+(P—P0M%2)—l
P=P,4+AP, Ap =20 2K (2)
P2 3Kyt 4

We neglect the pressure and temperature dependence of the moduli and refer
them to the reference state of stress.

Let us make a simple estimate from (2). At Py~130 kbar and To ~ 1000 K,
there is a solid-state transformation of forsterite to a modified spinel struc-
ture [10]: o-Mg,S8i0, (phase 2) =g-Mg,Si0O, (phase 1), which is accompanied by
a volume change ap/py ~6.5%. The approximate values for the moduli are uj =~
800 kbar and k2 ~1500 kbar, so we get that AP~ 40 kbar. Therefore, the pres-
sure difference may be considerable.* This estimate also confirms that we
were correct in using the approximation AP/Kp~0.03<1.

-These mechanical equilibrium conditions do not enable us to derive the
chemical equilibrium curve, i.e., to determine the relation between Py and Tg
for heterogeneous equilibrium (nucleation). Here we have to use the chemical-
gqullibrium condition [1-3, 9], which amounts to continuity in the Gibbs chem-
ical potential at the interphase boundary. The Gibbs formula derived for equi-
librium in a nonhydrostatically stressed solid phase in contact with a liquid

[1] can be used here because of the assumption about the quasiliquid behavior
of the nucleus.

We use (1) to calculate the density of the excess elastic energy in phase
1 at the interphase (r =R):

1 3 (P — Pp)?
P1 (Pov To) Af1 (Po, To) = ?(0',,6,, + 2099399) IR = is;;—()) ’ (3)
1

where epy=0Un/3r, egg =€ew=Ur/r are the nonzero components of the strain tensor.
We can then show readily that the equation for determining Py(Tg) is

f2(Pr To)+;=f1(1)m To)+ P 3(1:7—}90)2

) (4)
P2 (P, To) P1(Po, Ty) 811p1 (Po, To)

where P is the known function of Py and Tg in (2) and f; (P, T) are the specific
free energies of phases 1 and 2 in the state of hydrostatic compression by
pressure P.

We introduce the pressureZh* corresponding to phase equilibrium under hy-
drostatic conditions.

Considerable interest for applications attaches to the difference Py—py*
at a given Tg, since this determines the degree of-metastability that may occur
in a solid-state reaction. Retaining the.quaﬁratlc terms in the expansion of
f1 and f2 with respect to PQ—Eb* and substituting Epe corresponding expressions
into (4), we get a quadratic equation for x=Py—P;", whose solution takes the

form
x=aAP[——1+(1—-b/a)"’], (5)
where |
— 3K\ g p=[o— 2 4 3K /(4 3K,
o=t (1h Za)fe =S 1 4o+ 3.
e = K,/K, — vy/vy, vy = 1/p1 (Po, Ty), vy = 1/py(Po, T),

*If the strength of the material is exceeded, a plastic layer is formed in the interphase
zone and stress relaxation occurs [4, 6]. These effects will not be considered here as the
study is designed to provide upper bounds.

16



and Kj o are the bulk moduli of the phases. In the case of practical importance

where the bulk moduli of the two phases are similar (e« 1), we get the simple
relation

£ 3K,y + 4 (2 — vy/v1)
2 3K+ 4 (1 +Ky/Ka—vfv) (6)

X = —

Slmi}ar arguments provide another important formula. Let the pressure in the
matrix be fixed at Pp, while the standard equilibrium temperature at this pres-
sure is Tp (hydrostatic equilibrium). To obtain a nucleus of the less dense
phase, we need a temperature rise AT=TO*—1b, where the pair To*, Po satisfies
(4). The estimate for AT takes the form (e<«1):

7 _dT AP 3Ka = 4p1 (2 — va/v)
dP 2 3K, + 41+ (dT/d P) (an — (vy/ey) @) Kal 2

where d7/dP=4v/As and a;,, are the thermal-expansion coefficients of the phases.
For the above transformation in forsterite we have [10]: X;~2000 kbar, v~
38.5 cm3/mol, vy ~41.0 cm3/mol, a] ~ap ~ 3 - 10-5 K-, and dr/dp~ 29 K/kbar. We
§ubstitute these values into (6) and (7) to get x~30 kbar and AT=~600 K. This
indicates that there may be considerable supercooling for high-pressure phases,
which must be borne in mind in explaining quenching phenomena.

These inhomogeneous equilibrium states correspond to turning points in
the over-all free energy at a given temperature (the Gibbs principle [1, 3, 91).
The radius of the nucleus is not determined in this approach, i.e., the equi-
librium betwéen the nucleus and the matrix is indifferent in relation to radi-
al perturbations, because there is no quantity with the dimensions of length
in the list of definitive parameters. In that sense, the results correspond
to the asymptote £ +0, where £ is the degree of transformation. This equilib-
rium is not stable because the nonhydrostatic stress components relax in a
finite time. Therefore, while the argument is applicable to laboratory re-
sults, the equilibria are to be taken as hydrostatic over geological times.
Effects due to elastic stresses in the matrix in experiments may result in
hysteresis in the synthesis of high-pressure phases. Therefore, the true mono-
variant equilibrium curve will be recorded with an uncertainty of the order of
2z. These effects may produce a systematic narrowing in the phase coexistence
region in the experimental determination of divariant phase-equilibrium fields
for solutioms.

Metastable states occur as a rule because the conversion rate is low, i.e.
the explanation is in terms of kinetic factors. 1In the present case, the
transformation is considered as occurring instantaneously when the equilibrium
conditions are attained. Here the equilibrium curve itself is displaced be-
cause of the elastic stresses. It should be noted that stress relaxation en-
ables one to characterize effects related to the nonhydrostatic conditions also

as kinetic omnes.

Appendix. This analysis is applicable in describing a nucleus whose char-
acteristic dimension is much less than that of the matrix (or of the distance
between nuclei). Now let the size of the converted region be comparable with
the size of the initial specimen. In that case, one naturally considers the
phase transition in a region of fixed volume [11].

For simplicity we retain the assumption of spherical symmetry and consid-
er a region in the form of a sphere of fixed radius R (phase 1). When the nu-
cleus of a new phase with radius R>Rg (p2<pl) appears at the center of sym-
metry, elastic stresses occur in the matrix, and

U, = P=P)r (R _ )
T BKE+ 4w (,« g)

where £=(R/R0)3 is the degree of transformation. It is readily seen that the
strain does not amount to pure shear in this case. The pressure in phase 2 is

PP, AP =il AGiACRile
Pa 3Ky 4p1 + 38 (K1 —K,)
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The condition for pPhase equilibrium can be put as

P,T P — S(P_PO)E'PO
2. T + oup. 7 1o T+ (4p1 + 3KE) p1 (Por To)

+ 3 _(P— Py (dus + 3K;E?) +(l_3(P—Po)5) idn—
2 py(Po, To) (411 + 3K,5)3 8K& + 41 / o1 (Po, To)

This equation allows us to determine the degree of conversion ¢ for given Py
and To, and therefore the size of the nucleus. The nucleus of the new phase
occurs when £ =0; the pressure Po(Tp, £ =0) is calculated from (4). The trans-
formation terminates at g = Rp; to calculate the corresponding pressure Py(Tp,
£=1), it is sufficient to put £ =1 in the phase-equilibrium condition. .Sl'mple
arguments analogous to those given above indicate the degree of metastability
attainable in experiment:

_ AP 2(1— y8Ky) — 8 (vy/uy)

2 1 — 8 (vy/vy — Ko/Ky)
AT = 4T AP 2 (1 — y8K,) — & (vy/vy)
dP 2 148dT/dP) Ky oy — (vg/vr) ay)
where
4 + 3K4E

— 3 4 (1 —28) —3K,2?

2 (4p1 + 3K4E)?

A direct check shows that for £ +0, i.e., for sufficiently small nuclei, these
formulas reduce to (6) and (7).

Y
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