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A study is made of the conditions for chemical equi-
librium between solid phases in a state of nonhydrostatic
stress. It is shown that transfer from a local Gibbs iden-
tity to the volume analog requires the introduction of a
chemical-potential tensor. Three generalized mode1§ are
discussed for phase boundaries in solid-state reactions:
coherent, semicoherent, and incoherent. A model is pro-
posed for semicoherent or incoherent surfaces. Gibbs
method yields symmetrical conditions for chemical and
mechanical equilibrium.

There is much evidence that there are nonhydrostatic conditions within the
Earth. Examples are provided by tectonic processes such as mountain building,
ocean floor spreading, and subduction, which are accompanied by considerable
Stresses in the crust, and these do not amount to hydrostatic ones, which means
that they cannot be described by means of a single intensive parameter P. Seis-
mology is also based on the concept of an elastic solid Earth. Shear strains
occur at an earthquake focus, which generally do not involve volume change. On
the other hand, nonhydrostatic stresses and strains are characteristic of solid-
state reactions accompanied by volume changes. For example, the deposition of
a nucleus of a new phase in the decomposition of a solid solution causes non-
hydrostatic stresses to concentrate around it, and these may greatly exceed the
average pressure in the specimen. In the initial stages, the new phase is
coherently related to the matrix, which results in excess elastic energy and

gltimately in displacement of the equilibrium curve. Similar phenomena occur
in partial melting.

States of nonhydrostatic stress are also evidently typical of metamorphism.
Reactions occurring via a fluid freely migrating in the system must be consid-
ered on the basis of differences in pressure on the liquid and on the solid
phases. A characteristic example is provided by the reactions in an open
natural system, where the pressure (fugacity) of the fluid is controlled by the
external reservoir (buffer), while the solid phases are subject to the basic
lithostatic pressure.

Particular consideration is required for chemical equilibria involving
real anisotropic crystals, which deform nonhydrostatically even if a single
pressure is applied. In that case, one gets specific orientation recrystalli-
zation effects, i.e., directional transport in the stress field. 1In general,
the equilibrium between a nonhydrostatically stressed solid and a liquid is
metastable and is accompanied by recrystallization, as Gibbs himself noted.
For example, one gets macroscopic creep in a polycrystalline aggregate by dis-
solution at the grain boundaries, where the stresses concentrate (pressure
solution).

These examples do not exhaust the variety of situations in which nonhydro-
static systems have to be considered; there are also tbe instances of deep-focus
earthquakes, where there is relaxation of nonhydrostatic stresses as a poly-
morphic conversion front migrates, while nonhydrostatic states of stress are
invoked to explain the orientations and shapes of magmatic chambers, and so on.

*Translated from Geokhimiya, No. 12, pp. 1730-1744, 1983.
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The above thus indicates the im . .
i ” portance of a correct the ¢ considera-
tion of nonhydrostatically stressed systems. rmodynami

Considerable attention has been given recently [l - 12] to general problems
in t?i thermodynamlcg of chemical and phase equili{ria involving nonhydrosta-
tlcah y stressed solids, because there are many applications in geochemistry,
%388 ¥Slcsi geology, metallurgy, and the mechanics of materials. Thompson in

ormulated and.tgsted the basic principles involved in the dissolution of
crystals under conditions of differential loading. Within a year, Sorby [13]
rﬁcognlzgd the importance of these principles for geology, and he explained the
: 3n§es in crystal shape in the formation of banding by solution under pressure,
an_d ehnoted' Mechanical force is involved in a chemical process." Gibbs [14]
laid the basis of the thermodynamic theory. He examined the equilibrium be-
twezp a nonhydrostatically stressed solid and a liquid, and he formulated the
cod 1;10ns at the phase boundary and in essence demonstrated the tensor charac-
ter o _tbe qhemlcal potential. There were major difficulties in transferring
to equilibria between solid phases, and evidence for this comes from the dis-
cussions over the last 30 years [15-18]. There are several reviews dealing
with critical analysis of the points of view [1, 2, 8, 19]. The difficulties
are probably related to lack of clarity over the following three points.

) 1. There.are no unified principles for deriving the thermodynamic condi-
tions for chemical and phase equilibrium at the boundaries of solid phases in
complex states of strain. Along with Gibbs's classical method [14], use has
been mgde of the method of thermodynamic cycles [2, 20], the absolute chemical
potential method [2, 21 -23], and various semiempirical approaches [2].

2. When one considers solid-state reactions accompanied by finite strain,
one must make proper use of the nonlinear theory of elasticity [6, 7, 12, 14,
24 - 28], transferring where possible to the correct linear approximation.

3._ One must distinguish coherent, semicoherent, and incoherent phase
boundaries in solid phases [2 -7]. The concepts used in the model must be
clearly stated. The differences in the conditions of equilibrium are often
associated with inexplicit assumptions about the nature of the transition.

There are many papers [27 - 34] on the chemical thermodynamics of nonhydro-
statically stressed solids. Grinfel'd's papers [6, 7] have played a decisive
part, as he performed a rigorous mathematical study of some models for solid-
state reactions. Ostapenko [2] has given an extensive survey and presented an
original view on the problem.

Here unified concepts are used in an analysis of the conditions for chemi-
cal and phase equilibrium between solid phases. The discussion is within the
framework of Gibbs's method and is a direct extension of the approach used in
[6, 7, 12, 14, 28]1. It is shown to be necessary to introduce the chemical-

potential tensor uij (the Bowen-Grinfel'd temsor [7, 35-371). It is shown that

u*? arises naturally in transferring from a local Gibbs identity to the volume
analog under conditions of a nonhydrostatically stressed state, and it charac-
terizes the change in energy of the body associated with mass transfer through
the interphase surface. In terms of the macroscopic approach used in the
theory of elasticity, a model is formulated for a semicoherent (incoherent)
phase boundary, which enables us to derive the conditions for phase (chemical)
and mechanical equilibrium with semicoherent (incoherent) phase conjugation,
which differ from the corresponding conditions for a coherent boundary [6, 7,
28]. The conditions can be used in describing nucleation and growth in the

solid state.

This study is a continuation of [12], so we use the definitions introduced
there without detailed discussion. No assumptions are made about the smallness
of the strains. The observer's Euler coordinate system is considered as car-
fesian. Summation with respect to therepeating subscripts is assumed in the

tensor formulas.

GIBBS IDENTITY
In classical equilibrium thermodynamics, one considers homogeneous systems

(ones consisting of homogeneous parts), within which the thermodynamic parame-
ters are independent of the spatial coordinates. The local-equilibrium
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hypothesis [38] represents a simple generalization to the case where there are

gradients in the thermodynamic functions. According to this approach, the
thermodynamic state in each physically very small element is descylbed by a

set of standard parameters: P, pressure; T, temperature, o, density, apd u and
i’ sgicific internal energy and entropy, while the Gibbs identity* applies
ocally:

du=Tds—Pd(1/p). (1)

In essence, there is averaging here over scales less than some specified one ¢£.
The latter is chosen from the condition that at distances of the order of & the
system may be considered as homogeneous; it is also assumed that local equi-
librium is established in a time much less than the observation time.

For a homogeneous system, one can pass from the local identity (1) to the
relation for a finite volume V:

dU=TdS—PdV+ pdM, (2)
where U = uM, S = sM, and M = pV; the intensive quantity
u.=u-—-TS+P/p (3)

is called the chemical potential of a phase (necessarily one-component). Equa-
tion (2) enables one to distinguish the independent extensive degrees of free-
dom. Note that the parameter u(P, 7) is absent in the local description and
arises on passing to the volume relation (2).

Additional characteristics are required [24 -26] to describe the s?rains
in the solid phases, which in general do not amount to isotropic expansion OY
compression. Let E% a=1, 2, 3 be Lagrange coordinates with x'(£®) the law of

motion (deformation) for points in the medium from the reference state x'(g*)=t'
(i = 1, 2, 3) to the actual one; X,'=0x'/0t® is the distortion tensor, which
characterizes the distortion of an infinitely small cube as a result of the
strain, with eas= (/1) (Xo'Xy'—084p) the deformation tensor and Gas the Kronecker

symbol (unit matrix). The fundamental equation of state for an elastic body
takes the form [24 - 26]:
u = u(xk, ). (4)

Arguments known as the principle of material independence lead to the require-
ment that the function u is dependent on the components of the tensor X.' via
the components of the tensor e g [24 -26]. The density change clearly does not

characterize the strain completely, since a purely shear part remains. By
definition

p = py/det (xa),

where pO(E) is the density in the reference state and p is that in the actual
state. For a liquid we have instead of (4) that

u=u(p, s), (3)

which leads to (1) if we use the definitions T=0ul/0s, P=p*0u/dp. The equation
of state (5) is a particular case of (4) characterized by an extremely special

form of the function (%X, s). When we introduce the Cauchy stress temsor [24 -
26] P**=pdu/Oes , we can obtain the local Gibbs identity for an elastic body:

- 1 pad
du—-TdS +?Pa deaﬁ. (6)

Equation (6) is an exact analog of (1).

*The phases are taken as of single-component type for simplicity.
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As we have already noted, the extension of the chemical-potential concept
{gieiaiﬁi:d pgase to the_nonhydrostatic case has been widely giscussed in the
e 6n t§searches in this area have been concerned mainly with general-

d use (6) e one hand and (2) on the other. We adopt the first approach
an in a Lagrange transformation with respect to €aB and 7, which gives

us the concept of a scalar chemical potential:
E=— P P 5, )
p

ﬁﬁGOZVIOUSfdisaQVavtage of this definition is that g does not amount to u in
ase of a liquid, as many authors have pointed out [2]. Also, the clear

physical meaning of y is lost, since th i ith y re-
L ikeed by g obviously does mot o e equation analogous to (2) wi u

Generalization of (2) on the other hand leads to the significant concept
of the chgmlcal potential as becoming a tensor quantity, by analogy with the
way in which the scalar pressure P becomes the stress tensor Pef. Gibbs [14]
arrived at this concept in considering the equilibrium between a nonhydrosta-
tically stressed solid and a liquid, although his paper lacks the concept of
the Chemlca}'POtgntial tensor itself. Before we transfer to the general case,
let us consider in more detail a very simple example first examined by Gibbs.

GIBBS'S EXAMPLE

Consider.an isotropic solid in the formof a rectangularparallelepedcom—
pressed on pairs of parallel faces by noncontacting liquids with pressures P,

PZ’ and P3. One then gets homogeneous strain, and the state of stress is char-
acterized for the entire volume by the numbers P Py, and P,. Instead of the

glng%e intensive parameter P we have a stress tensor, which in the present case
is diagonal:

Pyy Pyp Py —P, 0 0
Pip=| Py Pyy Py | = o —P, 0 ] (8)
Pgy Pgy Py 0 0 —Py

If we consider a unit area with normal no the resultant surface force acting
on this area takes the form

F’.=Pﬁn,‘,

and the normal component Fini amounts to a pressure in the case of a liquid,

whereas the tangential component is related to the presence of tangential
stresses and is absent for a liquid (in the static case). The minus sign in
(8) is traditional and characterizes the compressive character of the pressure

(Pl>or P2>0| and P3>0).

The condition for mechanical equilibrium at the surface of the parallel-
epiped is that the pressures in the liquids are equal to the corresponding nor-
mal stresses P, =—P,, Pyp=—P, Py=—P,, Py=0, i5~]. Gibbs showed that the chemi-
cal-equilibrium condition, i.e., equilibrium with respect to dissolution, phase
transformation, and so on, is equality of the chemical potentials for a compon-
ent of the solid phase in the liquids to the chemical potentials u,, Uy and Mg

defined at each face by means of the formula
pi=u—Ts+ Pifp, (9)
where P is the pressure on the given face.

Therefore, there are at once three chemical potentials, each of which is
defined on one of the faces and characterizes the energy increment associated
with mass transfer (chemical reaction) at that face. It is readily shown that

25



a b c d
Toa .
. i pE
- o e L]
* L LT |
' | 2 o2 612
b2 br2,  |6E ey ezt oy
= & [T
P
| | e N
I [ l — | | L |
—— — s bt L_.__To ..__..J L “—J
—lGI’ bz7| oz’

a) initial state, b) small
2 axis and stretching
particles of the
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§x? and dgxi are inde-

Fig. 1. Schematic representation of variations:
deformation, which amounts to compression along the &
along the xl axis, c) displacement of the boundary over
material not accompanied by pure deformation but leadin
d) result of joint variation (b and c); the variations

pendent, étxi = szt + st

we have
dU = TdS _‘Plzlbtxl - PzzzétXZ - Pszsétxa + l.lflém_l + pzﬁmz + }136”131 (10)

where U = uM is the over-all internal emergy, M the total mass, 5 = sM the en-

tropy, and I,, I,, I, the areas of the phases in the actual (deformed) state.
By s z, (¢ = 1, 2, 3) we denote the total variations (coordinate increments) in

the surface positions (Fig. 1). However, apart from these variations there are
independent variations in the surface positions related to the mass change aris-
ing for example by chemical reaction. 1f we introduce the variations in surface
position on the Lagrange coordinates OF', 8E%, and OF' (Fig. 1), we get

6m1 = pozolégla 6m2 — pozozagza 6!713 = pozgaégss (11)

where 201, 202, and Ly; are the face areas in the undeformed state. Let the

deformation be given by the following formulas (law of motion):

Pkt Pk, P =hE, (12)

) 0
where E'=x' are the coordinates of the points in the reference state (ki=1). We
use (11) and (12) to rewrite (10) as

dU = TdS — P,2,0 (kyE") — Pp2,0 (koE?) — PoZyd (B:E) +
+ 1320t 4 a0 Z0px® + pgpTdex®,

where 6x'=E'0k are the variations for given Lagrange variables; ngi::kisgi are

(13)

the variations associated with the mass transfer (there is no summation on the
repeated subscripts, i =1, 2, 3). Therefore, Gibbs's generalization of the
chemical potential for a one-component phase consists of the following: the
chemical potential appears on passing from the local relation between the dif-
ferentials of the thermodynamic parameters (Gibbs identity) to the relation
between the variations in the mass extensive quantities and characterizes the
energy increment associated with mass change.

GENERAL CASE

There is an obvious similarity between thg conditions for chemical and
mechanical equilibrium in this example, which indicates a natural generalization
of the chemical potential concept, as does the symmetry in relation to P. and

A

uy in (13). By analogy with the stress tensor, we introduce the chemical-
potential tensor for a one-component solid phase (the Bowen-Grinfel'd tensor):
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Hey = (u—Ts) b5 — LApif. (14)
P
which in a liquid is spherical:

i Mag Mps p0o0
Wi =|Haa Mgz Pos |=(0p O],
Ha1 Msz Mag 00p

with p=u—Ts+P . .
o f£ e di:éoﬁgl?nd P the pressure in the liquid, while for triaxial compres-
00
Py =|0p, 0
00 p,
Expression (14) first appeared in i i
\ papers by Bowen [35, 36] dealing with the
sheorybqf mixtures. Then the chemical-potential tensor was used in [37] in
escrld%ng semlpeymeable membranes. In [7], a study was made of the equilibri-
um conditions at interphase surfaces within the framework of the theory of

iiaStlciFY: and (14) was first used there in the present context for writing
e conditions at a phase discontinuity in symmetrical form.

We will now show that Gibbs's method leads uniquely to the concept of (14)
for the case of a nonhydrostatically stressed solid.

Consider the change in over-all internal energy of a nonhydrostatically
stressed solid U= 5 pudV, occupying a volume V (Fig. 2) bounded by the inter-

face X=0V. This change is related to:

a) variations in the law of motion in the volume:
bt = x (8%) — ' (€%,

i.e., to small deformation of the continuous medium (analog of the density
change dp);

b) variations in the entropy in the volume:

bs=s" (&%) —s (£%);

¢) variations in the position of the phase interface with respect to the
Lagrange coordinates, namely the analog of d¥ in (2):%
| e =o' (ut, w2) — B2 ()

(u', u?) is the equation for the interphase surface in Lagrange coor-

where E®*=E® i t
1 and u2 are certain coordinates on surface I.

dinates and u
Standard transformations based on Stokes's theorem lead to the following
(see Appendix 1):

8U =T8S + § Ptnid . xtdo + pplnmidext do, (15)
z b
psdV is the overall entropy, T=0u/ds is the temperature, which is

where S= J

assumed independent of the spatial coordinates,

Pik are the stress-tensor com-
of the unit normal vector to the surface I.

ponents, and ng are the components

—_—

%It is assumed that there is no difference between the phases in the reference (unde-

formed) state.
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Fig. 3

Fig. 2

Fig. 2. Representation of a volume element V bounded by the surface I = 3V with

normal n*. Mass transfer can occur through the interface surface I.

Fig. 3. Representation of coexisting phases. At the interface surface §e?ar?ting
phases 1 and 2, the conditions for thermal, mechanical, and chemical equilibrium
should be obeyed.

By Gtxm we denote the total variation in the coordinates of surface I:
Opx'=0x"+ 8¢ x%,

which consists of the pure deformation ¢z%? and the variation &iX'=x,'08% related
to displacement of the surface along the Lagrange coordinates, i.e., with mass
transfer through surface . 1In deriving (15), we have used the conditions for
mechanical equilibrium in volume V, i.e., we assumed that the stress tensor
satisfies the following equation [24 - 26]:

7] i _
—rPi=0 (16)

The variational identity (15) may be called the fundamental Gibbs equation for
volume V occupied by a nonhydrostatically stressed solid, and it is a direct
generalization of (2). In fact, in the case of a liquid

Pt=—pof; pf=pdf
and (15) simplifies to

OU =T8S — §ﬁ P (8ex'n)do + iﬁpp (6ex'n;) do.
z

In the case of a homogeneous state P = constant and p = constant, we use the
identities

o = ¢ (3. x'n) do;
=z

M = p § (3pxn,) do,
z

to arrive at (2).

Note that the work associated with volume change is expressed as an inte-
gral over the surface, since the surface forces arising from the surface posi-
tion variations in actual space do work. The stress tensor is defined for all
points within volume V; on the other hand, the chemical-potential tensor (in
our context) is defined only for points at the interphase surface.
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Expressi :
discussﬁon Oéoga;ii) explains why all attempts have been unsuccessful in the
for a nonhydrostatiza%ineral situations [17] to introduce chemical potential
#i the mass L6F some hy stres§ed'solld as the partial derivative with respect
Semilis Tave les e characteristic function. However, essentially correct
n obtained for very simple states of stress in this way [2].

CONDITIONS FOR CHEMICAL (PHASE) EQUILIBRIUM

Consider the phase boundar i i i
: y I separating two elastic phases occupying
volumes V, and v, (Fig. 3). From (15) we obtain for the two-phase system that

dWU,4Uy) =T8S, + S,) + S[P;btx!ﬂ n d0+S [op) Bex)i ny do. (17)
z b3}

The expression [f]*=f*—f' denotes the di inui i i

; de iscontinuity in f at the sides of the
phaie 1?teiface.* In deriving (17), all variations have been taken as zero on
parts of the surface dV,+0dV,, not representing a phase surface.

i 'A f1rst-or§er phase transition in a solid is accompanied by a discontinu-
ity in the stra%n tensor, and in particular in the density. The states of
stress on two sides of an interface are in general different. In the case of
equilibrium, the discontinuities in the stresses and strains at a given temper-

atu?e_arg not arbitrary but satisfy the conditions for mechanical and chemical
equilibrium.

. Gibbs [14] derived the equilibrium conditions at the contact between a non-
llqeayly elastic solid and its melt or solution by the use of a variational
principle, which amounts to seeking a turning point in the over-all internal
energy U, + U, for a given entropy 5, + 5, of the variations described above. By

using Gibbs's principle** we get from (17) an equation known in variational
calculus as the condition of transversality [39]:

[P xi 4 ppjdexling = 0. (18)

We isolate the independent ones from the 12 variations btxiﬂ Gggﬂ to get the

conditions at the discontinuity. The differences in the physical mechanisms
involved in the various transformations result ultimately in differences in the
equilibrium conditions. Therefore, we first consider the classification of
solid-state transformations from experimental data.

CLASSIFICATION OF SOLID-STATE REACTIONS

In this context we need to consider the existence of two essentially dif-
ferent classes of phase transitions in solids: coherent and incoherent [2 -5].

In a coherent transition, the initial phase is converted to the final one
in such a way that the latter has a strictly definite crystallographic orienta-
tion identical throughout the volume, which is determined by the state of the
initial phase. 1In that case, the Euler coordinates are continuous at the inter-
phase boundary, i.e., there is no slip of the phase relative to one another.
Physically, this means continuous (coherent) conjugation o§ thg lattices, Wbich
undergo marked deformation because of their crystallographic discrepancy (Fig.
4y. In a coherent tramsition, the continuity of the material is not disrupted,
and a Burgers contour intersecting the phase surface is always closed. An ex-
ample of a completely coherent surface is provided by the_p}anar boundary_be-
tween two twins, namely the twin plane. The coherence arising from elastic
strain can occur on nucleation or at early stages of growth, and the elastic
strains near the interface may substantially exceed the usual elastic limit.

*Note that for a point xf=x'(§)=2x(§:) on the phase interface we have in general 17582

for incoherent contact. - o
*%We omit consideration of the entropy variation, which leads to a condition for temper-

ature homogeneity at the internal points and continuity of this at the phase boundary, since
it is exactly analogous to that given by Gibbs [14].
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Fig. 5. Examples of semicoherent (a) and incoherent (b) phase linking.

The passage of particles of the medium through such a surface is a collective
process and occurs simultaneously in a certain area.

The elastic displacements and consequently the internal streg
reduced if there is some other mechanism for compensating the latt
ancies. This mechanism is associated with dislocations, Phase linking in
which the level of the internal stresses is reduced by discrepancy dislocationsg
is called partially coherent or semicoherent. The prototype of such a boundary
is a small-angle grain boundary. The surface may then be represented by parts
with complete coherence attained by elastic lattice distortion separated by
discrepancy regions.

Ses may be
ice discrep—

An incoherent boundary is analogous to a large-angle grain boundary. The
structure of such a boundary is relatively disordered, and the surface does not
meet the conditions for continuity in the lattice vectors and planes on passage
through it. Although this surface can be described formally in terms of dis-
location theory, the description does not have a physical meaning, and lattice
correspondence is not observed when the interface moves (Fig. 5).

A heterogeneous transformation with a coherent boundary can occur only in

the solid state and involves the joint motion of many atoms, not the independent
displacements of individual ones. Most of the atoms have the same nearest
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ng;ghbors before and after the transformation, although they are disposed in
different ways, and t@e resultant displacement is such that a series of ele-
me%gqry ciils in the initial phase is as it were homogeneously deformed in a
su 1§1en y small region to become the corresponding series of cells in the
new phase. Processes of this type are often called diffusion-free or shear

transformations, but in recent i
(3 years it has become usual i
martensitic transformations. Ol ERIREGES S S8

In a typical incoherent transformation, the new phase grows at the expense
of the old one by relatiyely slow migration of the ingerphage boundary, ang
growth occurs by successive passage of the atoms through the boundary [2]. The
atoms move independently and their speeds vary appreciably with temperature.
Such a transformation in the main is controlled by thermal excitation, and the
elementary processes resemble chemical reactions. ,

A good example of a coherent transition is the a-g transition in quartz
[28, ?1: 40]1. The same class covers twinning in crystals [3, 4], coherent
deposition of a fluid component [28], and so on. The incoherent or semicoherent
class 1nc1ude§ most polymorphic transitions and solid-state reactions [2 -41,
weak crystallization of anisotropic crystals in stress fields [2], and so on.

INTERPHASE BOUNDARY MODELS g

In the study of various structural transformations, the discussion is usu-
ally conducted at the microscopic level (atomic or molecular), and therefore
boundary models are formulated in terms of the matching or otherwise of lat-
tices, the presence or absence of dislocations, and so on. There are advan-
tages in the macroscopic and in part phenomenological approach to describing a
solid as a continuous medium as used in the theory of elasticity and deriving
from Cauchy's studies, since it is possible to give an average description
while retaining essential concepts on continuity, anisotropy, and elasticity.
The stress distribution in a solid may be described on that approach, and there-
fore the character of the thermodynamic state. It is necessary to formulate
equilibrium conditions whose form is dependent on the transformation model in
order to solve some problems in the formation and propagation of interphase
boundaries in solids.

Grinfel'd [6] led the first rigorous mathematical discussion of coherent
interphase boundaries. He used CGibbs's method and assumed continuity in the =
displacements at the phase boundary:

% ) =0, (19)

from which he derived equilibrium conditions for coherent phase linkup (Appen-
dix 2).* The extension to sufficiently slow movement of coherent boundaries
was given in [41, 42]. It is not generally accepted to use Gibbs's method
based on the assumption of locality for the equilibrium conditions in describ-
ing coherent transformations, and therefore some workers have devised alterna-
tive theories based on the absolute chemical potential [2, &4, 43].

Let us now consider incoherent and semicoherent transitions, which are
simulated within the framework of the Gibbs approach. Here the condition (19)
on the displacements must be weakened by allowing some slip of the phases rela-
tive to one another in the tangential plane, i.e., we allow discontinuities in
the displacements. The following condition of the variations is necessary,
since it forbids the formation of cavities between the phases and guarantees

continuity conservation:
[8exf)in =0. (20)

If we adopt a single constraint on the variations of (20) as in [7], we
get the following equilibrium conditions (see Appendix 3):

jdered coherent phase transitions in a nonlinearly elastic medium

*Robin [28] has cons st -
paper contains some obscurities in de-

within the framework of the present approach, but the
scribing the transformation kinematics.
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[Pjlini =0, P;‘mn[ = — Pn,, 21y
[u— Ts + Pfp]; = 0.

The corresponding transitions have been called [7] slip tran51t19ni, BInCe thet
presence of even infinitely small discontinuities in the tangentia str;ﬁses a
the phase interface leads to slip and disturbance of the equ:.l:.b:_::l_umt.1 P e i
model is applicable when one of the phases is a liquid and also in the escr;p
tion of incoherent boundaries when there is no adhesion between the phases [5].

Now let the phases interact, with slip allowed only during the transforma-
tion, which is due to the impossibility of compensating the discrepancy between
the lattices by means of elastic stresses alone. At equillbrlumt when the
phase boundary is at rest, the link between the lattices is pgrtlally coherent,
and the application of a tangential force does not lead to slip. However3 dur-
ing the transformation, i.e., when the interphase surface moves, the partial
coherence may be disrupted.

Condition (20) enables us to put
[6x1)% n = — [xaE2]; n; 5 0.

A very simple mathematical formulation of the above assumptions amounts to com-
bining (20) with an additional nonholonomic conditions on the variations, which
may be called the minimal-compensation condition. This takes the form

[bx*t;]; = 0, (22)

where t1 is a vector tangential to the interphase surface and nzTi = 0. Formula

(22) states that on the one hand there is a difference from a coherent trans-
formation in that the tangential discrepancies are not compensated, while on the
other there is no arbitrary element in relation to the slip along the interphase

surface. From (22) we readily get analogs for the Gibbs conditions for mechan-
ical and chemical equilibrium (see Appendix 3):

[Pilin =0, (23)
[Wili nend =0, (24)

where “ji is the chemical-potential tensor of (14). This model is intended to

describe semicoherent and possibly incoherent boundaries. An advantage of con-
ditions (23) and (24) is that they are formulated in terms of the Euler approach
and can be applied directly as boundary conditions for the equations of elas-
ticity of (16). The sufficiency of these conditions is guaranteed by the vari-
ational mode of derivation. For example, condition (23) is conditional and
denotes continuity in the force vector at the surface, while condition (24)
characterizes the boundary as an equilibrium one and serves to define its posi-
tion in space. Note that (24) may serve as an independent definition of the
chemical-potential tensor.

CONCLUSIONS

1. Basic concepts have been formulated in the thermodynamics of hetero-
geneous equilibria for nonhydrostatically stressed elastic solids. The Gibbs
identity has been written for a finite volume containing the solid phase. It
is necessary to use the chemical-potential tensor concept, which characterizes
the energy increment on chemical transformations.

2. A model has been proposed for the semicoherent (incoherent) interface
surface and Gibbs's method then provides symmetrical conditions for chemical
and mechanical equilibrium, which enable one to consider the nucleation and
growth of solid phases correctly for semicoherent (incoherent) linking.

The author is indebted to N. I. Khitarov and 0. L. Kuskov for a usefyl
discussion.

32

i —



b LEEE S

APPENDIX 1

We calculate the total variation in the overall internal energy:

8U=38\pu(k, s)dv= (20D 8 gy (pLasdv +
VS §ax; 3 5 os

d i) 9 _ pk)
(i) —_ =—\|[— { Al
+é’pu = (tx«)dv+§ 2 pu)dextdV 5("”’ P)oxtdV + (A1)

+§ Plndaxido + § prinedext d o,
av v

where

P: = _i(p_u)_x; + pubf’

o,
~k _©° J(pu) _¢&
p. emm— _—‘ax; Xa,.

Similarly, we have the variation in the overall entropy:
68565p$(§)dV=jpbst-}-ﬁpsng‘mda. (A2)
v 1

We combine (Al) and (A2) and use the constancy of the temperature in the system
T=0u/ds= constant to get from (15) that

oU =T8S + &ankbtx‘ do+ ? ppf—‘n,.b;x‘do,
ov v

where

R
_oen
0xg

ppf =

and f = u - Ts is the specific free energy.

APPENDIX 2

We derive the equilibrium conditions at a coherent interphase surface,
which are obtained by using Gibbs's method. The coherence condition (19) gives
the following equations, the latter of which is the Hademard compatibility
relation:

[6t X!]: = Ov
(A3)

{72 ‘
[xz]i =M na,
where ru==px¢9h, and A is a certain vector called a characteristic one in crys-

tallography. There is continuity in the Lagrange coordinates [8£%],’=0, and the
variations dtxi and 6¢¢ are independent, so we get

(Piln: =0, [ppprklini=0. (A4)
The latter condition can be rewritten by using (A3) as
(u—Ts)F — PjnAd =0,

and therefore only one of }hg three conditions in (A4) is independent. If we

0 -
introduce the vector n® = g®ng, where g* is a metrical temsor in the reference

0 00 0 0
configuration, while gap = XaXip; Na = Nado/p,ddy; and do, and do are elements of
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area in the reference and actual states, we get

& . 0
W = phline
podo

from which follows the condition for chemical equilibrium found in [6]:

1 GO 0 42
[u s — —Pﬁnﬂna] =0.
P 1

Here
Py =x, PJES, = (%),

while ( )-1 is the operation of taking the reciprocal matrix.

APPENDIX 3

Condition (20) enables one to rewrite (18) as

[u—Ts]}
[1/p);

[PF2 nadxs + (ank — n;) [oxi]; = 0.

For a transition with slip [7], we equate the coefficients to the independent
variations to zero to get the six conditions (21). 1If we impose two additional
constraints on the variations of (22), we get four equilibrium conditions:

[u—Ts)?
(PHing =0, Pingn! ————=
v * (/6L

We see that relative displacement

which are readily reduced to (23) and (24).
ly @hen the phase boundary

between adjacent points ([8x']540) is possible on

moves along the Lagrange coordinates, i.e., when 8E%n,+0. In fact, we calcu-

late A=[6x]’n;, to get
¢ 112 d; o
b= — % )i = — [—] 2= (nabt),
pl1 do

—0 denotes absence of reaction, since in that case

]
where the equation 0§ >
y appropriate redefinition of the coordinates on the

one can produce 6E*=0 D
surface.
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HIGH-TEMPERATURE SOLUTION CALORIMETRY FOR DETERMINING
THE ENTHALPIES OF FORMATION FOR HYDROXYL-CONTAINING
MINERALS SUCH AS TALC AND TREMOLITE™®

I.A. Kiseleva and L.P. Ogorodova

Moscow University

The heats of solution have been determined for brucite,
talc, and tremolite by high-temperature microcalorimetry both
by direct solution and by the use of a 2Pb0.B,0, melt as sol-

vent. The values are in good agreement, which shows that it
is possible to apply the high-temperature solution method to
hydroxyl-containing minerals. The enthalpies of formation

for talc and tremolite have been derived from that for bru-
cite, which has been very reliably determined by various work-
ers by acid calorimetry. The enthalpy of formation of tremo-
lite is AHOf 208,15 = ~2951.1£2.6 kcal/mol, and an estimate has

A "

been made of the heat of solution of water in the calorimetric
melt. These data have been used in calculating the upper
temperature limit to the stability of tremolite in association
with quartz and calcite. The displacement of the temperature
limit is considered in relation to the total pressure on the
mineral PS, the fluid pressure Peos and the composition of the

fluids (molar proportion of COZ)'

During the last decade, there have been considerable advances in thermo-
chemistry applied in mineralogy, with a considerable extension of the range of
minerals examined, which indicates that current methods in high-temperatu%e
calorimetry as devised in the 1960's by Yokokawa and Kleppa [1] are highly ef-
fective. Although high-temperature solution calorimetry has many advaﬁtayes
over traditional acid calorimetry, there have up to now been some major cgn-
straints on its use: 1) to minerals that oxidize during high-tem eriture -
iments and 2) to minerals containing volatile components (OH-, COP' Cl- §§Per

3 ’ H 3

etc.) and which decompose under the working conditions. ; ;
is largely eliminated by additional shielding measures (uggeogliizrﬁgnstralnt
spheres), as is evident from recent studies by Kleppa et al. (2] A Eizr?tgg;

*Translated from Geokhimiya, No. 12, pp. 1745-1755, 1983.
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