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) Thermodynamic simulation has been applied to disorder-
ing in (Mg, Fe)ZSiOZ, whose stability region covers much of

the transitional zone in the mantle. The ideal-mixing model
requires two order parameters, whose equilibrium values have
been calculated for wide pressure and temperature ranges; the
degree of disorder and the thermodynamic parameters have been
related to the preference energies. Values have been calcu-
lated of the configurational entropy, which are of the nature
of reference data and are required in calculating heterophase
equilibria involving the partially disordered spinel. The ef-
fects of disordering in the spinel on the position of the di-
variant olivine-spinel equilibrium in the solid-solution se-
ries have been investigated. Formulas are derived to express
the adiabatic gradient in P-T coordinates for disordered spi-
nels, and numerical estimates have been made of the parameter
range corresponding to the transition mantle in the zone.

Recently, much effort has been devoted to research on the structure of the
region showing anomalous seismic-wave velocities at depths of 400-700 km [1-3].
The seismic features of that zone in the mantle (the transitional zone) are re-
lated to physicochemical transformations in the rocks as a result of the high
pressures and temperatures., Numerous studies give nonconflicting models for the
chemical and phase states of that zone; a basic feature of these is that there
is an assemblage of multicomponent solid solutions that undergo solid-state trans-
formations [4-8]. The position and extent of the anomalies are related to the
relevant phase diagram. The MgO-FeO-CaO-A1203-SiO2 multisystem is reasonably

representative; it includes dozens of solid phases.

One of the most interesting features of these systems is the possible dis-
ordering. At low temperatures, the atoms occupy preferred positions, and dis-
ordering is accompanied by increase in the energy, but the entropy also increases.
The entropy term becomes strictly more important in the free energy as the tem-
perature increases, so the equilibrium degree of disorder increases, and that
degree can be considered as an internal degree of freedom. The disordering is
accompanied by heat and volume effects, which alter for example the positions
of the phase boundaries corresponding to univariant reactions involving the dis-
ordering phases. Also, the slope of the adiabat, which closely represents the
mantle temperature profile on concepts involving convecting mantle, is changed
[1, 5-8]. Barsukov and Urusov [4] considered the transition zone as a zone of
disordering solid solutions on this basis.

Here we evaluate the effects of disordering on the phase boundaries and
adiabatic gradient for the mantle with references to the spinels in the MgZSioa—
FeZSiO4 solid-solution series. This system is of particular interest because

ferromagnesian spinel is evidently stable in much of the transition zone. For

*Translated from Geokhimiya, No. 9, pp. 1254-1268, 1986.
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ORDERING IN SPINEL SOLID SOLUTIONS

Let us consider the continuous series MgZSiOA-FeZSiOZ‘, where g denoteg the
molar fraction of MgZSiO4 in the solution, [Mga:Fe(l—x)]z(Si)04- The Mg2+ i
Fe?* are localized in the octahedral positions in the ordered Spinel, ¢
indicated by the square brackets, while the Si4+ are in

h .
¥ tetrahedral pOSiiisnbemg
noted by the parentheses. Let £ be the proportion of tetrahedra] Positiong 2cde.
cupied by Mg2+ and ¢y the pro
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Thus the formula for a partially inverse spinel is '

Mg, :\Fe Si Siy—g-pyMg:Fey) O,.
[ ("‘r) (H_%) (e;_w)]z( 1-5-yMg:Fey) O,
The Gibbs energy of a partially disordered spinel is

G* =xGil (P, T) +(1—x) G2 (P, T) 4+ AG™ &, v, x, P, T), (1)

shere GSM’;, and Ggf are the standard Gibbs ener

ordered pure phases, and AGS?=AES» | PAYs»
AE®?, ASS? and AVs»

. are the mixing energy,
tion model gives

gies corresponding to the completely
—TAS®? is the Gibbs mixing energy, and
entropy, and volume. The ideal-solu-

AE® < BAES + WAESS, AVSP—rAVSE 4 pAVE,

3 (2

The exchange energies AES% and AEZ (see (5) and (6)) characterize the dif-
ferences in the energy levels of the Mg2+ and Fe??t between the tetrahedral and
octahedral positions., As -AEﬂ’g,Fe> 0, the degree of inversion is close to zero &
low temperatures. Estimates [10] give Avﬂ‘é'pe<0, i.e., the volume decreases o
disordering and pre §

, & and ¥:
- N(T)! _ N (M) o
Nyg (T)1 Npg (T)1 Ny(T)1 Nyg (M)! Neg (M)! Ngy (M)1

.tions
he total number of tetrahedral poilones
©M)+Ny(M) is the total number of octahedrd
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in the gram formula, where clearly 2¥(T) = N(M). The numbers of cations in the
positions are expressed by ¢ and y, together with x:

Nug (T)=EN (T), Nee (T) =N (T), Nei(T)=(1—E—9) N (T),
Mg (M) = (5=} (40, N @)= (1 —2— 2} (00, N =252V 00).

From (3), the mixing entropy can be put as
AS¥ =—R{[(1—t—)In(l —E—¥) +EInE+viny] +

+ 9 [( §-2|-\P) In (E -2|-1P) + (2x;§) In (2_x2—_§) Es (2—2;’—113) 1n(2—2;’—.-ll’)]} .

(4)

where we neglect the nonconfigurational thermal entropy in accordance with the
ideal-mixing model [11-13].

Disordering can be represented as two reactions:
SIY + Ml = (M + ISil, (5)
(SHF + [Felif = (Fe)f” + ISl (6)

We introduce the corresponding equilibrium constants K3, =exp(AHW/RT), and Kgf =
exp (AHEZ/RT), where AHYy re=AERNG re +PAViy re is the disordering enthalpy, to get
[13]

(2x—§)(l—§—1p)= Se p T (7
EE+ ) S (2 L

(2 —2x—%) (1—E—¥) _ gSp (p. T), ¢8)
v E+ V) shisd

It is readily checked that these two equations can be represented as 0G®?[0g =0,
and 0G*?[9p=0, i.e., as equilibrium conditions in relation to & and y. They con-

tain the enthalpies instead of the Gibbs energies because we have neglected the
nonconfigurational entropy, and their solution enables us to determine the equi-

librium parameters §=§(P, T, x) and qz=:p(P, Toky,

Let us now examine (7) and (8). To determine the equilibrium A(P, T, x), we
have to solve the cubic equation

2x (K§§ — K3fy) -+ 3Ky + Kfe — ¢
(1 — K5y (1 — Kg2)
5 — 2K50, — 2x (KS2 — Kify) D)
I—K(U—KD  (—KP(—KE

A3 —A2

(9)

+A

when £ and ¢y are defined by |
£=2x(1 — W/ —A(1—KR), $=2(1—2) (1 =M1 —A (1 —KR)]

with KSP_:_K‘EQ/K%=I, (9) amounts to the quadratic equation derived in [10] for

disordering in the pure (stoichiometric) spinels, and the solution is written
explicitly as

4 4x _ 4(1—x)

Av= —_— §= —— - e ————— (10
34+ V1+ 8K, re 34V 1+ 8Kify e 3+ V1+8Kire )
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Then wi Sp__ e
- With K¥E==]_ i ceasas to be dependent on composition. For T—oco, we have
KMg,Fe-* 1,E-—)-2x/3, 1

p>2(1—x) /3, A—>2/3, so the limiting state is that of complete dis-
order, which corresponds to the maximum configurational entropy, which is Spu=
"‘R{Z"‘nx+2(1—X)ln(l——x)+21n2—31n3}. The same asymptote applies for Kt Kre.
With real spinels, the values of K3, and Kf are similar [9-14]. We introduced the

small parameter s::(Kﬁ%__ng/KE&. From (9) we have up to terms of the order ¢?
———— Sp
A —3+VI+8K K= 3__4__11@"‘_:_). (11)
2 (Kb, — 1) 2 (Kgh—1) V14 8K

For a given e, the accuracy of (11) is dependent on x; for « = 1, the formula
1s exact, and the maximum error for = = 0 is

2KRE, 1
(Kso,— 12 V148K,

AN =¢?

We can use (11) to derive explicit expressions for the activities of MgZSio[I

and Fe,8i0, in the disordered solution. The chemical potentials of the compo-
nents

”ﬁlpg — Gsﬂ + (1 _ )C) aGSP/ax, }ng — GSp -_ xaGsplax
are put as follows on the basis of (1)-(4)

Uiy =Gy + RT In [(1 —& — ) (x —E/2)?],

px§§=G§£+RTln[(l —g-—\p)(l —x—-‘g—)“] .

The above expressions for the equilibrium ¢ and y in terms of i give

vy = Gily + RT Inarfy (%, P, T), pff =Gt + RT Inak (x, P, T),

where

A Sp 2 A Sp 2
agh = x2 (1 — M) _ MRwe . a8 = (1—x)* (1—A) _ Mre
Mg = <

1 —A (1 —Kyh) 1—A(1—K3®)

are the activities of MgZSiO4 and FeZSiO4 in the solid solution. If we take the

standard states as those of the disordered end-members, a difference from (1) is
that we get the definitions

ust = GG (P, T)+RT Inaw (v, P, T), &2 = GX (P, T) 4+ RT Ina? (v, P, T),

where
O% = G¥+ RT In [(1—%)(1—%)2].
388 =G& + RT 1n[(1 st —%)2],
£(P, T)= 3+V14+Tf(; e T=— 1/14+T:
sO
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Table 1

Activities of the Components MgSi, .0, and FeSi, .0, in Spinel (Mg, Fe),

QS 2 0.572
Si0, as Functions of Composition at 200 kbar, AEﬁg = 10 kcal/mol, AE?Z =
15 and 30 kcal/mol, and Avﬁp = -0.5 cm3/mol
g,Fe
~S ~S
* ™ aMgsiy, Oy aFesly 5Os

1000 K
0,1 0,078/0,055 0,093/0,086 0,897/0,876
0.3 0,110/0,099 0,292/0,289 0,690/0,665
0,5 0,134/0,128 0,495/0,494 0,488/0,467
0,7 0,155/0,152 0,698/0,698 0,290/0,277
0,9 0,172/0,171 0,900/0,900 0,096/0,091

2000 K
0,1 0,256/0,118 0,095/0,070 0,899/0,876
0,3 0,290/0,215 0,293/0,272 0,695/0,645
0,5 0,320/0,279 0,495/0,484 0,492/0,442
0,7 0,347/0,327 0,698/0,694 0,292/0,257
0,9 0,372/0,366 0,900/0,900 0,096/0,083

3000 K
0,1 0,371/0,185 0,097/0,073 0,900/0,890
0,3 0,396/0,283 0,295/0,269 0,698/0,661
0,5 0,420/0,354 0,496/0, 481 0,496/0,451
0,7 0,443/0,410 0,698/0,693 0,295/0,260
0,9 0,464/0,454 0,900/0,900 0,098/0,083

Note: The top line is the value for AEii = 15 and the bottom for 30 kcal/mol.

C (L] I —
1 —E/ | (1 =2 (—K2)] (1 —E/2)
~sp (1—x) M (1—x) Kg? :
Fe — = = .
F=9/] (1 —=A (=KD (1 —P/2)

The form of A(P, T, x) is defined inexplicitly by (9); for e = 0, (K3, =K3), the
solution remains ideal, and incorporating the disordering amounts to redefining
the standard functions G}fd‘; (P, T)and G (P,T). This is not so for &5<0; the ex-

plicit asymptotic expressions for the activities for small ¢ can be derived from
(11). This demonstration of nonideal behavior of the solution for disordered
spinels is a consequence of excluding the parameters characterizing the equili-
2+

and Fe2+ in the

octahedral positions and for disordering of Mg2+, Fe’®, and Si*" over the octa-
hedral and tetrahedral ones in the oxygen framework is taken as ideal. An in-
teresting point is that these activity coefficients cannot in general be described
by polynomial functions of the composition.

brium disorder. At the same time, the model for mixing of Mg

There are large uncertainties over the values of AENgre and AVﬁQfe so it is

best to examine how the equilibrium order parameters change when the thermodynam-
ic functions vary. The parameters can be rendered dimensionless; for example,

choosing a value for AHﬁ@ (or Aﬁﬁ%) is equivalent to choosing the temperature
scale, and substantial changes in the degree of inversion will occur when the
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Fig. 1. Level lines for the following functions: A(P, T, x) the degree of inver-
sion, E(P, T, x) the proportion of tetrahedral positions occupied by Mg2t, and Y(P,
T, x) the proportion of tetrahedral positions taken by Fe?+ for a fixed pressure

of 100 kbar with AVIS“”g'Fe=—0.5 cm®/mol: a) AE%"g 10, AEEP = 5; b) AE;?,{;=10, Aggg=10;
) AES, =10, AEf, =15; d) AE, =10, AEFL =20 kcal/mol; z is the molar fraction
of Mg,Si0, in.the solution.

dimensionless parameter L==AHgQAEﬁE is wvaried. TFigure 1 shows level

lines for A(P, T, x), E(P, T, x) and Y(P, T, x) for a fixed pressure in T-z coordi-

nates. Table 1 gives the component activities as functions of composition for
several temperatures. The deviations.from ideal behavior are on average several
per cent, so we have not used a graphical form for the activity-composition re-
lationships.

There are various scales for the energies of cation preference for the te-
trahedral and octahedral positions: Ulusov's [11], Reznitskiy's [14], and O'Neil
and Navrotsky's [12, 13]. The differences between them should be dependent on
the cation mixing model. As we are using an ideal-mixing model, we take the
thermodynamic parameters derived in the analogous approximation for the pure

phases [10]: AEMg= 2.1, and AER¢= 29.7 kcal/mol and AViZ=AVE -0.5 cm’/mol.

Figure 2 shows equilibrium curves for A(T) at 100 kbar for all these solid solu-
tions. Pressure does not have a great effect (because AV is small), as is evi-
dent from the inset. Figure 3 shows the excess configurational mixing entropy
as a function of temperature for the various compositions. The arrows indicate
the deviations in the entropy from the level corresponding to completely ordered

. id _ _ + (1 - z)In(l - z2)]. The ent i
g 2R[x 1n x 5 ntropies calculated in this
3g;n2£rrespond to the stable equilibrium forms, and they should be the ones

36



A

-A —
015 O

) A

L7 %

B \
o1 18- ]

: A ]

| 500 2000 2500 i

B T,K i
0,05}

T | | ]

1500 2000 2500
T,K
Fig. 2. Temperature dependence of the degree of inversion

for (Mg, Fe);Si0, spinel, where x is the molar fraction of

Mg,SiOy in the solution.

The inset shows the changes in

the positions of the A(T) curves as the pressure increases;

AEpy 24.1 keal/mol, AEF) =29.7 kcal/mol, AV§Zy,=-0.5 cm®/

mol.
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tion for partially disordered (Mg, Fe)2S5iOy.
ations from the level corresponding to complete ordering.

1500
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Dependence of the entropy in cal/mol<K on temperature and composi-
The arrows indicate the devi-
Here x is the

molar fraction of MgySiOs in the solution; AER,= 24.1 kcal/mol, AESP = 29.7
AV, mg==0.5 cm’/mol.

tabulated in handbooks.

kcal/mol,

One can get substantial errors from using the high-tem-

perature entropy values corresponding to nonequilibrium completely ordered forms
in calculating phase-equilibrium curves (see an analysis of these effects in [9,

10; 15])

Disordering-kinetic studies can indicate whether equilibrium is attained in

calorimetric experiments.
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OLIVINE-SPINEL EQUILIBRIUM PHASE DIAGRAM

There have been many studies [4, 9, 10, 15] on the effects of cation dis-
ordering on the positions of univariant solid-state equilibrium curves, in which
1t has been shown that the effects may be substantial; the slope of a phase-equi-
librium curve may reverse in P-T coordinates if the heat of reaction 1s compar-
able with that of disordering and the values are opposite in sign (9, 10].

Here we will consider the effects of disordering on the line positions in
the olivine-spinel phase diagram for the solid-solution seriles forsterite-faya-
lite (in P - X coordinates). For clarity, we neglect the presence of the modi-
fied g spinel and exclude the corresponding equilibria.

Let us write the phase-equilibrium conditions. The olivi?es [ngFe(l—y)]2

. . chty s = L0
Si0, have the same formula as the spinel, but g, Fe’)-(s1"") disordering is
not observed in the latter minerals. The (Mg2+, Fe??) ordering over the two

types of octahedral positions [16] can be neglected because of the low degrees

of order. Let y be the molar fraction of Mg, SiO,. Then the molar Gibbs energy
of olivine is & .

G” = yGig (P, T) + (1 — y) G (P, T) +4G% (3, P, T),

where AG®»=AE°—TAS%+PAV: with Gﬁfg,pe the Gibbs energies of the pure phases.
In the ideal-solution approximation

AE®=AV%=0,
AS®=—2R[yIny+ (1—y)In(1—y) 1.

The transition from the low-pressure phase (olivine) to the high-pressure one
(spinel) can be represented as

2 Mg1% e + S =2 2 MglS2e + (Si)gRe, (12)
2[Fe]d, + (SDe 2 2[Fel, + Gi)?,. (13)

The corresponding equilibrium constants are

Kyg=0xp (AGug/RT), Kre=-exp (AGr/RT),
where AGM”,=,G§{;, Fe—“G}?AIg'Fe. We use (12) and (13) to_write the equations for the
law of mass action:
yz
(=5
(L. —pt
>
(1=t (1-s— 2)

TC =Kue (P, T) (14)
3)

L =Kee (P, T). (15)

We now combine (7), (8), (14) and (15) to get a system of four equations for
the four unknown functiops of temperature and pressure x, y, ¢ and v in the pa-
rameter range corresponding to divariant two-phase equilibrium. Let the coordi-
nates of the reactions in (12) and (13) be ¢, and ¢,, in which case those equa-

tions can be written in a unified form as equilibrium conditi

- ons in respect of
the internal degrees of freedom (we introduce the reaction ba

sis):

G _ o 96 _ o 96 3G

E: . a‘p_ ’6_€;= ’a_g;=0

Here G is the Gibbs energy of the olivine-disordered spinel assemblage.
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To demonstrate the main effect (equilibrium-line displacement), we first
consider the special case KﬂZ=K§§=K‘, which has independent significance because
of the similarities between the preference energies AF for numerous cations [10-

14]. We denote by x(P, T) and yo(P, T) the values of the concentrations correspond-
ing to equilibrium between olivine and completely ordered spinel (§'='¢=0)_, which

are evidently defined by the conditions (l—yc)zl(l—)c;)z=.73po and _1;2/)2’=ng. We sub-
stitute into (14) and (15) to get after simple steps that

p=3 42020 oy,
y—x
o ° & 1
y=y+y(ol oy)(v ),
y—x Y

where v=2/(2—A)yY1—A, and A=4/(3+V1+8K"). It is readily seen that v>1, so the
sign of the displaceoment in the equilibrium phase diagram (¥—x, y—y) is depend-

ent on the sign of y—X. According to [17, 18], y>x‘: throughout the composition
range, so the entire diagram is displaced towards low pressures, and the spinel
stability region enlarges.

Let us now consider the general case Kwys~KPt. The solution to (7), (8),

(14) and (15) can be represented in parametric form:

e [(2 —2) (1—A) — K$222] (1 — A + AKFD)

(16)
20 (K0, — K22 (1 —4)
- Sp 2 —A) (1 —A) — K3PA
y=V Ry i (17)
Kify — K78 2V 1—2
E=[(2—A) (1 —A) —AKE2)A (KR8 — K3D)], (18)
Y =[Kigh? — (2 — 1) (1—=N)]/[M (K — KE2)]. (19)

4
Parameter ) is defined by an algebraic equation of fourth degree 2 D=0,
=0

whose coefficients are
D,=4B*—1, D,=1—12B% D,=9B*+4BC,
Dy=— < BKE VEre, Dy=C,

where
B = (V KugKitly — V KeeK2/2 (K¥ — K39,
C=B(1 —Kg) +§ K2 V Kre.
The phase diagram for olivine-spinel equilibrium has been repeatedly exam-

ined for (Mg.Fe.-s).Si0( solutions [17, 18]. In [8], this diagram, without the g

phase, was constructed by calculation in the ideal-mixing approximation from data
on the standard energies of formation of the pure phases and the equation of state

p o
in the form f VdP. 1In the terms of our study, [8] gave the functions x(P,T) and

o 0
y(P, T). As was shown above, the disordered spinel solution cannot be considered
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as ideal. If we solve (16-19) numerically and use x and § from (8
ters, we get the lines in the modified diagram.of Fig. 4 (see al
1000 K, there is virtually no displacement, w@xle at 2000 K it i
the ferroan region or ~ 10 kbar in the magnesian one. Certain d
encountered in comparing the observed and calculated diagrams becayge of 58 are
tainties in the experimental pressure (see_dlscu551op in [5]). he Correuncer~
ing systematic error in the experiments shifts the dlagram along the ressptm‘
scale, i.e., produces an effect analogous to that considered here

pansion of the stability region of a disordered phase. The theore
shaped region is somewhat narrower than the observed one on a
(17, 18] (the discrepancy does not exceed 10 kbar).

] a
so Ta]sjlparame-
S ~

: oy
lfficul t?:r 1In

i r
11}Volving :
t%cal cigarx~
PPTropriate transi
er

ADIABATIC GRADIENT IN THE SPINEL STABILITY ZONE

The view that there is vigorous convection in the Earth's mantle hag
ulated interest in the adiabatic gradient (dP/d’I')A in multiphase minera]l ,

blages [1, 5, 7, 8]. The view that the temperature distribution in the mant],
is adiabatic (isentropic) enables one to construct the temperature profije by

chemical-thermodynamics methods. Various features of the adiabatic temperatyye
distributions have been established in regions with divariant, mo

. : novariant, apq
nonvariant equilibria [7, 8, 19, 20]. Here we consider this for dlsordering
solutions.

Stim-
ssem-

The entropy increases on disordering, so.hgat_is ai?sorbed; a pressure change
with adiabatic insulation will affect the equilibrium disorder (degree of inyer:
sion). The maximum excess mixing entropy occurs for spinel with ¢ = 2/3

2(1 - x)/3, and is AS={3In3—2In2}~38 cal/mol.K. The corresponding temﬁeiazure

change (reduction) is AT=~TAS/C,. According to [7]1, Cp&S'% (2000 K)~ 40.0 cal/

mol.K, so AT~200 K. Adiabatic compression alters (increases) the temperature
in the spinel-stability range (50-250 kbar) also by 22200 K. These values would
indicate that adiabatic disordering in spinel can produce a substantial retarda-

tion in the temperature rise in the mantle, but this is not so, because the de-
gree of disorder attained is small (~ 27).

The adiabatic (isentropic) condition can be put in differential form:
dS(P, T, x, &, 9)=0. We take the composition as fixed to get

S s S ot aS 08 ot as oy
—dP + —dT 4+ == — =X — = =X dT =0.
5p ¢ Tord +a§apdp+axpap dp+ag oT dT+axpard 0 s
We now use the conditions for equilibrium as regards ¢ and y to get
%L e oo
oP A [0E oty oy agﬂ]’
A
aT T 2 !
op 08 O ot (21)
Bl se s
P A Loy oy o w]'
& laae m o
oT AT [ &% oy? aq:agaq:]’

: /T35
where A ='§%G,%2§% _(aga?p )z- In deriving (21) we have used the fact that oH/9t=TaSI
. 21)
0E, 0H[0y=T0S[dy by virtue of the equilibrium conditions. We combine (20) ani (rmal‘
and introduce the standard symbols S/0T=C,/T, 0S/0P=—aV, where a is the t :
expansion coefficient and ¢ is the specific heat at constant pressure, whic

gives us an expression for (dT/dP)A along the adiabat:
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Equilibrium Concentrations of FeO4
and y Spinel (Mg, Fe)ZSiO4

Fig.

dering in the spinel:

160}

130

P, kbar

100

70

|
Mg S0, 41 43 45 47 O9FeSil,

4.

Displacement of the diagram for equilibrium
between olivine and y spinel on incorporating disor-

1) diagrams from ideal-solution

approximation in [8]; 2) diagrams constructed from
(16) and (17) in this paper; AEy, = 24.1 kcal/mol,
AEF, = 29.7 keal/mol, AVE) y,=-0.5 cm’/mol.

Table 2

in Coexisting Solutions of Olivine

Disordering not taken into account Disordering taken into account

P, 0livine p-spinel Olivine ¥-spinel
kb

- 1000+ 1500 2000 1000 1500 2000 1000 1500 2000 1000 1500 2000
60 [089| — | — |09 — | — |08 — | — 098 — | —
8 | 0,48 |0,71(0,91]0,80,80,9 0,48 (0,69}|0,8 |0,8 | 0,8 | 0,93
100 | 0,23 | 0,42 | 0,60 | 0,61 | 0,70 | 0,80 | 0,23 | 0,40 | 0,54 | 0,61 0,68 | 0,75
120 | 0,07 [ 0,22 | 0,36 | 0,30 | 0,49 | 0,61 | 0,07 | 0,20 { 0,31 | 0,29 [ 0,46 | 0,54
140 — (0,07(0,49| — | O, 22 0,40| — |0,06| 0,44 — | 0,18 0,30

*7, K

O0H oV
0t d§

0%G oH oV ) 02G (6H oV
) ayp? (aw ap ) ogr — \aE av

O0H oV ) 0%G

oy 3

080y ] —lA- )

(i)‘= avr—}-[(c +[(

o) oy? Y

0H \2 0%G (gﬂ)z_gz_q o OH 0H. azalL
) og? 0F oy oty

(22)

The ideal-mixing model gives explicit expressions (see (1)-(4)) for the deriva-
tives appearing in (22)
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Table 3

Adiabatic Gradient in Disordering Spinel (ngFe(l_x))ZSiO4 at
200 kbar, = = 0.8

T, K (dT/dPy4. (dT/dP)}, » t "
K/kbar K/kbar

1500 0,860 0,826 0,033 0,032 0,001

2000 1,147 1,087 0,080 0,075 0,005

2500 1,434 1,357 0,133 0,122 0,010

3000 1,724 1,634 0,184 0,167 0,017

Note: (d7/dP)y without allowance for disordering, @r/dpyy with disor-

dering.
oH oH aV av
6_§=AHM“’ a—lb=AHFe’ -6E=AVMg, a_\l)- = AVFe.
0%G 1 2x 9°G 1 2(1—x)
og? 5 [7»(1—1) +§(2x—§)]' op? R [Hl—?») +1I>(2—2x—tl>) ] '
°G RT
oty  A(l—A)

We substitute in (22) for the equilibrium functions &(P, T, x), and %(P, T, x) to
get a first-order ordinary differential equation, whose solution is the desired
curve T = T, (P) (the adiabat).

Let us now consider the adiabatic gradient in the ferromagnesian spinel sta-
bility region. We need to specify the specific heat and thermal-expansion coef-
ficient. We will use the values for the pure phases recommended in [8]: ¢

(cal/mol.K) = 43.3 (a-FeZSiOA), 43.0 (Y-FeZSiOA), 43.0 (a-MgZSiOQ), 42.6 (y-Mg,
§10,), a (K™') = 3.2 x 107 (a-Fe,5i0,), 2.6 x 107> (y-Fe,5i0,), 2.9 x 107°
(a-Mg,Si0,), 2.4 x 107° (y-Mg,S8i0,), while the parameters for the solution are
calculated from

Cp — ng‘Q:SiOA + (I — x)Cl;e,SlO"

o= [aMngiolngleoax + aFe,SlO‘VFe:SiCh(l _x)]/[vaEzSiO‘ +(l _ x)VF‘"S'O‘].

The results in Table 3 enable one to compare the (dT/dP), along with the adiabat
calculated with and without allowance for the disordering from (22); the discrep-
ancy is several percent and increases with temperature.

The above general formulas also allow us to consider the particular case of
stoichiometric MgZSiO4. Here it is sufficient to pass to the limit x—1,
in (22). Then for (dT/dP). we have

oHSP  gySP / (aHSp)a
ary o ot /1 ¢ ot
Y el o8 T5 —p 4
(dP )A BE TaQGSp / T a5 NGSP (23)
og? / = L2

We can simplify (23) in the ideal-mixing approximation:
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a7 \1d ( Aﬁggavﬁi’;) /( C (AH,&”)“)
ANy o 2Pme?me ) I oy MR 24)
(dP )A VI 2mre J\T T RErE ) (

where
AHRg =O0H®®|0E, AV —=oaVee/oe, f(&)=(4—38)/E(1—E) (2—8).

The equilibrium degree of order is given by

g =4/[34+ V1 + 8exp (AHig/RT)l.

If we can neglect the volume change on disordering,

AHSDE -1
()Gl + )
P )y \dP /4 C,RT* [ (%)

where (dT/dP),’=aVT/C, is the classical value for the adiabatic gradient.

The maximum correction to the gradient occurs when 0°G/0§* 1is close to zero,
but for 0°G/dt*—0 we have 0§/0T—+oo, i.e., there is a discontinuity corresponding

to a phase transition. Phase transitions of the first kind in mineral disorder-
ing do occur [21]. In that case, there is a jog on the phase-transition curve
in P-T coordinates, as the curve coincides in part with the equilibrium curve.
This situation is common to all univariant phase reactions [5, 7, 8, 19, 20].

A characteristic feature is the negative slope of the equilibrium curve, which
leads to stepwise temperature reduction.

DISCUSSION

One result is the demonstration that (Mg, Fe)?_SiO4 is nonideal, which is

due to Mg2+, Fe2+, and si*t disordering. This non-ideality is related to dis-
ordering being superimposed on the standard picture of virtually ideal isomor-
phous replacement of magnesium by iron in the spinel, while the dependence of
excess mixing functions on composition is a consequence of excluding the inter-
nal parameters characterizing the disorder by means of the equilibrium conditions.
A specific feature of these nonideal solutions is that the activity coefficients
are dependent not only on the composition but also on temperature. As a result,
the nonconfigurational mixing entropy varies on heating even for constant compo-
sition, which causes changes in characteristics such as the specific heat, slope
of the adiabat in P-T coordinates, etc. The analysis enables us to calculate
the displacement of the olivine-spinel phase boundary associated with disorder-
ing, as this boundary lies at the edge of the spinel stability region for the
upper mantle. Proper correction for nonideal behavior in (Mg, Fe)ZSiO4 may also

lead to reconsideration of our views on the positions of the univariant equili-
brium curves bounding the spinel stability region for the lower mantle; one ex-
pects that the corresponding nonideal behavior associated with disordering will
occur with other phases such as (Mg, Fe)SiO3 having the ilmenite structure [4].

A natural extension of this model is to abandon ideal mixing at all stages.
The most interesting point concerns the deviations from ideal behavior on cation
disordering. The ideal-mixing model corresponds to the interaction between ad-
jacent atoms being negligibly weak, while the distribution over the positions is
random, i.e., short-range order is completely ignored. The next approximation
is the regular-mixing model [11-131], which is based on the additional interac-

tion energy and amounts in our terms to redefining the preference energy AEﬂ§==
AENS + EAERG +VAENg , and AES — AESY +EAESE +pAERY with an unchanged expression
for the configurational entropy [11-13]. It is then clearly possible to incorporate
the changes in interaction parameters on disordering. It can be shown that this ex-
tension for spinel does not lead to a first-order phase transition in the calcu-
lations. To obtain a model with a phase transition on disordering such as is
observed for MgA1204 (spinel) [11, 12], it is necessary either to use nonlinear
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functions AH=AH"+tAH'+E'AH”+ ..., or to abandon the assumption that the i

figurational entropy is ideal and to calculate it from some statistical moge]
with allowance for the short-range order [21].

In conclusion we note that we have assumed thermc?dynamic equilibrium ip
relation to the internal degrees of freedom ¢ and ¥, i.e., the disordering ig
considered to occur instantaneously. When one cons;de;s processes such as ¢op.
vection, one has to bear in mind that the characteristic relaxation time to
equilibrium is accompanied by at least one further time parameter characterizing
the rate of change in the P-T conditions, so the concept'of instantaneous kj-
netics can be given an exact sense. We lack reliable evidence on spinel djg-
ordering kinetics, so no such estimate can be made here.

MAIN RESULTS

1. A simple model has been proposed for disordering in (Mg, Fe)ZSi04 solid

sglutions, which enables one to calculate the degree of invergiqn and the excegg
mixing energy as explicit functions of temperature and composition.

2. The values used for the preference energies mean that the degree of
spinel inversion is slight (~2%) at the P and T of the upper mantle, so the de-
viations from ideal behavior are slight. On the other hand, the change in mix-
ing entropy due to disordering (Fig. 3) is not small (~ 1007).

3. The theoretical olivine-spinel equilibrium diagram has been derived for
the entire series of Fo-Fa solid solutions. Allowance for spinel disordering
shifts the diagram with respect to pressure by 5-10 kbar.

4. Formulas have been obtained for calculating the adiabatic gradient in
the stability region for disordered spinel. It is shown that the gradient in
the transitional mantle zone may be reduced by several percent on account of dis-
ordering in the spinel.
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THE COMPOSITION OF APATITE FROM METAMORPHIC ROCKS*

Yu. L. Kapustin

Moscow Geological Surveying Institute

Studies have been made on apatite from metamorphic rocks
of various facies in the Kola peninsula and Karelia, the
Ukraine, Siberia and Central Asia. The metamorphogenic apa-
tite contains very low levels of minor components. Specimens
from greenschists have minimal levels of Sr, Ba, Mn and Na but
elevated amounts of SO3 and Cl; ones from the amphibolite fa-

cies have lower SO3 and Cl contents, but the amounts of Sr, Mn

and Na are higher, the maximum values being found in the gran-
ulite facies, but these are still lower by factors of 5-20 than
those in apatite from gabbros, carbonatites, diorites and alka-
lic rocks.

Apatite is always present in metamorphic rocks, at least in small amounts,
as an accessory mineral [1l, 2]; the exact level varies considerably with the
composition and facies and is dependent mainly on the original sediment compo-
sition.

Apatite from granulite-facies metamorphic rocks have so far been largely
neglected, since usually the levels in granulites are minute and the mineral is
difficult to isolate. I have examined accessory apatite from metamorphic rocks
of various facies in various parts of the USSR: hypersthene granites in the Bug
and Aldan areas, cordierite gneisses containing hypersthene at Slyudyanka
and in the southwestern Baykal region, and Anabar sapphirine-pyroxene granulites.
In all these rocks, the apatite consists of small transparent colorless prismatic
crystals (< 0.05 mm) containing no visible inclusions. It is usually evenly
distributed in leucocratic hypersthene granites, whereas in melanocratic rocks
it forms small clumps and nodules in close association with almandine, zircon,
and rutile. The levels in leucocratic granites usually do not exceed 0.5%, though
some specimens contain up to 2%. In the Aldan, Anabar, and Slyudyanka melano-
cratic granulites the apatite is not so evenly distributed, the levels being 0.5-
3%, usually ~2%. The diopside and spinel-forsterite calciphyres from the gran-
ulite suite in the Bug area have apatite levels of 1-57; it forms rounded color-
less grains of size 0.1-1 mm.

Apatite is always present in all rocks in thg amphibolite facies: Precam-
brian gneisses, migmatites, amphibolites, and schists, where it is fairly evenly

*Translated from Geokhimiya, No. 9, pp. 1269-1276, 1986.
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