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A MATHEMATICAL MODEL FOR THE KINETICS OF ISOTHERMAL
RECRYSTALLIZATION IN SOLUTION*
L. M. Truskinovskiy and E. E. Sanderov

Institute of Geochemistry and Analytical Chemistry
Academy of Sciences of the USSR, Moscow

A self-consistent model has been constructed for iso-
thermal recrystallization in solution that includes descrip-
tions of three competing stages: dissolution of an initial
metastable phase, nucleation of a stable phase in solution,
and crystal growth. The kinetic equations have been solved
by computer to examine the effects of the individual stage
parameters on the kinetics. The calculations are compared
with gxperimental data on zeolite synthesis, which shows
that it is necessary to consider processes of nucleus multi-
plication in the solution.

INTRODUCTION

Research on the kinetics of the conversion of nonequilibrium states to
equilibrium ones is as important in geochemistry as a knowledge of the equi-
librium relations itself [1, 2]. Equilibrium concepts are involved in dis-
tinguishing metamorphic and mineral facies, in the physicochemical analysis
of paragenesis, and in geothermometry and barometry. However, reliable use
of geothermometers and barometers requires a knowledge of the response rate
to changes in the external parameters, i.e., a definition of the character-
istic relaxation times for nonequilibrium states. Only in that case can we
have a reliable idea of the stage in the rock's geochemical history corre-
sponding to the equilibria and why nonequilibrium relations are frozen in
under certain circumstances, with metastable phases persisting for geological

times.

In this connection it is necessary to examine the universal kinetic laws
of mineral conversion, and to examine the contributions from the individual
stages to the over-all rate, thereby defining the rate—limitiqg steps and pro-
viding an answer to the question of what information on the kinetic parameters
can be provided not only by the degree of conversion but alsoby the grain size

[2].

Here this problem is considered in general form for the case of isother-
mal recrystallization in solution, which is made up of the stages of initial
phase dissolution, nucleation in the solution, apd crystal growth fo; the new
phase. The driving force of the transformation is the elevated chemical po-
tential of the initial metastable phase. The transition from such a state to
a stable one is related to random finite fluctuations of the nucleation type,
and also to the transport of material needed for crystal growth. The solution
provides a mechanism for nucleation and transport that acts at an appreciably

higher speed than the analogous solid-phase reactions.

The process can serve as a model for various reactions occurring in natu-
ral systems, such as the conversion of pyroclastic mgterial.to a crystal}ine
sediment under diagenetic conditions, recrystallization during metamorphism of
rocks formed under other facies conditions [2] or of rocks under nonhydrostat-
ic stress [3], and crystal growth from hydrothermal solutions when the wall
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rZCRE dissolve, etc. The model also has a direct bearing on the syntheses in
geochemical experiments and mass crystallization in chemical engineering.

Kalinin [4] gives a list of papers on mineral formation kinetics, and in
most of these attempts are made to describe the transformations by means of
kinetic equations for the reactions [&4, 5]. Although this approach is often
successfu}, it cannot be taken as universal, since it is possible only when
the reaction in one of the stages controls the over-all rate.

Nucleation and growth stages are incorporated into the Kolmogorov-Avrami
model [6-10]. This model describes crystallization from a melt [6, 11] and
solid-state transformations [11-13], but it cannot be used to simulate recrys-
tallization via a solution because it does not incorporate the dissolution of
the initial phase.

Attempts have also been made to use the crystal size distribution to ob-
tain information on the relations between the kinetic parameters [10, 14-16].
The quantitative interpretation is based however only on solid-stage reactions.
Also, arbitrary assumptions are made about the parameters, such as the con-
stancy of the nucleation and growth rates [14] and that nucleation occurs in a
single act. It has also been concluded [16] that such interpretations cannot
be accepted on account of fluctuations in the face growth rates related to
their defectiveness. However, the growth rates of crystals formed simultane-
ously can be characterized by an average quantity, while the over-all size
distribution is determined by the evolution of this average characteristic.

Particular importance now attaches to self-consistent models describing

competing mechanisms, models which enable us to simulate the natural process-
es. Mathematical experiments by computer provide a basis for detailed re-

search on various stages, while parameter variation enables us to select the
condition corresponding most precisely to experiment. A certain schematiza-
tion of the actual process is balanced by the identification of decisive pa-

rameters and characteristics.

MODEL

Let us consider a water + component system corresponding in composition to
the initial and newly formed phases. Isothermal recrystallization via a solu-
tion can be simulated as a simultaneous occurrence of three basic physicochem-
ical processes: 1) metastable-phase dissolution, 2) stable-phase nucleation,

and 3) crystal growth from the solution.

We will consider each stage in more detail. Let mn be the initial mass
of the metastable phase, mj(t) the mass of metastable pgase dissolved up to a
given instant, and m,(t) the mass of crystals formed up to that instant, while

My, 0 is the mass of solvent.
The simplest dissolution law is that for a heterogeneous first-order re-
action, which is described by

de ]
'—d:—=kSS(Cu—C), (1)

where cj =mj(t)/my o is the mass of metastable phase dissolved up to a given

instant as referreé to the mass of liquid (solvent), ¢ ="H(t)'-m2(t)/mH g ls

the current concentration in the solution, cp® is the equilibrium metastable-
phase concentration, and S is the variable surface area from which the disso-
lution occurs.

The coefficient k, determines the rate of solution from a unit area at a
supersaturation of one. Equation (1) corresponds to Nernst's equation [17]
for the dissolution rate controlled by diffusion, where k;~D/§, in which D is
diffusion coefficient and § is the width of the diffusion zone. If we denote
by

C, = m, (t)
my.o

100



the concentration cory :
tals formed at a giVeneiggzdlng to hypothetical dissolution of all the crys-
ant, then ¢=¢);—=cy. One of the basic interesting

characteristics ig the yield
which is expressed in tZrms ogfethgynew Phase or the degree of conversion z(t),
2

If the metasta ;
write an approximatzl:xphase.ls represented by a porous structure. we can
Pression for 5, which will be used subsequéntly:

2
: (2)

S = a(C;'__ Cl)

Here o is an empirical shape coefficient

By Ty we de .
— sZalg. Letnz?ebzo?ﬁ ChéraCtgrlstic time, which thereby specifies the
time t by t’=r¢t/T Th E dlmQFSlonless time, which is related to the real
0° en the dlmensionless parameters oT.k en®, and *
completely determine the dj i DEgr “p » S0C gp
lssolution. ye assume that nuclei of the stable
: . - tion ep is reached, where o <ed <ed*
i : ;
EEthczzglggl?ﬁtésrgisgrlbed by (1) before the nuclei begin to forg, wgich gn
grated. In particular, if ¢o is the concentration at the in-

itial instant (é,<e¢ £ X
le miven, By 0 0), then the time for the start of crystallization t(eq)

Co

t(c) = a}; J‘ B

(g —e)'lr(c;—c)

~
Co

For t;>t(c0? it i§ necessary to solve the dissolution equations along with
equations simulating the nucleation and crystal growth.

Let us restrict consideration to nucleation in the bulk of the solution
and neglect heterogeneous nucleation. An empirical equation describing nucle-
ation [18, 1?] assumes a power-law dependence of the nucleation rate on the
supersaturation:

dN My
Tt‘=kNVo(c—co) > (3)

where N¥(t) is the number of nuclei formed up to time t, ky is the nucleation
rate per unit volume for a supersaturation of one, and V0 is the liquid volume.
The nucleation is usually divided into two stages: the induction period and
that of active nucleation. 1In this model, the induction period can be distin-
guished nominally, and it is the more prominent the higher the power on the
right in (3). Note that we have neglected surface effects by assuming that

the nuclei are formed with zero radius.

The very simple equation (3) does not gllow us to incorpora?e.multiplica—
tion or secondary nucleus formation, which is rglated to the addltlopal_pro—
duction of crystallization centers in the bulk.ln response to.the existing
crystals [20]. The rate of this process is evidently proportional to the sur-
face area of the crystal that was already formed. Therefore, the necessary
generalization can be attained by introducing into (3) a factor dependent on

the total surface area of the crystals Sert

AN Ve —co) ™ (1 +eS,), (4)
dt .

where ¢ igs a coefficient defining themultiplicationrate fromaunit surface.

The exponent My varies for different systems bnl. on average. APproRIIACEs e

My=4 1187,
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We have to describe the crystal growth in order to calculate S.., and we
assume for definiteness that the crystals grow while retaining a cubic shape
and do not interact directly one with another. The linear growth occurs inde-
pendently on all faces and is described by

_d—=kL(c'—Co) ' (5)

where L(t) is the size* of the crystal formed at time t =0, while k; is the

linea; growth rate for a supersaturation of unity. If the growth occurs in
the diffusion region, M;=1. Also, M| >1 if the growth is controlled by re-

action at the surface, but always Mp<My [18, 19]. Let us introduce the char-
acteristic size LO==V01/3 and the dimensionless quantity z=L/Lg. Then the
directionless parameter defining the growth will take the form

E = flo (6)
ks

It is convenient to relate the time scale Ty to the growth. For this it is
sufficient to specify E, e.g., E=10-3. Then TO==10-3(LO/kL) is the time
necessary for a crystal to grow to a size 10”3[,0 at a supersaturation of one.
Using (3) and (5), we get an expression for cj based on the fact that
my(t) is the mass of the crystals at time t (crystallization began at t =0,

so ¢(0) =ey). A crystal formed at time t in time t— T grows toa size 7(t, 1)
= (t) —L(t). In time dt there are dN, nuclei formed, where

AN, =k Vo (c (1) —Co) ¥ (1 + €S (7)) d. (7

Consequently, at time t we have

t
my (1) = Py [ [L (1) — L (x)1PdNx, (8)

0o
where p., is the crystal density. Also, S, is found similarly as

t
Ser= Gj[L(t)—L('r)]szr. (9

If we denote by pf==Bp the density of the liquid, we get an expression
for cp(t): L

t
M (e —x(oP
a=7. ﬂ‘)jwc(t) *(DP V. (10)

Equations (1, 2, 4, 5, 8-10) form a closed system of integrodifferential equa-
tions for the recrystallization dynamics. The initial conditions are

61(0) = o, %(0) =0,

i.e., the time is reckoned from the instant when the concentration cj is
reached. This system enaples'us to simulate various states during tge re-
crystallization. The basic dimensionless parameters are

akly . 1 kyL!
G ky E'F=T kLOE;H':Gd‘;S: (1)

#%In this treatment, the linear growth rate is equal to twice the face advance rate
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T ———

it is convenient

ns of (6) and (11).

. We reduce the basic System to a form convenient fo
We introduce new unknown functions:

t

dw, ; s AN,
A(t)=j‘ o ;B(t)=f_§Fix(T);
t dN‘, t
D(t)—_-j‘ =72 (o) P(t)=j‘ ;ﬁ' (1)

[ & 2/
s Tksep™'3, kN':=kN00MN and the coefficients &,

Pth of the metastability c6*/c0,
the initial phase ef*'/co, and the power-law

! on the supersaturation My, Mp.
10 general are dependent on eg, while kg

Note
. *
is dependent on eo

to use the parameters

F', H', and E’,

These parameters specify simi-
€ us to simulate natural phenomena and engineering

r numerical solution.

The system takes the following form in the new variables:

dc .
- = G (co —6) & (co —c);
dt
dx 2
— =E(c—c ;
- —Ec—c)
d4 dB dD dpP
— ,——_—_'A.X,——A.z,——:A.
dt’ df’ dt’ o t =

where

¢=c¢,—F (Ax—3Bx*+3xD—P),
A=(c—c))*~[1+H-F(Ax*—2xB +D)].

12)

(13)

’ (14) — (17)

The system of six differential equations (12-17) with the initial conditions

€1(0) = ¢y x(0) = 0; A(0) = 0; B(0) = 0; D (0) = 0; P(0)=0

was solved numerically by the Runge-Kutta method in the
BESM-6 computer.

fourth order with a

The following sections present the numerical results togeth-

er with a discussion of the effects of the various parameters on the process.

The size distribution is one of the most important
denote by #n(2Z)dl the number of crystals having sizes in
L +dl at time T corresponding to the end of the process.
are identical in linear growth rate, which is dependent
tion of the crystallizing component in solution, we have

n(l)dl =dN = S (r)dr,

where dv is the number of crystals formed in time dr.
relation applies between t and I:

I(r, T)=L(T)—L(1),

i.e., 7 is the linear size of a cfystal formed at time =t
write (18) in the form

dL
n()dl = n(l) :—idr=—n(1)?dt,
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The following obvious

(19)

. We use (19) to re-
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Fig. 1. Kinetic characteristics of zeolite crystallization: 1) NaA, 100°C, data of [21],

2) NaA, 90°C, dataof [22], 3) Na mordenite, 150°C, without mixing, 4) Na mordenite, 150°C,

with mixing, from data of [24, 25]; a) degree of conversion, b) silica concentration in

solution,. c) sizes of maximal crystals, d and e) size-distribution histograms, in which

histogram e shows the number of particles in a fraction (on a logarithmic scale) as re-
ferred to 1 g of product and as divided by the radius interval in a fraction.

1

Then we have

AN (%) JdL(v)

n(l) = dt / dt

(20)

Then the solution enables us to calculate the values of dv/dt, dr/dr, L(x),
and 1(t, T) for each instant t and then to use (20) to construct the size

distribution.
EXPERIMENTAL TEST

Numerical implementation enabled us to examine the effects of various
parameters. The model may be checked by means of the experimental data on
zeolites, which are common minerals that are also produced artificially for
use in adsorption techniques (molecular sieves) and in catalysis. Zeolites
are synthesized from aluminosilicate mixtures (aluminosilicate gels, amorphous
oxide mixtures, and glasses, which represent the metastable phase), and zeo-
lites (the stable or relatively more stable phase) are produced by’the action
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ist%cs of the crystallization of the zeolites NaA and Na-mordenite. The ex-

Shaped.cu¥Ve, The initial stage is characterized by vanishingly small yields,
and this 1s the induction period. The solution concentration and linear growth
rate remain Practically constant throughout the transformation [21, 22], while
the size distribution has a peak indicating nonuniformity in the nucleation
rate as the Process proceeds [21, 22, 25-271.

The Kolmogorov-Avrami [6-9, 27] formula or alternatively certain empiric-
al formulas [27, 24, 26] may be used to describe the zeolite recrystallization.
However, these are unable to describe all the experimental data, and they do
not correspond to the kinetic curves for a zeolite yield over the entire time
range. Also, this formal Processing does not enable us to establish the roles
of the competing stages in the over-all effect. A detailed study may be based
on calculating various forms of the model by computer.

The following values were used for the dimensionless constants our of the
real relations for zeolite-forming systems:

C;/Co = 10, C;'/Co = 100.

Also, the crystals 8row in the kinetic range only at low supersaturations [18,
19].  Growth in the diffusion range is most probable for zeolites, as is evi-
dent from data on the constancy of the linear growth rate [22, 27]. Therefore,
the crystal growth and the dissolution were described by a first-order equa-
tion (#; =1 in (5)). Figures 2-5 show the results on zeolite synthesis and
characterize the behavior of the quantities that can be measured: the degree
of conversion sz (graphs a), the concentration in the solution (graphs b), the
size of the maximal crystals (graphs c), and the size distributions (graphs d).
The time required to attain cg is usually negligible by comparison with the
over-all conversion time and is not shown. 1In the first stage in the calcula-
tions, the possibility of nucleus multiplication was ignored (e =0).
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We do not know the exact value of My in (4), so calculations were per-
formed for various values of this: 2, 4, 6, and 8 (Fig. 2). In general,
there was no specific response of the kinetic curves to variation in My, which
shows that it is necessary to examine the crystallization for various values
of My. Let us therefore consider the effects of the rates of the individual
stages for an average value My =4, on the basis that the conversion time is
shortened at higher values of My, as is the period of constant concentration,
while the maximum crystal size is reduced and the size distribution becomes

narrower (Fig. 2).

Figure 3 shows that a relative increase in the dissolution rate constant
can provide the concentration constancy observed for zeolites [21, 22], which
corresponds to the equilibrium solubility of the initial metastable phase, vir- -
tually throughout the conversion time. There is a certain critical value of the
dissolution rate above which there isno marked effect on the process (Fig. 3).
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Fig. 4. Theoretical kinetic curves for recrystallization with various linear growth
rates E'; parameters My =4, F’=103, G'=5, H'=0 fixed: 1) E'=0.1, 2) E'=10-2
3) E'=1073, 4) E'=105, ’
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The over-all rate may be limited by the stages of crystal growth (Fig. 4)
and nucleation (Fig. 5), where the growth has the more appreciable effect. In-
crease in growth rate and nucleation rate will accelerate the process, but with
different effects on the size distribution. For example, the acceleration pro-
dgced by mixing is accompanied by a reduction in crystal size [25], which in-
dicates that the mixing affects primarily the nucleation rate.

All the yield curves in Figs. 2-5 are characterized by an initial part in
which the mass of newly formed phase is vanishingly small. This part, which
is observed experimentally, is the induction period.

The maximum crystal size in the range of constant concentration is line-
arly dependent on time. This is also in agreement with experiment. However,
the size distributions have a flat part around the peak, whose width is de-
pendent on the duration of the constant supersaturation in the solution.

There is no sharp peak, although this occurs for real size distributions
in the product [21, 22, 25-27], which means that the nucleation rate in a real
system follows a law more complicated than that described by (3). We there-
fore checked the effects of nucleus multiplication from (4) on the kinetic
characteristics (Fig. 6). 1In that case, the calculated curves correspond to

experiment also as regards the crystal sizes.

Therefore, the model describes all the features of zeolite crystalliza-
tion known from the experiment. It confirms Zhdanov's [22] view that the
process consists of three stages: dissolution of the amorphous phase,‘nuclea-
tion in the bulk of the solution, and crystal growth. An important point is
that the dissolution rate must exceed a certain critical value, which provides
the constant composition of the solution actually observed and a constancy of
the linear growth rate occurring with 41ffu§lon control. Although the disso-
lution and the growth are limited by diffusion, the klnet}c parameters may
differ, since in a complicated real system the transport in thege two stages
may involve compounds differing in structure (31}1catg an@ algmlngte'lons, and
aluminosilicate ones). On the other hand, the size @1st;1butlop indicates es-
sential nucleus multiplication in a real process, which is particularly pro-

nounced on stirring [24, 25].

The major role of multiplication or secondary nucleation enables us to
explain the effects of seeds in zeolite synthesis. It seems that the effect
ofpa seed arises from its providing a surface for the crystalline phase to
grow on and from its participation in secondary nucleation.
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The best of the empirical formulas for the zeolite yield is the Kolmogo-
rov-Avrami formula [11]:
z2=1—exp(—kt")

with n > 4 [27]. The suitability of this expression can be checked for the
curves derived from this model. It is sufficient to construct a graph for the
yield of the new phase in 1n In(l—2z)-1, 1n t'’ coordinates. The slope of the
line corresponds to the value of n in the Kolmogorov-Avrami equation. Figure
7 shows the corresponding curves for cases with and without multiplication.
The process evidently has two parts with different values of n. The factor

n >4 is a consequence of the nonuniformity in nucleation rate. Figure 7
shows that n increases towards the end of the process (the saturation falls
more sharply and the nucleation rate varies more rapidly).

CONCLUSIONS

The model has a bearing on a very broad class of natural processes that
include recrystallization through solution, as well as mass recrystallization
in chemical engineering. It has proved possible to consider the interaction
between the competing stages of dissolution, nucleation, and growth that make
up the over-all process in the self-consistent model, which enables us to
evaluate the effects of the kinetic parameters for the individual stages on
the over-all recrystallization rate. The numerical approach enables us to
formulate the assumptions clearly and to distinguish a set of dimensionless
similarity criteria that define the process character.

The computer experiment has enabled us to examine various states in the
recrystallization and to identify the role of each of the parameters. The
data on the yield of the new phase and the size distribution in the crystals
enable us to judge the relation between the rates of the individual stages
i.e., data obtained in actual physical experiments. ’

The model has been applied to the crystallization kinetics of zeolites,
which represent an important technological process, and it has revealed a
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Fig. 7. Applicability of the
Kolmogorov-Avrami interpolation
formula in describing yield
curves My=4, F'=10°, G' =5y
E'=10-3; 1) #'=0 (no multi-
plication), 2) H'=0.5.

combination of parameters that reproduce the features of the reaction known
from experiment: an induction period, a constancy in solution composition,
constancy in crystal linear growth rate, and nonuniformity in the nucleation

rate associated with multiplication.

This model appears to be the first of its kind, which justifies the sim-
plifications in describing the individual stages. The latter however does not
prevent us from obtaining good agreement with experiment. Improvements in the
model may be related to the incorporation of more complicated laws for the dis-
solution, nucleation, and growth, including dissolution and growth controlled
by chemical reactions as well as heterogeneous nucleation at the surfaces of
the solid phases, as well as the involvement of nonisothermal processes.

We are indebted to N. I. Khitarov and V. P. Myasnikov for a critical dis-
cussion. d
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