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The Yang-Li quasichemical model is extended to examine
the details of order-disorder transitions in nonstoichiome-
tric inorganic compounds containing crystallochemically non-
equivalent positions. A crystal is represented as a set of
atomic groups (quasimolecules or basic clusters), whose in-
teractions are neglected in the free-energy calculation.
Statistical calculations of the free energy and entropy in-
volve solving a transcendental-equation system. The parame-
ters are the number of positions in a cluster and two quanti-
ties with the dimensions of energy, which characterize the
short-range and long-range interactions; the latter distin-
guishes this model from the analogous one for alloys, where
the short-range interaction is decisive and there is no posi-
tional preference, The self-consistency condition is formu-
lated as a criterion for cluster selection, with the aid of
which numerous mineral and alloy structural types containing
two types of cations that are disordered over two types of
position have been classified.

Redistribution of atoms by structural positions is characteristic of most
rock-forming minerals and is basic to geological thermobarometry [l, 2]. The
positioning is completely ordered at low temperatures, with each type of atom
occupying its own type of position and forming a sublattice. Disordering occurs
as the temperature rises, with mixing of the atoms in a given sublattice; this
continues until the proportions become comparable in each sublattice, which cor-
responds to complete disorder.

There are two types of order-disorder transition. The first occurs when
the atoms occupy crystallochemically equivalent positions in a state of disorder,
and then ordering splits a single regular point system into two (superlattice
formation and crystal symmetry reduction). Examples are provided by disordering
in binary alloys [3, 4], which at low temperatures represent superlattices in
relation to the metal structures. There are also minerals [2] such as dolomite
(Ca, Mg)CO3, columbite-ixiolite (Nb, Fe)02, and the feldspars for which the ca-

tion positions become indistinguishable in a state of complete disorder. The
second category includes disordering involving only some of the atoms, which

shift between positions that remain distinguishable even with complete disorder;
in that case, disordering can occur without symmetry change within a single phase.
This is the type found in most minerals and their synthetic analogs: pyroxenes,
amphiboles, melilites, olivines, spinels, etec. [1, 2].

In ordering of the first type, the main driving force is the tendency for
an atom to surround itself with a maximum number of neighbors of another type.
The main role here is played by nearest-neighbor interactions, which reduce to
paired ones. On the other hand, in the second type, the cations differ in posi-
tional energy preference; this is due to the long-range forces (mean field).

*Translated from Geokhimiya, No. 11, pp. 1511-1526, 1987.
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As the cations interact over long distances via anion screens, the shortrrange'_
cation interaction is usually of secondary importance. In addition to sgmlemplrﬁ
cal rules such as Lowenstein's principle [5], local electrical neutrality (bgn
valence-strength balance) [6], the need to incorporate how the bond lengths in
the polyhedra are dependent on the mode of joining (Pauling's rule) [7], and the
metal-metal interaction for transition elements in chalcogenide cluster struc-
tures [2] (such as millerite NiS or nickeline NiAs) indicate that the short-
range interaction energy is often important.

Mineral disordering is usually discussed in terms of ideal or regular mix-
ing models [1, 6, 8]. In that approximation, the cation position preference en-
ergies are incorporated, while the cations themselves are essentially considered
as noninteracting. The cation distribution in each sublattice is taken as ran-
dom, which can be interpreted as ignoring the short-range order. There are spe-
cial methods for calculating the thermodynamic functions that incorporate the
short-range order in radical form, i.e., in terms of exclusion principles [6, 9,
10], but these have limited application.

In an ordered alloy, where the position preference can be neglected, while
the long-range order is entirely due to nearest-neighbor interaction, more rigor-
ous statistical approaches are used to incorporate the long-range and short-range
order. Kikuchi's cluster-variation method [11, 12] is the best, which is in
essence an extension of the quasichemical method originally proposed by Bethe and
Guggenheim [13, 14] and substantially extended by Yang and Li [15-17].

The zeroth approximation in the Kikuchi scheme amounts to the Bragg-Williams
regular mixing model [3, 4], while the first corresponds to the classical quasi-
chemical one.

Here we consider an extended quasichemical model for disordering in minerals
having crystallochemically nonequivalent positions. The quasichemical model was
first used for disorder in minerals (albite) by Senderov [18, 19], who introduced
two energy parameters characterizing the cation-cation interaction (nearest-neigh-
bor interaction energy 52) and the cation-crystal interaction (preference energy

el). One of the major results in [18] was the demonstration that the order-dis-
order transition in albite is sudden only for a certain €, # 0, i.e., has the ob-

served features; the ideal-mixing model having ¢ 0, with short-range order

2 =
ignored, does not predict the transition type even qualitatively.

Here Senderov's model is extended to two-position disordering in a general
structure; as in [18], the Yang-Li method is used [15-17]. Although the conver-
gence in this method considered as a successive-approximation one is somewhat
worse than in Kikuchi's general one, the method is much simpler, because there
are fewer variables to be determined.

The energy can be calculated more exactly in Kikuchi's method because there
is substantial basic-cluster overlap. This refinement was necessary for alloys,
but it is less significant for minerals, where the main energy is related to po-
sition differences, while nearest-neighbor cation interactions are subordinate.

REGULAR-MIXING MODEL: AVERAGE-FIELD APPROXIMATION

Let us consider a mineral lattice containing N atomic positions, over which
the cations or anions are disordered; there are crystallochemically nonequivalent
positions of two types o and B in amounts correspondingly of eV and (1 - &)w.
These positions are taken by 4 and B cations, which can replace one another, and
where the number of B cations is x¥ and that of A ones is (1 - z)W.

The position differences are characterized by the filling energies when the
configuration energy is written for the given atomic distribution in the form
E=E,+E, where

E,= N + Nl + N5es + Nief, (1

Ey=Naseaa+ Napeas + Nppeps. (2)



Here N;’. is the number of atoms of type 4 in position ¢, & is the energy relateq
to cation j filling position 7 (j = 4 or B and ¢ = a or 8), and Nyx and exx are
the numbers of corresponding nearest-neighbor pairs and their e1:1ergies (K = 4 or
B). The E’1 term is due to the disordering-cation pair interactions.

Statistical thermodynamics [20] gives the configurational free energy as

= EA0L
F(x,T):—kT]n(Ze "'T)=—lenZ(x,T), (3)

{0} /

where 7T is temperature, k Boltzmann's constant, and Z the statistical sum. The
summation in (3) is taken over all microstates denoted by {o}, i.e., over all fill-
ings for the positions by 4 and B, while E{c} is the microstate energy.

The summation in (3) may be carried through in two stages. We introduce the

%ﬁng-range order parameter w#*, which is the proportion of B atoms in o positions.
en

lw | {0}y

Zx, T)=D) [ D exp(—E {o}w/kT)] ;

where the summation within the brackets is taken over all microstates having the
given value for w. We denote the expression in brackets as Z(w, x, T) to get

F(w,x,T)

Z(x, T)=2e * (4)

where I(w, x, T)=—kTInZ. Usually, as N is large (N~ 10*) the summation in (4)
is replaced by defining the maximal term [20], i.e., by calculating the equili-

brium value % (x, T) from the condition
OF (w, x, T)/0w =0, (5)

where we put F(x,T)=F(w(x, F),x,T).

Regular-solution theory gives a simple approximation for F(w, x, T) [20],
where it is assumed that all the terms in

D) exp(— E {0}ulkT)

{0}y

are identical, since all states with the given w are equally probable and the
distribution over the positions may be taken as random. Then

_ ER(w,x,T)J

Fr@W, x, T)=—kT In [gm (w, x,T)e *T (6)

where

*Parameter w can vary over the following ranges:

ordering

I<w<e, forI<a< —e,
region {

x— (1l —¢)
— << for | >e>1—c¢.
anti-ordering (¢<ws<c/x, for c<x <],
region ceSws !, forc>x>0.
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(7)
NN NBNB)
is the total number of permutations over the sublattices for a given w,
NE=wxN, Ny =(1 —w)xN, N%=cN —wxN, 5
(

Ni=(1—c)N—(1 —w)xN.

From (7) and (8), the expression for the entropy S'“=klIng. can be transformed
by means of Stirling's formula to

S, x, TY=kN {cInc+ (1 —¢) In(l — ¢) — xw In Xw —
—(l—wxIn(l —w)x — (c—wx)In(c —wx) —

(9)
—[l—c— (1 —w)x]In[l —c— (I —w)x]}.

To calculate Ex(w, x, T) we have to use (1) and (2); we combine

(1), (2) and (8)
to get

Eor @, x, T)=wxN (5 — el —e% L eh) 44N (Eg_ Eg) £
+ N (5 — €§) 4 Vel

(10)
~ ‘\]
Eir(w, x, T)= > {lc (2a— 25) + 2l €44 + % [w (2 — 2a) —
1
— 2} (eas—eso)} + [ eas— 3 (ean+e85)| N,
where we have used the identities
2Nps + Nap=2,N% + 26N, 2Naa+ Nap=2,N% + zN%; (11)
with 2, and 23 the coordination numbers of the corresponding positions¥*.

Let us assume that out of the 2, nearest neighbors of an o position, Zu
correspond to o positions and 2z, to B ones. We introduce 2y and 2. similarly
and assume that there are no correlations to get [21]

N§B=N(c— wx) [zmt%—i— 2ap (—ll;wZ—x] +
) . 12
F+N[l—c—(1—w)x] [Zﬁa%{‘l—zﬁﬁ(%_mz—x:l_ (12)

We combine (10)-(12) to get an expression quadratic in w for Er, which is charac-

teristic of regular-mixing models [3, 4, 10]. The coefficient to w?

is
XN 1
— (g — 2 Cc(2a—2p)) | €ap— — (& €
oy e o o= 2] [ ean—  (eaa +-ea0) |
and is naturally called the nonideality parameter. This parameter arises because
of nearest-neighbor interactions; for

€4 — ';—(EAA +epg) =0

the mixing may be considered as ideal.

*We have in mind the nearest neighbors, namely cations participating in the disordering.
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Equilibrium equation (5) takes the following form in the regular-mixing
approximation:

PTInL=®C=w) _p 4 wE,
w[l —c— (1 —w)x]
where
Zag — 2
E1=81+£3——Za62—x€2—%_—ca—a‘y
EQ=—82x——[26a‘—zaa+C(za_zﬁ)]-
c(l—o)

The physical meanings of the energy parameters

a f a B
g =¢eg+ &3 —E€sr—¢&p,

&, =844 + €pp — 2€45,
€3 = 24888 + 2p€an — (2a + 2p) €aB

will be defined below, and we merely note that there will be a transition from
disorder to order or antiorder (see footnote 1) correspondingly for(gg>0) as the
temperature is reduced:

By B> X - ﬁ
& T €2<Za+—l—c [(I Q)2+ (1 +0)z5+ 2 : ]

GENERALIZED QUASICHEMICAL MIXING MODEL

The average-field approximation results can be improved on by applying an-

alogous arguments not to a single atom but to a group. To calculate Z(w, x, T)
more exactly, we split up the crystal into M identical groups (clusters), each
of which contains m positions: there are sm o positions and (1—s)m B ones.

Clearly, there are 2™ different fillings with 4 and B atoms. Each such filling
can be characterized by a set of zeros and ones: (qi, ..., ¢n) where ¢;=0 if an

A atom occurs in position 7 and ¢;=1 if a B atom does. Any array is character-
ized by the set of numbers &, a=1, ..., 2", where &M is the number of groups of a
given type characterized by the subscript a, where the numbers g8 (i=1, ..., m)
specify the group types completely. Then the statistical sum can be put as

E(%gly
Zw,x, T)= D, & # & ({&)w, w, x, T), (13)

where the summation is over all sets {f.},, compatible with the specified w.

This means that the &, should satisfy the constraints

am oM 4
2§a=1,2¢ﬁ§a= i (14)
a==]1 a=1

Here by, ..., b.n are the group proportions in which the o positions with numbers

i=1,...,sm are occupied by B atoms (these are equal to the proportions of « .
positions in the crystal occupied by B atoms), and similarly we have bomsrs oo

for the g positions having i=sm+],..., m. Then

by= ... = bgn =wx/C, by = ... =bn =(l ——\.C)),\/(l — ).



The main assumption that allows us to arrive at (13) is that the energy is
the same for all microstates belonging to the class {i.}).. The numbers g. act as
internal degrees of freedom, which take the values Euuu,x,f) at equilibrium.

The function g({&}., w, x, T) characterizes the degeneracy in state class {o}«
being equal to the number of microstates having the given macroparameter set &

The I. are defined from the minimum free-energy condition (summation in (13)
is replaced by defining the largest term):

ﬁ ({ga}uh w, xr T) "—:E {‘Ea}w_' kT ln g({ga}w) (15)

subject to (14); Lagrange multipliers give us an equation family for the func-
tions &, (w, x, T):

0:\/0E; =0, 0A/Op; =0, dA/On =0, (16)
where
Aot m) =F — Ss (Stal — ) —n (Saa—1)
i a a
is the Lagrange function, with w; (i=1,...,m); and n the Lagrange multipliers,

whose number is equal to the number of constraints in (14). We can now deter-
mine the equilibrium § if the functions 2 ({&}«), and E({&}.) are known.

The classical quasichemical method [13, 14] is based on the assumption
that g({E}») is proportional to the total number of permutations for the M
groups. Following the Yang-Li method [15-17], we put

M

o) =g @, x, T)| ———| .
g ({Ea}e) =& (@, ¥ )H(EaM)! T

If the groups do not intersect, the coefficients g,(w, v, T) and » are one, where-

as if there are positions common to several groups, the number of positions in
the group set exceeds the number in the structure. As we consider only cation
pair interactions, we take A as equal to the ratio of the number of pairs in the
crystal to the number of pairs in the group set. The factor g,(w, x, I) occurs

because we certainly increase the number of microstates corresponding to the
given {%}, set when we enumerate all group permutations: in fact, out of the

total group permutations, the only real ones are those in which the cations com-
mon to several groups are identical in all of these (Fig. 1). Then go(w, x, T) is

a normalization, and the value is given by the condition

Ml A
&o (w) X, T) 2 [ =fw (w, X, T)
tatw | [] & m)1 (18)

a

By e, we denote the energy of a type a group. The group set energy can

be put as
E ({Ea}e) = M D) Eata.

We combine (15) and (17) and use Stirling's formula to get the free energy
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F (L), ©, x, T) = — kT Ing, -+ MM [zTgH+ kTZQalﬂga] . 1oy

As

e, (f"— + T In §a>
a A
is the energy per molecule in an ideal gas mixture consisting of 2" kinds of

molecules having concentrations &,. O &= and the energies /b and a=1, ... on

~ a I3 3 3 . .
then the equilibrium §, are determined from the equilibrium composition subject
to (14), which can be reformulated in terms of the corresponding reactions, 1f

we take ¢ to be the number of type ¢ particles, conditions (14) correspond tq
particle conservation for each type in the mixture*.

We substitute (10) into (16), and with (14) (the result of minimizing
with respect to n and ul) we get

- 1 LT e,
kT In &:(m——kT) + 3 =
t=1

We redefine the Lagrange multipliers and retain the old symbols to get finally

a e

- LA S
Ea=n ﬂ pi'e M7 (20)
=1
Let us now calculate go(w, x, T). We replace the sum in (18) by the maximum

term and determine the functions E;(w,x,T), and the condition for a turning point
in

[ on]

is used with (1l4). This task clearly amounts to the one solved previously sub-
ject to the condition that the energies e, are equated to zero in (20). Then the
result can be written at once:

Ea=n"[]w s (21)
=1
where the Lagrange multiplers 7', and W are defined by
.q? tqa-
0 2" =1, 0 3w - o =0;. (22)
a i a i

As in the case ¢,#0, there is a unique solution, and this time it can be writte®
out explicitly. We introduce

Qs oo ns) =D [T wigt
a i

*This analogy between groups and molecules in a gas mixture is responsible for the ter®
quasichemical approximation.

10



Fig. 1. Representation of a crystal as a group set.
One possible decomposition of a hexagonal planar lat-
tice is given (m = 4, ¢ = 1/3, s = 1/4). Each a po-
sition belongs to six groups (ka = 6), and each B

position to three (kB = 3). The number of pairs in

the group set is related to the number of pairs in
the crystal as 4:3 (A=3/4, M=N, za=23=6, p=4) .

Then (22) is rewritten as

n'e=1, 1" (dp/0n;) n; = b:.

We note that
o=T1(1+p,
i
so finally

py = bil(1 — b), v =TT (1 —b).

We then have everything necessary for calculating Z(w, x, T), F(w, x, T) and
S(w, x, T). We substitute (18) and (17) into (13) and restrict ourselves to the

maximum term on summation. Then

~ A P
- (E,M)! e
Zw,x,T:— ww,x,T b ex ‘—'\/I —al} ==
(@, %, T) =g ( )[H o ] p( ;kr)
S Eaea
=exp(——k———M2 kT).

The crystal entropy S can be represented from Stirling's formula as

S@, x, T)=3"+ 3%,
where S is given by (9) and

11
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3% (w, x, T) = — MM D) (Ea InEs — Ea InEa). (23)

We combine (9), (21) and (23) to get

S (o __Tid [y 4 sMm zid (1 __a(L=9Mm\ bt NE 0
S x T)=5 (1 1) + 55 (1 x_——(l_c)N) STk (i)

Here Sk and Séd=§id——~¢'zd are the ideal mixing entropies for the 4 and B cationg

in the o and B sublattices, which are correspondingly

S¥(w, x, T) =kN [clnc— wx Inwx — (c — wx) In(c — wx)],

5w, x, T)= kN {(1 — &) In(1 — ) — (1 —@) xIn (I —@)x— (253
—U—c—(1—w)x}In[l —c—(1—w)x]}.

When the ratio of the numbers of o« and B positions in the group set is as in the
crystal, i.e., when s = ¢, (24) simplifies to

SwxT)=1—TF— MM & Ink. (26)
a

It follows from (26) that for

T iR
eN '

close to one, the crystal entropy approximates to that of an ideal gas mixture

consisting of molecules characterized by the indices a=l, ..., 2™ (the Bethe-Gug-
genheim hypothesis). In the other limiting case (A—>0), we get the entropy of an
fdeal distribution over the positioms, i.e., the usual ideal or regular mixing

approximation.

From (20) we get the final expression for the free energy:

f(w, x, T)=—kT lngo—}-?»kMT[lnn-l-Zb} lnpi] . (27)
Here
g, ={1—R) 84 (1 =T 3, T = L= lm
(1—c¢c)N

In the particular case ¢ = s, (27) with kln go=(1—X)S“‘ was derived in [16],
where a method different from but equivalent to ours was used.

To determine the equilibrium value of @w(x, T) it is necessary to equate the
derivative of (27) with respect to w to zero; by virtue of (14),

we get

(2)%
[ (1 —w)x JrL (28)
1—0—-(1—w)x] '

sm m
1/c [ 1/a=0) | __[c—uwx
A

I=sm+1

12



We combine (28) with (14),

a
>l exp (__fg)‘,‘[p‘{"q;! %, =1, iuus5i
a kT ) ¢ _ (29)
e s |(1—w)x —— I m

Sen [T |42 it
to get a system composed of m+1 nonlinear equations containing the m-1 unknowns
i (i=1, ..., m)and w, which is involved in determining w(x, 7) in this approxima-
tion.

GROUP ENERGY CALCULATION AND DECOMPOSITION CRITERION

By analogy with (1) and (2), the energy e of a group, a=]I, ..., 2" can be
represented as the sum of two components: eOaC’l the energy due to the cations

taking the position in the lattice and e, , the energy of the nearest-neighbor

la
cation pair interactions:
eoa = m%e% + OmGed + Ombiel + @mbet, (30)
€1a = (a)mAAGAA + (a)mABEAB = (a)mBBSBB- (31)

Here “m; is the number of j cations in % positions in group a, “'m; being
the number of corresponding pairs in group a (j, k=A, B; i=a, p, a=1, ..., 2").

There are relations between “'m; :

Dmi + Dm=sm, “mh + Omh=(1—s)m;

and
sm 5 m
(@ o a (a) _ a
mp=3\qi, "mp= 3\ ;.
(=1 {=sm+1

We substitute these into (30) to get

m sm
a a
€oa = €qp + €19 ) i + &1 D) i,
i=1

=1

where e,=¢z*+e."—es*—e is the energy of the exchange reaction

Aa"‘}"BBZBO’._I_Aﬂ)

gm=ag—ef;, eo=m[se°§+(l—s)eﬁ]. (32)

Let us now calculate the group-set energy Eqe As each ¢ position belongs
simultaneously to ki groups, we have ‘

750=-V12€a[(2 —,})e%+( S %f)sﬁmt

=y {=sm+1 ¢

() (2]

i=1 !

We note that

13
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Mi(l/ki)=cN, M S (k) =(1—=0N,

=1 [==Sm+1

which gives E,=FE;(w, x, T) (see (10)). Then £, is independent of §, so ye .

extract the factor exp[—FE,(w, v, T)/kT] for the summation in (13) and take the
energy

E ({Ea)w)=M D) Eata

in (15) as entirely due to the pair cation interactions (c.=e,).

We now calculate E,. As

m
a
@ nigg + “mas = 2 qizi,
=1

where 2 is the number of nearest cation neighbors of position < in a group
(the coordination number), we have

m
era = Omane, + ) ¢f 2 (es — eas) + p (2845 — e55).
=1

Here p is the total number of pairs in a group and €,=€su+€m—2e4p is the ener-
gy of the reaction between pairs |

AA+ BB=2AB. (33)

A superlattice tends to arise if €,>0. Transferring to the group set®, we have
E, =M D Lo = AM(E; + E)),
a
Ei= (S8 ) e
a
Ei= (Zbizi) (e85 — €48) + p (2648 — €88).
i

As E,” is independent of 'g,, we can extract exp(—E,”AM/kT) as a factor from the
sum in (13). The groups' energy can thus be taken as E,, which is dependent
only on ¢,, and one can put e.=A"mu.e. in (29).

The formula for the crystal free energy F can now be put as
F(w, x, T)=N{cch + (1—c) e’ + x(eg —eﬁ) +

H%[,,(QBAB_BBBH S z__—__]+

(=sm+1
sm

m
i 2 2; Z 2
+ wx| &, + A (ess — £ap \ e — =2 -
N c l—c¢

(34)

4
+
-

—Fi—HE —T(—T 8w pemr (1nn+2’ bilnp:) .

i=1

nul”
*We have incorporated the fact that the number of pairs in the group set exceeds the

ber of pairs in the crystal by a factor 1/A.

14



The expression in braces contains a term independent of w that defines the en-

ergy-reference level and does not influence #(x. 7). The term proportional to
is important. It may be dependent on the unsymmetrical combination of the en-
ergy constants em—€.s. To elucidate what energy-constant combinations may af-

fect the equilibrium order, we note that any microstate (atomic configuration)
can be de¥1ved from some specified cation-position redistribution. Let us there-
fore consider the simplest permutation of this type (see (32)) and calculate the
corresponding energy change.

We assume that the 2 nearest neighbors of a given cation o position include
z A cations and(2,—x,) B cations, while the immediate environment of a B position

includes g A cations and z—JX; B ones. Then the energy of (32) is

AE =¢, + e, + &, (X — Xq — 2p), (33)

where €:=2.€ss+23€aa— (2.+23)€.4p; with z,=23=2z,the energy €, amounts to z¢&.,. Then

(35) shows that F(w, x, T) may be dependent on the energy parameters &;, &u (=2,
or B; j, k=A, or B) apart from an additive constant only via combinations* of the

form €] + €4 and Eye

This conflicts with (34), because we have calculated the energy while ne-
glecting many of the bonds in the crystal, so the calculation in principle can

produce a substantial dependence of F on the nonphysical combinations of the
basic energy constants. The detailed form of the corresponding relationship,
which leads to model inadequacy, is related to basic-cluster choice.

~We thus have to devise a criterion for splitting up the crystal into groups,
which restricts the choice to groups whose incorporation does not lead to the
expression for F containing major energy parameters differing from €,+e&; and €y

That criterion is readily formulated from (34). We rewrite the factor to wz in
(34) as

sm m
M 2 Z[ Z Zi € ZhE
[ — [= 3 2
£, + A. M| i=1 __ i=smit1 B
N c [ —¢ Z,— 2

This expression can be written in terms of e,+e& and e, if**

sm m

Zz. Z 2z,

R e e (36)
c l1—c¢ ‘zﬁ—i—c(zm—-zﬁ)y

where we have used A= (N/M)[c(2.—23)/2p+2/2p]. When (36) is obeyed, (34) simpli-
fies substantially. Then (28) with (36) may be rewritten as

s
1/c TN B
n g (81+£J)—Zﬁ82 N i L7_ﬂ' | B IT': /[‘VW
=1 e KT 7.M=(c_wx) ( (l —w)x ) ) (37)

wx l—c— (1 —w)x

n

r[ ”}/(l-c)

f=sm+l

*For example, the expression wx(zy—z«)(Eaa—ess) in (l1) can be put in the form wx[2e;—e;
(za+2p)].

*%Criterion (36) has remained overlooked in previous papers, which is explicable, for (36)
is obeyed for any decomposition into groups in AB alloy having a primitive or body-centered lat-
tice (and in the usual model planar grids) as considered by Bethe [13], Guggenheim [14], Yang
[15], and Li [17], as well as for the tetrahedral groups in AB3 alloy examined by Yang and Li
[16] and Senderov's group choice in the albite model [18]. On the other hand, most nontrivial
structures for minerals and alloys show (36) imposing very stringent constraints on the basal-

cluster choice (Table 1).
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If there is no short-range order, when e.,=0, (37) takes the form of the classi=
cal equilibrium equation for a crystal showing ideal mixing:

exp £+ & — (c —wx) (I —w)
kT w[l—c— (1 —aw)x] °
CONCLUSIONS

An extension of the Yang-Li quasichemical model is provided for examining
order-disorder transitions in many inorganic compounds containing crystallqchem-
ically nonequivalent positions. Disordering in such a structure is specific be-
cause of competition between the cations on the one hand tending to take up pre-
ferred positions and on the other their tendency to surround themselves by atoms
of another type in the first coordination sphere. Consequently, an adequate
model requires us to incorporate not only the preference energies due to long-
range forces but also the short-range energies, which provide the short-range
cation order.

The model is a cluster one, for which it is characteristic that the energy
is calculated precisely within a certain group (cluster), while the groups them-
selves are taken as noninteracting. The method enables us to construct an ap-
proximation sequence, the result being closer to the exact one, the larger the
cluster is,

An equation system has been derived whose solution enables us to recover
the explicit thermodynamic functions such as the internal energy, free energy,
and entropy. The parameters are the cluster size and the energies characteriz-
ing the short-range and long-range forces. An important stage in the procedure
is choosing the basal cluster. A self-consistent criterion has been given, which
when applied to simple structures enables us to choose the group arbitrarily, but
which in the general case restricts the freedom of choice considerably.

This method will be used in a series of forthcoming papers dealing with dis-
order in particular rock-forming minerals (melilites, spinels, etc.).
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