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Various geodynamic processes are accompanied by
states of stress in the solid phases that do not amount
to hydrostatic compression. Calculations of chemical and
phase equilibria in such a system must make allowance for
this. Here the theory of finite strains is used in con-
sidering the chemical and phase equilibria in an open sys-
tem with nonhydrostatically stressed solid phases, in
which the fluid pressure is controlled by an external
reservoir. The following are the independent equilibrium
factors for the simple state of strain: liquid pressure,
temperature, and differential pressure on the solid phase.
Analogs of the Clausius-Clapeyron equation are derived
that differ from those used in the theory of systems with
unequal pressures on the phases.

It is usual to take the state of stress as hydrostatic in considering
chemical and phase equilibria, i.e., the state of stress is described by a
single intensive characteristic, the pressure P. On the other hand, extensive
studies have been made on systems with unequal pressures on the phases in chem-
ical thermodynamics, e.g., osmotic systems and systems containing inert gases.
The corresponding thermodynamic theories give good agreement with experiment

(1, 2].

In applications, however, we encounter situations where the solid phases
involved in a reaction are in a complex state of strain, which is not described
by a single pressure. The chemical equilibria in an open system between non-
hydrostatically stressed solid phases on the one hand and a gas or liquid on
the other may involve, for example, reactions in which a volatile is released
or absorbed. In that case, we cannot apply directly the standard concept of
chemical potential (specific Gibbs energy) for a hydrostatically stressed single-
component solid phase as used in calculations on chemical equilibria, because
we cannot identify an intensive characteristic that acts as the pressure and
that is the equilibrium factor. It is clear that solid phases in complex
states of strain that are in contact with a liquid over a certain surface dif-
fer in reactivity from solid phases hydrostatically compressed by the same
liquid. The deformation absorbs energy, which is partly released as heat, but
which mainly remains in the body as internal energy and influences the chemi-
cal activity. The chemical potential, which characterizes the energy incre-
ment on mass transfer, is now dependent on the state of stress and in general
also on the orientation of the surface through which material is transferred.
Associated processes are those of orientation recrystallization and creep
caused by dissolution of stressed grain boundaries and so on. Numerous

*Trans. from Geokhimiya, No. 12, pp. 1798-1812, 1982.
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examples show that the equilibrium in that case is of local character* and is
substantially dependent on the state of stress in the solid phase at a given
point on the interface.

Gibbs [2] developed the thermodynamics of nonhydrostatically stressed solid
phases in equilibrium with the fluid; Gibbs assigned different values of the
chemical potential to faces under different pressures and thus recognized the
tensor nature of chemical potential and the local character of the equilibrium
conditions. Kemb [4], McLellan [5], Ida [6], Green [7], Paterson [8], and
Kumazawa [9] have made considerable contributions to geochemical applications
of the theory of nonhydrostatic equilibria. Ostapenko [3] has surveyed current
concepts and has examined many special aspects, and he has reviewed the argu-
ments on local and absolute chemical potentials. Note that Gibbs used the non-
linear theory of elasticity, in contrast to most of those who came after him.
There are relatively few experimental studies on the theory of nonhydrostatic
equilibria; we may note the important one [10], which served to elucidate the
role of the local chemical potential.

Here we will consider chemical equilibria in an open system involving non-
hydrostatically stressed solid phases, where the fluid pressure is controlled
by an external buffer. In describing such a system it is usually assumed that
the solid phases are under a hydrostatic pressure differing from the pressure
of the liquid or gas (theory of systems with unequal pressures on the phases)
(1, 3, 11, 12). It is found that for. uniaxial deformation of the solids, the
equilibrium in such a system can be described in terms of two pressures and a
temperature. However, the chemical-equilibrium conditions, and in particular
the analog of the Clausius-Clapeyron equation, differ from those used in the
theory of systems with unequal pressures on the phases. An important point is
that the chemical equilibria are examined within the framework of the nonlinear
theory of elasticity. This theory is necessary when the system is at a high
pressure and the strains cannot be considered as infinitely small.

For convenience, we will give the basic logic scheme of the nonlinear
theory of elasticity. The Gibbs approach will be used to consider general as-
pects of phase equilibrium involving nonhydrostatically stressed phases. A
complete analysis will be performed for the mechanical and chemical equilibria
for simple uniaxial deformation, and phenomenological equations of state will
be given for isotropic media, which can be used in calculations of particular
equilibria. Geochemical applications will also be discussed.

The general theory will be illustrated by an example that forms an inde-
pendent section and which is logically closed.

INFORMATION FROM THE THEORY OF ELASTICITY

The theory of elasticity involves the fundamental assumption that the
strain is reversible. In the classical theory, the strain is taken as infinitely
small (geometrically linear theory) and linear relations (Hooke's law) are used
to relate the stresses to the strains. To describe the large stresses and strains
existing within the Earth we have to use the nonlinear theory, although we must
bear in mind that the assumption that the strains are reversible has only lim-
ited application [3, 13-15]. In fact, a real medium has complicated rheology,
and we may get plastic strains, microscopic failure etc. Nevertheless, we con-
sider a simple elastic model in order to carry out a reasonably complete ana-
lysis**. For any particular substance we can always indicate characteristic

*Here we do not consider the coherent transformations in solid phases, for which this is
evidently not so [3].

**The mechanical properties of an elastic body are defined by means of a deformation-
énergy function, which is dependent only on the state of strain and is not dependent on the
history of the deformation. Then the stresses form a conservative system and are not de-
Pendent on the history of the deformation or on the rate at which the deformation was per-
formed or altered. This rules out a static or dynamic hysteresis, stress relaxation, and

Creep phenomena.
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Fig. 1. Relation between Euler and Lagrange co-
ordinates:

a) material before deformation (reference state),
b) after deformation (actual state); the Lagrange
coordinates of point 4 (£, = 1, £; = 1) do not
change, while the Euler coordinates of point 4

do change.

times and permissible degrees of deviation from the hydrostatic state for which
such a description gives good agreement with experiment [3, 13]. For example,
experiment shows that substances such as serpentine will withstand differential
stresses up to some kilobars at 500-600° C.

Two coordinate systems are used in the theory of elasticity to describe
deformations. The Lagrange coordinates £®, o = 1, 2, 3, are frozen into the
medium and represent marks fixed once and for all for each infinitely small
particle. The second coordinate system z s i =1, 2, 3 (the Euler one) is

rigidly fixed in space. For simplicity we assume that it is cartesian (Fig.

1.

The position of each point in the medium is known if the following func-
tions are given: '

x‘=x|'(§1, Ez! Ea) =xl'(§)!

which express the laws of motion for the points in the medium. The reference
state is in general a deformed one:

Xio=—Xip (E) 3

and therefore the resultant displacement from the reference state to the actual
one takes the form

ui=x;(§) —xw (E).

If volume change is the measure of deformation for a liquid, shape change is
also important for the solid. _The deformation tensor is introduced by compar-
ing infinitely small elements in the actual and reference states [13-15]:

cap = 1 (gap (8) — ga (2).

where fap=JXaXiy is a metrical tensor in the actual configuration, x= Ox/0E%
[

gas=XpaXp 1S a metrical tensor ix} the reference configuration, and x-‘oa=ax.-o/0g“
(as usual, summation is assumed with respect to the repeating subscripts). For
definiteness, we assume that the Euler and Lagrange coordinate nets coincide
in the reference state, i.e.,
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where py is the density in the reference state and p is that in the actual one.

The analog of the hydrostatic pressure is the stress tensor Pij' If Fi

tgeﬁhe force acting on unit area with normal n, in the actual configuration,

F¢=ngn-f.

In the hydrostatic case, the tensor P; is spherical and the value of 7. is not
dependent on the orientation of the area (Pascal's law). &

It is assumed for the simple elastic medium that there is a specific in-
terngl_energy u dependent on the components of the strain tensor €« and the
specific entropy s [2, 13-15]:

U=u/(geqp, S).

Then

du. — du

ou
e,p deap + Eds’ (1)

and the generalization of the thermodynamic equations for pressure and tempera-
ture take the form

T2,
0s
£ig :%px""xjﬁ(af:s T af:a) : (2)
In the case of a liquid
u=u(p,s).

The standard formulas from tensor analysis give [13]

du du du
Pij =—Pxigxjp—pg*® = —p2 28, = 228, — — pb;;,
if ia X/ g pg™ p ap 0 50 POij
where v=1/p, p=—0ufdv; the stress tensor is spherical and we arrive at the

usual definition of the hydrostatic pressure in a liquid.

Thus basic definitions have been given for the state of strain, the strain
tensor, and the stress tensor. No assumptions have been made about the smallness
of the strains. The derivation of the equations in the theory of elasticity
and the formulation of boundary-value problems can be found, for example, in

[13-15].

CHEMICAL-EQUILIBRIUM CONDITIONS
In his classical study (p. 95 of [2]), Gibbs showed that the condition

for phase equilibrium in a nonhydrostatically stressed solid in contact with a
liquid amounts to continuity in the chemical potential of the solid material at
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the inte?face. The solid phase is considered to consist of one component and
the chemical potential at a given point on the surface is described by

wo=F(eas, T)+plps (3)

where f=u—Ts is the specific free energy of the solid phase, p is liquid
pressure, and p, is the density of the solid. Gibbs proposed a universal vari-
ational procedure for the static case for inferring the conditions of thermal,
mgchanical, and chemical equilibrium. 1In the latter case, we are concerned
with equilibrium with respect to the passage of material from one phase to ano-
ther, or in modern terms with variation of the phase boundary W LhL XESPECt gD
the Lagrange coordinates. Note that Gibbs in essence introduced a chemical-
potential tensor [17, 18]:

Pik=————‘_xka=f6ik-—':)-Pik.

so the conditions for phase equilibrium at the interface are put as

Bo= Rl =K1

where p; is the chemical potential of the one-component liquid phase and n; is
the vector for unit normal to the interface. In the example considered by
Gibbs, the equilibrium was that of a cube in contact with three liquids with
pressures p;, P», and ps, and because the stress tensor is diagonal

pp 0 0
Pij=|0 p O
0 0 p

the chemical-potential one was also diagonal, with the expression Ml depend-
ent on the orientation of the normal (face choice). Gibbs' method has recently
been applied to examining the equilibrium between two nonhydrostatically stressed
solid phases, and this has shown that here the question of the equilibrium con-
ditions is substantially more complicated [18].

The chemical potential for the material of the solid phase dissolved in
the liquid, which in general consists of many components, can be put as

H._1=P~n,f(p; T: Cyy o v Cr)v

where p and T are the pressure and temperature in the liquid and ¢, a=1,...r
are the mass concentrations of the components. Then the chemical-equilibrium

conditions amount to
Re==Ha, ¢ (4)
The conditions for mechanical equilibrium at the interfaces*
Pn=—pn;

are the boundary conditions for the static problem in the theory of elasticity
within the solid phase.

1f the solid phase is in contact on some surface with a one-component
liquid of the same comPosition, equilibrium is possible only if the chemical
potential is the same in all points on the surface, and in particular if the
strain is homogeneous. ‘If the liquid has many components, we get an inhomo-
geneous concentration distribution in general along the interface, since the

#Gibbs used a Piol-Kirchoff tensor ﬁu: » which is related to the Cauchy temsor P;; by
~ 1
P“. = (p/po) x‘.a_P‘_'i so his conditions have a different form (p. 258 of [2]).
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Fig. 2. Simple homogeneous state
of stress characterized by two pres-
sures P and p.

equilibrium concentration is dependent on the state of stress at a given point.
Such a system is not an equilibrium one and dissolution continues until the
he solid phase along the interface becomes equalized.

chemical potential of t
Inhomogeneity in the state of stress results in chemical-potential gradients
which in turn gives rise to diffusion currents. Therefore,

along the surface,

there is transfer of material from zones of high chemical potential to zones

with lower ones, and in particular dissolution at the contacts between grains.
this is seen as creep, which is limited by the dissolution rate.

Macroscopically
Let us now write the expression for the differential of the solid-phase

chemical potential. From (1) and (3) we have

dps = —ssd T+ vedp + pl_(Pu + pbi;) £ d xja,
s

In the hydrostatic case

' o
where £, =
(Py=—pb,;), the latter term is absent and we arrive at a standard expression

[1]. For the liquid phase

2e%/5x2., is a matrix inverse to matrix T
1

- _ G
dps,p == — Ssyd T + vsydp + gc" dcg,

a

where 5.1 V. s are the specific partial entropy and volume of the solid phase
dissolved in the liquid. At equilibrium

dp,=dp.,,

or

- -_— a‘.ls', ) . 'a .
O=—(Ss,[—55)dT+(vs,[—'vs)dp+ aL‘a dCa—-'Us(P,,—I'-pG{/)g‘dxla, (5)
i i i i tion for displaced equili-
The 1 relation, strictly speaking, is not an equa
briumatgzzau:e the differentials in (5) are not independent. 1In faCt& the pad
quantities z. that describe the deformation are dependent on the load supplled.
b i ical equilibrium we have to
i independent factors 1n the chemical eq o
Eglsztiﬁglggegzgeiastgc problem relating to thehmecgggtggiaTngoggizTgi ?2?13;
i iqui ject to the a
beis of the aalid ghads S5 o g sugéﬁgne the position of the surface itself,
As an example we

the interface. The latter serves to ‘
- i issolution, etc.).
E o e I J hamber if one assumes that

which may move (on accoun _
can quotz the derivation of the form of a magmatic ¢
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the corresponding boundary is a phase one. The shape of such a chamber ig ge.
pendent on the state of stress in the surrounding rocks [19].

CHEMICAL EQUILIBRIUM WITH UNIAXIAL DEFORMATION

) The above general theory can be illustrated on the simple example, which
1s also of independent significance for applications. Let us consider uniaxia]
deformation of a crystal in the form of a rectangular parallepiped (excess Pres-
sure along one of the axes). The crystal is compressed by a pressure P Provided
?y a8 press along a pair of parallel faces. On the other four_faces, the crysta]
LS 1n contact with the liquid at a hydrostatic pressure p (Fig. 2). We assume
that material can pass from one phase to the other through the side faces.

The crystal is specified by its dimensions aio, az0, 230 in the reference
undeformed state, where it has the volume vo = aiodzoeasoe and the mass M = 5oy,
= 1; we assume that the deformation is homogeneous and that the crystal has
some symmetry not less than orthorhombic, with the coordinate axes goinciding
with the crystallographic ones and the z, axis forming the distinctive one (if
thgre is such). Let the pressure P act on the faces perpendicular to the T
axis. Then the deformation may be described by

Xy =X;(X10, X20, X30) =Ry X 10,

Xo=X3 (%40, X20, X30) = R1X1,

Xy=X3 (%10, X0, X30) =RsX30,
nglogaﬂh [= ls 2: 3r

so the displacements take the form
u=x,—x=(ki—1) xp.

The coefficients k are dependent on P, p and temperature T. Only for an ortho-
rhombic material do we have k,s%k,.

Crystal dimensions are different in the actual state:
a =Ry, G =Ry, ay=Fk,ay,,

and the volume is v=a,a,a,=R,k,ks0,; the density in the actual state is given
by

=il 00, Bh.
v v kikoks (6)

Note that the density is determined by the product k,k%,, whereas the
quantities k; are not determined by the density.

The deformation measure is the tensor €., which in this case is diagonal:

g, 0 0
eaﬁ= 0 e22 0 ,
0 0 ey
where
2 2
_ 1 X=Xy 1 .2
M= SR
2
1 X3 = Xy 1
=g = L — 1),
20
3 2
I X3— Xy 1 ..
£ = — = —
W=y T A 2(k3 1)
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Fig. 3. Different forms of deformation for the cube:

a) reference state, unstressed, b) state of hydrostatic compression,
¢) nonhydrostatic compression.

To determine the stress tensor we consider the specific Helmholtz free energy:

f(ea, T) =[(ky, ko ks, T),

-9 o i of
df akldk,+ - dk, + a_kadk3+?d T.

(7)

From general formula (2) we get

Po af 0
Rty Ok, 0
P..= 0 Po O 0
” kiks Ok
0 0 _Po O
kik;  Okg
We introduce the symbols
S — P O — b
P1 P bty O P kika Ok

If we use (7) we can show that

ese formulas is as follows.
ay=— Q30Q30k:ks

The meaning of th
the force acting on a face perpendicular to the x, axis with area @,
then the stress on that face (the pressure) is

is df/da‘= ]/alo(af/akt) H

1 ao@ A @ 0 O
ay, 0k voksks Oky koks Oky

Pu =
a20@30k2R3
traditionally one uses nonnegative

Because compressive stresses are negative,
which are called pressures, for example py=——pq.

quantities instead of them,

The expression for the stress t
on the basis of the definitions of py, Pu Ps:

ensor can be explained if we rewrite (7)

i‘.’f’—dk,+psk—‘k1—dk3]—sd7‘. (8)

koks
df="‘[P1—_‘pa dky + pa = fo

For fixed k, and k,, for example we have

ksks dkl——-SdT=—'/71dvl_SdT'

df =—n .
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where we have used (6). 1In the case of hydrostatic deformation of an isotropic
material (Fig. 3)

P=p, ky=k,=ky=F.
If the free energy is given* as a function of v,
f(v, T)=[ (ki ko ks, T) =[(0:R°, T),
we can use a standard thermodynamic formula to get
P T T T T e ok s ok o
It is readily seen that (8) gives (9) if we put
Pi=p:=ps=p, kRi=k,=ks=k.
To find the relationship between the strains and the applied loads, we
have to solve a static problem in the theory of elasticity concerning the equili-

brium of a parallepiped. As the strain is homogeneous, it is sufficient to sat-

isfy the boundary conditions, which amount to continuity of the normal stresses
at the surfaces:

P=p1 (kh kz. k!) T):
p=p.(k,, k., ks, T),
p=p3(kh kZ: k:!’ T)' (10)

Equations (10) inexplicitly define k=k(p, P, T), i= 1, 2, 3, which act as
equations of state.

Let us write out the conditions for chemical equilibrium at the side sur-
face of the crystal:

ll.‘fz}l:zf(kn kz, ks; T) +P/p.,
where WU, is the chemical potential of the solid phase, which is not dependent

on the point at the surface because the strain is homogeneous. Expressing the
k; as a function of P,p, and T, we get

L Oky hoky
dps = —[se + 2 (p—p)]aT +
Rykoks | Oky koks __P]d + 9% Kk o pygp 1)
+[ Po + ap Po(p )|dp 0P p, (p JdP. (

If we consider the phase transition in a one-component system, then p and P
are independent equilibrium factors, which is usually characterized by the term
'"unequal pressures on the phases." In that case

I-L-(P- P' T)=H-.J(P, T)u

and the equilibrium temperature T is determined as a function of p and P. 1f
the liquid is a solution of the solid phase, the equilibrium concentration ¢
can be found from the condition for chemical equilibrium:

lJ..(P, Pl T)=l"o.r(p: T, c)'

Here the independent equilibrium factors are p, P, and T. Gibbs showed [2]
that this equilibrium is metastable with respect to the equilibrium between the
liquid and the solid phase under hydrostatic pressure p, which results in the
formation of nuclei of the solid phase in the liquid, which then gYow.

*Here the different functions are denoted by the single letter T
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The equation for the displaced equilibrium takes the form

= ok -
[Fer—s+ L kty —P)]d T [k G ) bk _ai(,,_p)}d,, 1
Po Po Po Op
kaks o Ok, __ Ougy . (12)
=+ -To (p-—P) 5 dP N de =0.

Formula (12) shoys that only three of the four quantities p, P, T, and ¢
are independent ip the equilibrium conditiong.,

If we fix P and ¢, we obtain an analog of the Clausius-Clapeyron equation:

- ok, kk

s S+ : — (p—P)
dr = Po (13)
AT lpe 5 _, _ kaky Ok —_p

Us.t ] Pe  0p (p )

Clearly, in the hydrostatic case (13) amounts to the usual relation, For fixed
values of the liquid pressure P and concentration ¢ we get

koky Ok, B P
dT pp OP _
P - 2”3 1

P. — —— L, _p
£ Ssp— S+ P (p—P)
Finally, for fixed T and c

koks Ok,

—— ~5(p—P)
dp Po 0P :
darl. = koky Gk ) (13)
P BT

Equations (13)-(15) are exact within the framework of the elastic model and
appear not to have been given before. They can be used to construct three-
dimensional phase diagrams (c=1) in p, P, and T coordinates. The ki= k,(p, P,'T)
relations needed to construct the equilibrium diagrams are found from experiment.
The function s, is defined by

d
S = ——a—T-f(k], kg, ks, T)
and can be derived by calorimetry. Note that the heat of the transformation
Q=TAs=T (5, ,—s.)

s substantially dependent on the state of strain.

Let us now calculate the change in chemical potentia} of t}'le_solid pgase
when the eéXcess pressure P - p is applied along the z, axis. Fixing p and 71
in (11), we get

= 8 kks o p)dP.
dps = P o (p

Integration gives

P
6k kzkg . P'
be(py P T) = b (p, T) + [ 22282 (p— P)d
P
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Here w,(p, T) is the chemical potential of the solid phase under the hydrostatic
pressure p, which can be calculated in the usual way [1, 11, 12]. Let us cal-
culate the change in the equilibrium concentration in the solution when the
differential stress P—p is applied. If we restrict outselves to the ideal-
solution approximation, we get

c(p. P, T)

Ap = RT In . T)

or

P
koky Ok
C(p,P,T):c(p,T)exp[,;Tj ;os 61; (P—P)dP].
P

_This scheme allows us to consider the chemical reactions between nonhydro-
statically stressed solid phases involving the absorption or release of fluid.

We write the reaction equation

k
2 As'\’s = A/,

s=1

where 4 is a symbol for the solid components, A, is the fluid symbol, and v,
are the®stoichiometric coefficients. Let the solid phases be in the identical
state of strain that was described above. The reaction occurs through the fluid,
and the chemical potentials of the solid components in the liquid are controlled
by the equilibrium with the solid phase. Then the equilibrium condition takes
the form

k
E PsVs = WUy,

§=1

where u, are the chemical potentials of the solid phases, which are dependent
on P, p, and T, while “f is the chemical potential of the fluid, which is de-

pendent on p and T. This equation enables us to construct the equilibrium sur-
face in p, P, and T coordinates.

EQUATIONS OF STATE IN THE ISOTROPIC CASE

A knowledge of the thermodynamic potential as a function of its arguments
gives complete thermodynamic information on the system [2]. 1In that case, the
chemical and thermal equations of state can be derived. A fairly general form
for these can be obtained from model concepts on the structure of matter (see
for example, the potential method [20]). There is also a phenomenological me-
thod based on representing the free-energy function as a Taylor expansion with
respect to some reference state. If the expansion is with respect to the
strains, the coefficients (elastic moduli) are dependent on temperature and are
determined by experiment. Examples of this type of expansion are Hooke's law
[13], the Birch-Murnaghan formula [20-22], etc.

Let us consider a model for an isotropic material as used in effective de-
scription of polycrystalline m§terials. The reference state is the unstressed
one at T = To. Then we can write out an expression for the specific free en-
ergy that contains cubic terms based on the strains (a Murnaghan body [15, 221),

1 142
pof = —nh + 5 (M 20 i — 2l + =28 R 9my Ly nly + pof,, (162
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where

/, =&ite.te,, ]2=8182+8153+5283, Iy=¢g,¢,e,

are invariants of the deformation tensor and

Ei=eu="1,(k2—1), E2=kp="1,(k*—1), es=Eyy="1/,(ks*—1)

are the nonzero components of thig.

This choice of coefficients (first-order
and Second-order

moduli) {ig traditional and ig related to convenience in

T C $§ on the strains. The coefficient m,
7(Ts) =0, defines the thermal expansio

he. i L h at constant pressure, while .\ and p are
tle 1§0therma} Lame’ moduli, and I, m, ang N are the isothermal second-order
elastic modul;, which may be determined by experiments in nonlinear acoustics

[é5i, and f, is a nonmechanical term related to the energy in the undeformed
state.

For a hydrostatically loaded isotropic body,

. L we get the second-order equa-
tion of state in the Lagrange representation [21]:

af 3 1 1 3 4 2 1
P='—E=3Ko(yl"‘y~f')[l_‘4‘ Ko(f""”]‘]‘ ny'h,
where
Y=0/po, Ky=a 2, k= _2 9+4n
0 J +3 |2 KD 3 3}~+2}1,

El =¢g, =83 =2i(y"‘"/l__ 1)

The following additional simplified assumptions are made in the physically linear
theory of elasticity:

[::m:n:o, (17)

If we assume that there is a temperature change accompanying the strain, we
get

n= (M 3 u)ar—T1,),

aza(rﬂ)’ A'=A'(7“lil)) H=I“L(To)l (18)
where @ is the thermal-expansion coefficient. Let us substitute (17) and (18)

into (16) and then use (10) on the basis that ky=ky=*F for an isotropic material,
to get that

P _k_l{ﬂkumz_%(wé a(T—TO))]

k2 2
I [A a2 2 __ 37&-{—211( 2 T—T )] 19)

i i i f state within this approxima-
Therefore, we have derived mechanical equations. o
tion To’construct the phase diagrams, it is necessary to express the deforma-
tions & and £ in (19) in terms of the stresses p and P and the temperature in
1

the form
k=k(p: Pr T)l kl=k1(p| P, T) (20)

Let us consider the case of small strains, i.e., the approximation usually
employed in the classical theory of elasticity; let

k=1+e, ky=1+¢e,
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where ¢ and €&, are small quantities. We neglect terms quadratic in the strainpg
to get

P = —Dey+ 2+ wel+ b+ 5 #)a(T—To),
2
p=—I[(A+ 21) & + 2Me] +(?~+ ;u)a(T—To)-
These linear relationships are readily inverted:
=L5120p—P] + %(T—To).
e=—lo(p+P)—pl+ o (T—To)

where we have introduced by symbols

E = '%:_Q'Li—ﬁfoung‘s modulus,
B
g = MT)-— Poisson's ratio.
n

Similar formulas can be derived for a material with any crystallographic sym-
metry. The number of elastic moduli increases as the symmetry is reduced [14].

DISCUSSION

We are going to perform a qualitative analysis of (13)-(15). 1In the system
where the independent parameters are pressure and temperature, we can construct
the phase-equilibrium curves in the plane of p and T by means of the Clausius-
Clapeyron equation:

T A (21)

where As is the entropy change as a result of the transformation at given p and
T, Av is the corresponding volume change, and dp/dT is the slope of the equili-
brium curve at the point with coordinates p and T. The appearance of an addi-
tional equilibrium factor that is independent of the intensive parameter P in-
creases the dimensions of the phase diagram by one, so the equilibrium curves
are replaced by equilibrium surfaces. We now need a minimum of two equations
of the type of (21) to construct the phase surface, e.g., (13) and (14).

Let us consider the physical significance of the expressions on the right
in (13) and (14). It is readily seen that under hydrostatic conditions (p=P)
we get the usual Clausius-Clapeyron equation from (13), whereas (14) does not occur.
There is an additional term in the numerator in (13), which is proportional to
dk,/dT, which is related to the thermal expansion and which is usually small for
a real rock. Let us recall that the entropy of the solid phase is dependent
on the state of strain, so that

T[E.;(p, T)_Sl(pr Pr T)]=AQ(p! P' T)
differs from its hydrostatic analog

T[S—'-,!(p» T)_sl(p' T)]':AQ(F" T)'
The denominator on the right in (13) is supplemented by an expression propor-
tional to dk,/dp, which is related to the longitudinal strains arising on apply-
ing the transverse load (pressure p). °This curve arises because a solid phase

can withstand a shearing stress.

Particular interest attaches to (14), which related the equilibrium tem-
perature and the equilibrium excess pressure on the solid phase. The main
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Fig. 4. Model for the structure of a porous medium with unequal pres-
sures on the phases (three-dimensional framework).

effect, namely shift in the equilibrium temperature, is determined by dk,/dP,
i.e., the dependence of the longitudinal compression on the longitudinal stress.

In the theory of systems with unequal pressures on the phases, the numer-
ator in the analogous expression contains the specific volume of the solid phase,
which produces a systematic increase in the magnitude of the effect produced by
the excess pressure on the solid phases. In that theory it is assumed that the
solid phases involved in the reaction are under a high hydrostatic pressure P,
which produces a considerable increase in the chemical potential. Let us note,
however, that we are considering an ideal experiment, analyzing an extremely
special homogeneous state of deformation. More complicated states may occur in
real systems, and the theory of systems with unequal pressures on the phases
evidently provides upper bounds to the corresponding effects. On the other
hand, calculations within the framework of the linear theory of elasticity
give lower bounds. Ostapenko has previously pointed this out [3, 23] and has
emphasized the need to consider dehydration, melting, and dissolution taking
into account the different pressures at the grain boundaries, and he carried
through the corresponding analysis within the approximation of the linear
theory of elasticity, which applies for small values of P - p.

CONCLUSIONS

There are numerous lines of evidence that nonhydrostatic conditions occur
within the Earth [3]. This means that we need to reconsider the chemical and

phase equilibria in such systems.

Reactions involving a fluid capable of free migration require us to con-
sider them on the basis that there are different pressures in the liquid and on
the solid phases. The approach in the theory of systems with unequal pressures
on the phases [1, 3] involves the assumption that the phases are in a state of
hydrostatic stress. The condition for mechanical equllibrium, which amounts
to equality of the normal stresses at the phase interfaces, is no longer obeyed.
A specific feature of solid phases, namely that they can withstand hydrostatic

loads, thus is usually ignored.

Here we have performed a general analysis for heterogeneous equilibria in
a nonhydrostatically stressed system involving a fluid within the framework of
the nonlinear theory of elasticity. ‘It_has been found that excess pressure on
the solid phases displaces the equilibrium and alters the heat of the chemical

transformation.
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The formulas that have been obtained can be used to examine metamorphic
reactions when the pressure on the solid phases and the fluid pressure are in-
dependent equilibrium factors. The presence of an additiona} intensive param-
eter substantially complicates the phase diagrams by increasing the number of
dimensions.

The following are possible areas of application of these results: 1) ana-
lysis of reactions 'involving the release or absorption of a volatile component
under nonhydrostatic conditions, 2) research on partial melting when the system
is open for the melt and the pressure in it differs from the pressure of the
solid phases, and 3) analysis of mineral recrystallization processes when the
nonhydrostatic state of strain produces metastability.

The simple states of strain considered here can be used as components in
more complicated systems. For example, an average description can be given of
a rigid framework immersed in a liquid and subject to lithostatic pressure by
considering units in a state of uniaxial compression (Fig. 4).

In order to calculate equilibria in nonhydrostatic conditions, we need
experimental information on the equations of state, which does not amount to
p-v data, and calorimetric results. The need for such experiments was long ago
discussed in the literature [3]. At high pressures, for example, the corre-
sponding data can be obtained from x-ray analysis of the lattice deformations
in single crystals in given stress fields [24].

The lack of reliable experimental information is at present the main ob-
stacle to calculations of particular equilibria.

We are indebted to N.I. Khitarov and V.P. Myasnikov for a valuable discus-
sion.
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