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THE ADIABATIC GRADIENT IN THE TRANSITIONAL MANTLE ZONE:
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Academy of Sciences of the USSR, Moscow

The paper deals with simulating the structure of the
divariant heterophase region in a convecting mantle and
with simulating the adiabatic temperature distribution
with allowance for the heat sources due to phase transfor-
mations. Differential equations are derived for the pres-
sure dependence of the phase compositions, which are gen-
eralizations of van der Waals relations. These are used
in an expression for dr/dp along the adiabat. As an ex-
ample, the transformation of olivine-spinel into a con-
tinuous series of ideal forsterite-fayalite solid solu-
tions is considered, which simulates the seismic boundary
at a depth of ~400 km.

Convective models for the Earth indicate that the temperature distribu-
tion at depth should be close to adiabatic (isentropic)** everywhere apart
from fairly narrow thermal boundary layers separating independently convecting
regions [1, 2]. Determining the temperature at depth is closely related to the
chemical and phase compositions of mantle shells, where the construction of
the adiabat should be based on knowledge of the chemical structures in the cor-
responding regions. Particular interest attaches to the adiabat structure in
heterophase zones, where allowance is made for the compositional variations in
coexisting phases. Phase transformations involving heat release or absorption
occur in such zones where they are penetrated by convective flows, and this

affects the adiabatic temperature gradient.

We have considered the adiabat structure in the region of a heterophase
boundary corresponding to a univariant transformation in constant-composition
phases in [4], where we also examined the applicability of the adiabatic model
in considering flows through zones having internal heat sources. Here we ex-
tend the results obtained in [4] to divariant transformation in multi-compo-
nent solid solutions. As in [4], we calculated the equilibrium isentrope in
p—T coordinates, which is readily transformed to the geotherm, since the depth
dependence of the pressure is known. This division of the mechanical treat-
ment from the thermal one enables us to examine the thermal aspect in detail

by chemical-thermodynamic methods.

Ferromagnesian solid solutions in the MgO-Fe0-Si02 system are important
to the geochemical structure of the mantle, so we will consider divariant
transformations in an n-component system by reference to the phase transition
of olivine-spinel into a continuous series of forsterite-fayalite solid solu-
tions. The corresponding three-dimensional state diagram in P, T, and x co-
ordinates is constructed on the assumption that the Fo—Fa solid solutions are
ideal [5]. The diagram has been based on thermodynamic information on the

pure phases obtained by the potential method [6].

We know of only one paper [7] dealing with the adiabat in a solid-state
divariant region for a binary system, although this did not obtain final re-
sults for the general case, since special assumptions were made about the

*Translated from Geokhimiya, No
**%We do not distinguish the adia
processes may be neglected [3].
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bat and the isentrope, on the assumption that dissipative

47 ISSN0016-7029/85/0008-0047$7.50/0
© 1986 Scripta Technica, Inc.



behavior of the thermodynamic functions, and in particular mixing effectg were
ignored. Adiabat construction has been considered also [8] in relation to
mantle melting in the presence of volatiles. Here we will perform an inde-
pendent study of an n-component system that provides explicit equations for
the derivative dr/dP,y along the adiabat and calculate the corresponding
values for the olivine-spinel transformation. Previously, conflicting asser-
tions have been made on the adiabatic gradient in the divariant region where
olivine and spinel coexist (see, for example, [7]).

Brief information has been given on some of the present results in [9].

CASE OF AN n-COMPONENT SYSTEM

Consider the heterogeneous equilibrium between r phases in an n-component
System. Let P and T be the pressure and temperature; by z;* we denote the

molar concentration of the component with index 7 (% =1, ... n) in the phase
with index o

(@=1,...7) (2 x?‘=1).

According to the conditions for phase equilibrium,

WP, T, 8) = . = (P, T,x), (1)

where u;® is the chemical potential of component 7 in phase o [10]. We denote
by £, the molar proportion of phase o in the closed system, *

2§a=1~
a=1

We specify the overall chemical composition

0 0
Xiy 2 xp =1,
=1

where the following equations apply

r 0
Exﬁ‘ga:x;,izl,...n.
a=1

(2)

The adiabatic (isentropic) condition can then be written as

S & &5 PT)= S tS*(P, T, xB =S,

a=y

(3)

where Sg is the specified molar entropy of the heterogeneous mechanical mixture,
while 5% are the molar entropies of the individual phases. The required T,(P)

relationships are now determined from a system of rn +1 equations (1-3), which
contain rn independent variables. The adiabat parameters are the composition

z; and the entropy Sg. Clearly, instead of Sy we could specify the temperature
for a certain pressure Ty (Pp).

We now calculate the adiabatic gradient (dT/dP)4 in the divariant region,
i.e., subject to the condition that the number of phases equals the number of

*Closure means that in this case one can neglect diffusion.
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1
components, r =n. We write equations (1-3) in differential form [11]

S*dT —V*dP+ 3 xdp =0, (4)
i=1
~ (xf dtq + Eed x7) = 0, (5)
a=1
"o, as® aS% <, 08*
gl(gagdp‘l‘Ea—a?dT‘i"Eagla?dX?-f-Sadga)=0, (6)

where u; is the chemical potential of component 7, which is the same in all

phases, while S® and V% are the molar entropy and volume of phase a. Then

equations (4) are clearly Gibbs-Duhem equations [10]. We take the matrix

i;:foH as nondegenerate (det X5=0),to get from (4) via Kramer's formula [12]
at

dpi= —YLdPp— —SdT=22—dpP—=——dT,
Dy Dy Dy Dy

where Dy = det X and D}} g are the determinants of matrix XV,S derived from X by
3

replacing column 7 correspondingly by {V®} or (5%}, while y;® is the algebraic
complement of element x;% in matrix X [12]. On the other hand, the differen-
tial du;® can be represented for each of the phases in the form

_ _ "'16}1?
d}l?':—S?dT—i—V?dP—{-ZéFdXT, (8)
=1

where 5;% =235%/3x;%, 7;% =3v®/3z;% are the partial molar entropy and volume of
component % in phase a. We combine (7) and (8) to get

Tl oowf as® D ave Dy
dofe | 2t | — 2V 14p.
’é! ox I:ax?‘ Dy an* Dy (%)
We take the matrix M=ldps?/dx?l (¢ =1, ... n -1, j=1, ... n—1) as nondegen-

erate, which gives us a generalization of the van der Waals equations [13]
obtained for divariant equilibria in binary systems:

S (2
af] 2 T\ By (10)
o |p D%, g

n-1 o Dt

23 MO 2 N
ox% 2 it oxf Dy (11)
JP It o D; !

wherengi is the algebraic complement [12] of the element 3u;%/dz;% in matrix

M. Equations (10) and (11) enable us to determine the pressure and temperature
dependence of the equilibrium concentrations in the divariant n-phase region.

From the derivatives of (10) and (11) and from (5) we can calculate the
P and T dependence of the phase composition. We use the nondegeneracy of [xe|

to get
S ave Dy . o t,
Ma=| S S iMa| - — L 4P =3 X vaMh (S — 5 4T _
: l§1k§1 oxy Dy :‘Z=1 g’l ox% Dy DyD%, (12)
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L
The' temperature dependence of the pressure can now be determined by means of
the adiabatic condition (6). We express g wod By o= Eogukiens of dF awd

dT to get
B N - e N e
D 2 Dr | Dy || aF  Dx

5
a=1 i—1 k=1 M

; (13)
" ase &t omE [ose  Di[es* _ Ds
S| — —= | |dT =0
+a.2=1§a [ or +2 2 Di [0"’/? Dy || oxf  Dx

i=1k=1

The desired expression for the adiabatic gradient (dT/dP)y follows directly
from (13).

In order to explain the general equations, let us consider a detailed
example of a divariant two-phase equilibrium in a binary system. For conven-
ience, the analysis of this particular case is performed independently, with
equations analogous to (1-13) derived afresh each time.

TWO-PHASE EQUILIBRIUM IN A BINARY SYSTEM
Let us consider a two-component two-phase system. We denote the compo-
nents by 1 (for example, Fe)SiO4) and 2 (Mg,S8i04). ,The assignment to a phase
is described by means of the indices a and y. Let = be the molar concentra-
tion of component 1 and ¢ the degree of transformation (molar proportion of

phase o). We denote by za the molar concentration of component 1 in phase o
and by xy the molar concentration of component 1 in phase y. Then clearly

E= (;"‘xv)/(xaa—xv)- (14)

It is readily seen that (14) is an analog of (2). The entropy expression is

S=[ESa(P, T, xa) + (1—=8)S:(P, T, x) 1. (15)

where §,, 6, are the molar entropies of the phases. The conditions for chemical
equilibrium in the two-phase system are represented by the following (see (1)):

H&(P, Tr Xa):H;(P, Tl x?); p"é(Pr T) xa)=lL§(P, T, X'p), (16)

where u&:% are the chemical potentials of components 1 and 2 in phases ¢ and
v. Away from the critical points, equations (16) can be solved for z, and = :

Y
xa=xa(P: T)) xT=x1(Pr T)' (17)
We write out the adiabatic (isentropic) condition in differential form:
as,, as 9S as
—tA[—)|dP _— (__ —
[ e ()] ep+ [Gr e (Gr) Jar —asdes
38, as, (18)
+& 5%, dxg + (1 =8 B, dxy =0,

where Af =fy —fa- The differentials dxy, and de can be expressed in terms of
dp. and dT by means of (17); as a result, we get van der Waals equations [13]
(see [10, 11)):

¢ ox

Ban] (ﬂ__ Wy ) Py
oP |7 Ar Oty )/ Otk
(19)
gy | _ _ [AS _ 9Say )P0y
aT |p ( Ax 0xg 4 )/ 5;5;:
with all quantities in (19) calculated at the equilibrium surface of (17)- The
molar Gibbs energies of the phases are put as
(20)

Goy = xa,y}l}z'v + (1 — xu.y) PZ.‘V'
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Fig. 1. Schematic representation of the adiabat
in P-T-x space for divariant transformation in
a binary sygtem, where o and y are coexisting

phases and & is a specified bulk concentration.

Equation (14) enables us to express dtz in terms of dx, and dz.:

0 0
. X=Xy X =y
dc = an Xy — o) dxe. (21)
We combine (18, 19, 21) to get the equilibrium equation for the two-phase
adiabat:
dT/dP=—A/B,
6S,  x ox, v 7G
Ao X X X—X
e ) (222 )
oP Xy — Xy oP oar  dP Xgy iy ox?,
n ox,, ox,, A(’] — Xy 0%G,,
(GT OP) Xy — Xg ox5, ’
0 o (22)
oS, x—Xx a ox, \}| x—«x 0%*G
B v o Y A(—i)]—{-( o2 ) ( ¥ zu 5y
or Xg— Xy aT aT Xqg— X, ) Oxg

0
+ oxy \1f x—xy | 0y
aT Xy — Xg ox},

It can be shown that (22) is the exact analog of (14). In the same way,
we can calculate the derivatives dg/dp, dxy/dP, and dz. /dP. If we substitute
the equilibrium concentrations of (17) into (22), we get an grdinary first-
order differential equation, whose solution is T4(P) describing the adiabat in
the heterophase region (Fig. 1).
he adiabat slope) at the instant when

We give the values for (dr/dp), (t
and at the instant when phase y

phase o appears, i.e., at E°=0, z =xy, T =Ty,
disappears, i.e., at & =1, x =x4, T =Tg4:

ayiVou—an :
a7 _ ALY P oxy o  Bx (23)
dP T'\? - cpy,u + ax'\’.a aS‘P.G _ﬁ
T o | ox,, A



Here we have introduced the symbols ep, y for the phase specific heat

the coefficients of thermal expansion, both of which § and

GG’Y A are dependen
composition. Equations (23) show that T4 (P) has kinks at the Pointg T5_°“
and T =T, as in the case of univariant equilibria. =T,

The concentration dependence of the thermodynamic functiong i .
explicitly for an ideal solution, for example [5, 10]: S Specifieq

0
e,y = Py (P, T) + nRT In xq,,

2 0 (24)
Mo,y = Pay (P, T) + nRT In (1 — xq,4).
The quantities 9&:3 are the molar Gibbs energies of the pure phases. Parame-
ter n arises because the number of formula units does not agree with the nup-

ber of positions involved in the mixing [5]. For example, in th
vine the solution components are usuallg taken as the cations.
of mixing positions for the Mg2+* and Fel+

units, so n =2.

e case of o]j-

Then th
is double the number of formui_ammber

The expressions for zqy,y are readily found from (24):

Xo= (1—expA,)/(1—exp(A.—A,)),

25
x,=(1—exp A;)/(exp A,—expA,), (25)
where ‘1,2 =apls2/nRrr, Anls2 =;Y1’2 —ﬁul’z [14]. We see from (25) that one

can construct the equilibrium curves in this approximation, which is equiva-
lent to obtaining thermodynamic information on the pure-phase equilibrium.
The following formula gives the chemical potentials of the pure phases at
high pressures:

0 0, Lo,
AW = AG'(T) + g AV'aP. (26)
0

° .
The quantities AG*(T) are determined in standard calorimetric experiments and
P
are tabulated in handbooks. The integrals S VdP are insensitive to the choice

0
of equation of state and can now be determined with high accuracy over a wide
pressure range up to ultrahigh pressures [15].

We use the compositions of the ideal solutions to rewrite (19) as

dox

@,y . 0 02 0 5 / a?Ga'

a.
T ‘:';;-‘V = [ (A](-)Il _ AI?F) -{-Af';2]//( 0*G,, ,, ) ,,

2
Oxa’v

where we have introduced the symbols ARls2 =afils2 4728122, The expression?fof
the derivatives BZGG,Y/sza,Y can be written out explicitly forideal solutions

G, y _ nRT
)

x?z.v Xyy (1 — Xoy) '

. i Sti-
The generality of the above equations makes it complicated to dez?gsti
mates. The situation simplifies considerably if we are dealing with dl
solutions. The corresponding asymptotic formulas are given in [9].

OLIVINE-SPINEL TRANSFORMATION
i terité
A characteristic example of a two-component two-phase system 15 fﬁiion g
(Mg25104)-fayalite (Fe35i04), in which there is the familiar transform
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Fig. 2. Isothermal sections of the phase diagram for the olivine-
spinel transformation in a continuous series of Mg;Si04-Fe2S5i04
solid solutions (neglecting B phase). The lines are by calculation
from the ideal-solution model and the points are from experiment
(change in pressure calibration scale by ~10 kbar): 1) Akimoto and
Fujisawa (800°C), Ringwood and Major (1000°c) [17, 18].

denser y phase (spinel structure). For olivine
rich in magnesium, the transformation occurs via an intermediate modified
spinel structure (8 phase), whose presence can be ignored in view of the model
character of the approach. This system deserves particular attention, since
f these transformations are correlated with seismic in-

the P and T parameters O
homogeneities in the transitional mantle zone at a depth of ~400 km [1, 2, 4].

the o phase (olivine) to the

nstruct the phase diagram for a binary system with ideal mixing, we
need thermodynamic information on the pure phases; in this case, these are
and y-Fe,Si0,4. All the necessary data can be

G-Mg23i04, d-FEzSiO4, Y-Mg23i04,
obtained by the potential method [6, 16]. The molar entropies and volumes of
P

s 1 and 2 along with the values of S vdP and
0

To co

the pure phases are given in Table
the standard functions AG.
e 3) shows isothermal sections of the equilibrium

Figure 2 (see also Tabl
diagram for the (ngFe(l_m))ZSi04 system derived from (25), as well as the ex-

perimental points of [17].

The diagram is close to the experimental one in the ferroan region if we
exclude the pressure shift of ~10 kbar. On the basis of recent determinations
of P and T for the phase transitions in pure fayalite and forsterite [18], this
systematic deviation is ascribed to erroneous pressure-scale calibration in
the early experiments. The agreement is worse in the magnesian region, mainly
because of the intermediate phase (8 spinel). The discrepancies between the
experimental and theoretical diagrams increase somewhat with temperature: for
example, the experimental cigar-shaped figure is wider than the theoretical
one at T>1000 K, which may be due either to inadequate experimental resolu-
tion or to error in the thermal component of the equation of state, which
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Table 2

Standard Calorimetric Functions for Transformations
in Pure Phases, kcal/mol

||
I
0 g 0g— 0y 0
T.K AG%EggiO. AagﬁgzvSiOI i & 5 AG';E!S]iO( AG;\ldg:gio‘
1000 957 ‘ 11,8 ! 2000 8,0 15,9
1500 6.9 13.8 |

accumulates as the temperature increases. On the other hand, one should con-
sider the disordering in the spinels at high temperatures, which may also tend
to deform the equilibrium curves.

These diagrams enable us to estimate the minimum width Zg of the two-
phase region corresponding to the isothermal transformation [1l]. Here we have
to consider the mixture composition. Most of the recent geochemical estimates
enable us tg select the molar concentration of the fayalite component in the
range 0.1<2<0.2. For example, Ringwood's pyrolite model [17] leads to
£ ~0.11. Taking & =0.1 (907% Mg8i04, 107 Fey5i04), we obtain &P ~10-15 kbar
and 1o ~28-42 km. If we take x =0.2 (807 Mg;S5i0y, 207 Fe,5i04) we get 6P ~17-
23 kbar and Iy ~47-64 km. The lower bound corresponds to T =2000 K and the
upper to T =100 K.

The phase diagram enables us to calculate the distribution of & (degree
of transformation) in the divariant region; Fig. 3 illustrates g(P). We note
a feature of these transformations: in the solution (Mgo_gFeO. )Si0,, the a-y
transformation (at 1000 K) occurs to 60% near the stability region of spinel
in the pressure region of 5 kbar (14 km); the complete width of the divariant
zone is ~15 kbar (42 km). A similar situation occurs for the iron-rich solu-
tions, where the transformation is localized near the olivine stability region.
For intermediate compositions, the transformation occurs uniformly throughout

the coexistence region.

The most important characteristic of the adiabat is its slope in the di-
variant region in T-P coordinates. Table &4 gives calculations from (22) for
the entire range in # from 0.1 to 0.9. The following values were used for the
specific heats and thermal-expansion coefficients of the pure phases (the mean

values for the P and T of Table 4 [4, 161):

ep (cal/mol-K) =43.3 (a-FeS8i04); 43.0 (y-Fe2S8i04);
43.0 (a-Mg25i04); 42.6 (y-MgaSiOy)
o (K-1) =3.2-10-5 (a-FeySi04); 2.6-1075 (y-Fep8104);
2.9.10-5 (a-Mg,Si0,) 2.4:1075 (y-Mg,5i0,).

Table 3
Equilibrium Concentrations of the Fayalite Component in (Fe Mg;_,),51i0,
Solution
Olivine y-spinel
P, kbar
1000* 1500 2000 1000 1500 2000
60 0,892 — — 0,976 = —
80 0,478 0,712 0,908 0,823 0,891 0,963
100 0,230 0,418 0,599 0,609 0,702 0,799
120 0,074 0,218 0,364 0,298 0,486 0,611
140 — 0,074 0,193 — 0,217 0,396
160 _ — 0,062 — — 0,155
*T, K
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Thermodynamic Parameters in the Divariant Two-

Table 4

the Olivine-Spinel Transformation in a ContigﬁiinggiQn
for of Forsterite-Fayalite Solid Solutions: Crieg
Degree of Transformation and Adiabatic Gradient
dT K
P, kbar g dP' kbar FiTban s T X
kbar
[)
;=0J'T=1WOK x=0£,T=5mK

17,5 o 345 s 0.5 5.5

120 e 3.83 117,5 07 5,36

1225 0 4,63 120’ 0'6o 5.27

1 s 6.23 122,5 0.60 2022

ok 015 954 125' 05 5.2

130 0,12 ] 127'5 0146 2733
¥=0,1, T=1500 K 130 0.27 e

137,5 0,94 5,46 ,36

142,5 8.22 ;.95 x=0,3, T=2000 g

145 ' "

147,5 0,04 12,06 1%'5 8'33 6,78
¢ 132,5 0,79 0,08
4\'=0|1' T=2000 K 135’ 0‘69 2151{

155 0,93 8ot 137,5 0,59 e

157,5 0,78 848 140 0,47 6,49

160 0,59 ) 142,5 0,35 6. 62
0 145 0,20 6,8
x=0,2, T=1000 K 147,5 0,04 7,9_3

105 0,96 3,34 o

107,5 0,89 3,26 =0,5, T = 1000

110 0,82 3,23 d i

112,5 0,75 3’2{ 80 0,94 5.13

115 0,66 3,4:13 82,5 0,83 4.65

117,5 0,56 6 85 0,74 4.2%

120 0,44 4,20 87,5 0,66 3.89

1225 0,27 5,07 90 0,58 3,60

125 0,04 6,56 92,5 0,51 3,36
0 95 0,44 3,16
x=0,2, T=1500 K 97,5 0,36 3,01

5,15 100 0,29 2,92

{22 83? 5.14 102,5 0.21 2.38

122 ' ! 5 0,12 2,91

127,5 0,82 5,20 10 . S

130 0,73 5,36 107,5 0,02 02

132,5 0,62 2,64 .

135 , x=0,5, T=1500 K

137,5 0,33 6,87 Y

140 0,12 8,02 95 0,93 g’;?
0 97,5 0,82 ;

140 0,97 6,23 102,5 0,61 :

}235 0,64 6,53 110’ 0.34 giz

150 0,50 6,87 142,5 0.8 A

152,5 0,33 7,41 115 14 3

155 0,13 8,23 17,5 0,0 )

0
x=0,3, T =1000 K % =0,5 T=2000K

95 0,95 3,80 7.89

97,5 0,88 3,59 110 0,83 e

100 0,82 3,41 112,5 i 7.3

102,5 0,75 3,29 115 0.5 713

105 0,68 3,21 117,5 L 6.95

107,5 0,60 3,19 120 as 6.80

110 0,52 3,2% 122,5 e 669

112,5 0,42 3,39 125 12 662

115 0,31 3,68 127,5 0’03 6,59

117,5 0,17 4,17 130 0,
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Table 4 (Continued)

P, kbar ar K dT K
‘ . | dP' kbar P. kbar ¢ dP' kbar
4 )
x=0,7, T=1000 K x=0,7, T=2000 K
70 0,83 6,69 95 0,83 9,45
72,5 0,67 5,74 97,5 0,65 8,90
79 0,55 4,97 100 0,50 8,39
17,5 0,44 4,34 102,5 0,36 7,95
80 0,36 3,84 105 0,24 7,95
82,5 0,28 3,43 107,5 0,13 7,22
85 0,21 3,10 110 0,03 6,94
87,5 0,14 2,83
90 0,07 2,62 0
x=0,9, T=1000 K
0
=0 =K 2, | 3% | 4m
gs oem o oew | Bs | 4R | iE
i 7' ’ ) ]
87,5 0,53 6,9 70 0,02 3,60
90 0,41 6,39 (]
92,5 0,30 5,93 x=0,9, T=1500 K
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Fig. 3. Equilibrium values
.of the degree of transforma-
a6 tion in the divariant two-
’ phase region for various
values of the over-all com-—
position in the olivine-
G4 - spinel transformation (see
Fig. 2). The numbers corre-
spond to the concentrations
oz} of the fayalite component.
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aS E Mg
T a;.v = Cpyy = xa'?cp:.v + (I — Xay) Cog y
Mg

aS M
P ; Y = g yWay = xa.ﬂzfvvg?v + (1 — o) Ga.%"/ .y

The data of Table 4 enable us to examine the fine structure of the adia-
bat in the divariant region. In particular, the pressure dependence of (dr/dP),
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Fig. 4. Simple phase diagram for a binary system with unrestricted miscibil-
ity and the corresponding types of adiabat in P—T coordinates. The adiabat
family has been parameterized by means of the bulk mixture composition,

is not monotonal* in the region of intermediate compositions. 1In the Magnegs
um-rich region, the largest temperature increase occurs near the spinel gt(:fl‘
bility region, while for iron-rich solutions it occurs near the olivine bound
ary of the divariant zone. If we take the mean value of ~5 K/kbar for (d_T/dp)-
we find that the temperature step in the divariant heterophase region for €5
2=0.1 is 8T ~50-75 K. The phase diagram (Fig. 2) enables us to calculate ty
correction for the nonisothermal behavior to the pressure difference in the ¢
transformation zone, which is 8§7P ~1.8-2.7 kbar or 810 ~5.0-7.5 km. The widty
of the divariant region at 1000-2000 K is then 33-50 km.

We thus conclude that the adiabatic gradient in the divariant region con-
structed on the basis of phase equilibrium considerably exceeds the mean value
of (dr/dP)s for each of the participating phases (<1 K/kbar) because there is
not only the ordinary heat production. on adiabatic compression but also a phase
transition and the corresponding component redistribution between phases. Ag
the mantle is composed of multicomponent minerals, between which there may be
many transformations, we conclude that one cannot use a chemically inert mix-
ture in the simulation to calculate the adiabatic gradient for regions homoge-
neous in phase composition.

Let us consider the family of adiabats in P—T coordinates parameterized
by means of x, which specigies the overall composition, and trace the defor-
mation of these curves as x varies. Figure 4 shows a series of adiabats corre-
sponding to a simple phase diagram of cigar type. For compositions correspond-
ing to the pure phases, the adiabat has a kink on the monovariant equilibrium
line [4, 9]. A similar argument can be applied for more general phase diagrams.
We assume that there is a third phase in the composition range enriched in one
component, which corresponds to the actual Mg;Si04-Fe,Si0, system in the rele-
vant pressure and temperature range. Figure 5 shows that the adiabat struc-
ture can be more complicated in this case. In particular, an additional curve
appears in the P-T plane corresponding to nondegenerate univariant equilibrium
between the three phases** o, B, and y. A characteristic feature of these
adiabats is the presence of extended zones with anomalous temperature grad}—
ents (the gradients exceed that in a chemically inert medium by a substantial
factor), which are separated by temperature '"steps,' where the gradient may
exceed the mean by two orders of magnitude. A similar structure will occur in
the seismic profile: the extended divariant regions should be represer_mted by
gradient zones, while the monovariant transformations will generate adjacent
sharper features. Such structures have been detected in seismic gxperlmenss
[19], so one hopes that improved resolving power in seismic soundmg_m‘?tho :
should make it possible to extract information on the overall compositions o
abyssal rocks from the shape of the seismic profile.

A . rate
*We have restricted ourselves to calculating (dT/dP)s at specific points. TO intes

o . . G e ters.
(22) would be premature on account of the residual uncertainty in the 1n1t1a1_PafamZ degener-
*%The univariant a-y curves for the end-members of the solid solution series ar
ate, since the compositions of the two phases coincide.
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Fig. 5. Phase diagram for a binary system containing three phases (unrestricted
miscibility) and the corresponding types of adiabat in P—T coordinates. The
adiabatic family has been parameterized by means of the bulk composition.

CONCLUSIONS

_ The study concerns simulating the structure of a divariant heterophase
region in a convecting mantle and the construction of adiabats when heat
sources are present due to chemical and phase transformations. This model has
been chosen because we need to construct an adequate model for the geochemical
structure of the transition zone. There are considerable difficulties in in-
terpreting the anomalous behavior of the seismic velocities in this part of
the mantle [19]. Seismology indicates that there is considerable fuzziness in
the gradient regions, explaining which is fairly complicated in terms of uni-
variant transformations. It is therefore necessary to have a thermodynamic
simulation of the divariant zones, by which is meant minerals of solid-solu-
tion type making up the mantle rocks. The resulting information can be used
to calculate model distributions for the density and elastic moduli (seismic-
wave velocities), which allow direct comparison with seismic data.

The general theoretical section deals with the thermodynamic structure of
the adiabat (isentrope) for divariant multiphase regions. Equations have been
derived in differential form for the pressure dependence of the phase composi-
tions, which represent a generalization of the van der Waals equations for bi-
nary systems. These equations give an expression for (dr/dP)4 along the adiabat;
a detailed discussion has been conducted for a binary system with ideal mixing.

e of the simple two-component forsterite-fayalite
system by constructing a thermodynamically correct phase diagram, which has
shown that the a-y phase transition in the olivine solid solution leads to the
formation of a two-phase zone of considerable width, which has substantial
heterogeneity. The main result is that the adiabatic gradient has an anoma-
lously high value in the divariant region, which is due to there being addi-

tional energy sources of chemical origin.

A study has been mad

We thus note the following features. Thermal mantle models are usually
constructed without allowance for the complicated composition and possible
solid-state transformations, which leads to certain paradoxes. For example,
the adiabatic gradients in the stability regions of individual mantle phases
and of the corresponding mechanical mixture are on average 0.6-0.8 K/kbar. If
the temperature at the boundary between the upper mantle and the transition
zone is 1400-1600°C, we get 7 ~2500°C for a core-mantle boundary, which is
clearly insufficient to melt the outer core. The proposed solutions amount to
introducing impermeable thermal boundary layers, with considerable temperature
differences [20]. These hypothetical constructions have no direct confirma-
tion. On the other hand, chemical and phase transformations in mantle miner-
als are indisputable and confirmed by experiment. Taking into account the heat

production at the univariant phase boundaries during convection, one finds that

there are temperature steps in the transition zone [4, 9], which considerably

increase the effective adiabatic gradient.

tions occurring in the mantle may give an a
mean value for regions where an analogous mec
increases the temperature at the lower mant

The divariant equilibrium associa-
diabatic gradient five times the
hanical phase mixture exists, which
le boundary by hundreds of degrees.
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