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MULTICOMPONENT MINERAL SYSTEMS®*

L. M. Truskinovskiy, O. B. Fabrichnaya and 0. L. Kushov

Vernadskiy Institute of Geochemistry and Analytical Chemistry
Academy of Sciences of the USSR, Moscow ’

A method is discussed for constructing the subsolidus
P-T diagram for a multicomponent multiphase system contain-
ing solid solutions. The algorithm is based on calculating
univariant equilibrium curves. The method involves construct-
ing a series of subsystem diagrams with increasing numbers of
components. The algorithm is implemented beginning with the
analysis of a stoichiometric subsystem that includes phases
of constant composition. Metastable univariant curves are
excluded by transferring to a system of higher dimensions via
the degenerate invariant points relating to the edge subsys-
tems. A network of univariant curves intersecting at the in-
variant points is constructed to define regions in P-T coor-
dinates with certain compositions for the possible assemblages,
which enables us to distinguish the mineral facies. The im-
plementation is discussed in detail for the MgO-FeO-SiO2 sys-

tem in the subsolidus region, which corresponds to the lower
boundary (~ 650 km) of the transitional mantle zone., The
topology of this phase diagram is examined for the appropri-
ate P and T, which agrees with measurements and also with
theoretical diagrams for the Mg0-5i0, and Fe0-5i0, edge sub-
systems.

By complete P-T phase diagram we mean one indicating the stable mineral .
assemblage at each point in P-T coordinates, where the compositions of the co-
existing phases are indicated for all overall system compositions [1-4]. Even
for a three-component system, it is impossible to represent the relatiox}shlpsh
in a plane, so one is restricted to two-dimensional sections or projections, the
most important of which is the projection of the univariant equilibrium llqe%fn
the P-T plane. A complete diagram is thus possible only as a set of numericd
computer procedures.

We have devised an algorithm for constructing P-T diagrams for gub§011dgic
systems containing solid solutions. If the system contains only sto}chlomeamm_
phases that do not form solutions, there are no problems in determining Fhs.the
positions of the coexisting phases, and the construction is much Simpllfle'é
Gibbs energy by classical Ilinear programming can be minimized [5, 6]. ?Olﬂjty
solutions complicate the task, mainly because there is substantial nonlinea
in the minimized function.

There are many papers on general methods of constructing such phasé d;Zdwn'
grams, which are widely used in metallurgy, chemical engineering, and thenmlages
ics of materials [7]. In geochemistry, the topic of equilibrium phase asse -
has been discussed repeatedly, and some novel algorithms have been proPosziagraIns
13]. However, no special methods have been devised for constructing P-T
for solid-solution systems over wide ranges.

*Translated from Geokhimiya, No. 5, pp. 693-712, 1987.
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in phase diagrams for multico ; res-
cerest I ; X -lcomponent systems at ultrahigh P _

Innd tempera}turez 2181 stlmulatgd Primarily by ch need for an adequate chem
retation O e geophysical data in constructing a geochemical model
ical p Earth. -Mﬁny m::i;lgemﬁnts have accumulated on the elastic and thermp:ll_ 4
for tegers of hig -pgt'ations paases, and numerous equilibria have been identifie
paragl 1aboratory cog the traﬁo{-‘r?spondlng to the pressures and temperatures 1n
undeuPPer mant e anl e uationSlt%on zone [14]. Methods have been devised for
thé cructing thermg q'c S o state for solid phases, which enable us toO
cons  olate thermocynat e barameters reliably (6, 15, 16]. This makes it import-
extfig construct a comp eéte P-T diagram for the MgO-FeO-CaO—Al203-SiO2 system.

: i subsyst i ;
o most mterestl'.ng z =i l.lere 1s M80—Fe0—8102, which provides over 907 of
e actual composition and retains all the essential complexities of the full

EQUILIBRIUM CONDITIONS

We begin with some standard formulas subsequently required. Let us con-
gider an n-component phase o and denote by na the number of mols of component <
in phase o ¢ =1, "°"”° Let G*(na', P, T) be the Gibbs energy of phase a, while
‘n,OG“/anuf is the chemical potential of component 7 in phase a. ¢* is a uni-

#
form function of the first degree in the arguments 1., so G":Z l-‘ffzn; It is of-
i
ten convenient to convert to the molar quantities: g*—G%/n®, x,'==n,'/n* where n°
e number of mols of phase a«. We write ¢ in the form
k i
(2 ’la) g* (’%&/(2 n’é) o T) ,

k k

is th

to get
I3 3
“?zga"zxa(ag“/@xg)+6g°‘/dx;. (1)
&
We now assume that there is a set of r phases having Gibbs energies G*(n., P,

T); a=Il, ..., r. The total Gibbs energy of the mixture G= ZG“ is dependent
a

on nr + 2 variables n,, P and T. If the overall chemical composition of the
mixture is given, there are = constraints on the n,

;O
Zna=n‘. (2)
[e4

.5
"hGFe n’ are the numbers of mols of the components in the mixture. The phase-
equilibrium state at given P and T corresponds to the minimum in ¢ with respect

to n'. Then we use (2) and introduce the Lagrange multipliers Bey =1, o0, m
and consider the unconditional turning point in the function

[ 0
A, nd') =G——v§_‘.p,- (anx—n") .
i o

In terms of the molar values, the necessary turning-point conditions (the con-

Yitions for Gibbs phase equilibrium) can be written as
l.l; (x{, P, T)=p,? (xé‘ P, T)= . =,J,?()C¢, P, T) (=uw), (3)
lya 04'
2 ng =X, (4)

[+
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Diab=1,
{ (5)
where :* are the molar fractions of the phases and (' are the molar
the components in the mixture. For given P and 7, the number of €quationg of
coincides with the number of unknowns, which is known as Duhem's theoren Sre
discard (4), which expressed the mass balance, the numbe; of unknowns lﬁcl We
P and T) exceeds the number of equations by n - r + 2 (Gibbs phase rule), Uding

fraction,

We now derive some consequences of (3); we combine (3) and (1) to get

og® g* og® ___Qgﬁ
6x; dx(’z - BA'E dxf'; ' (6)

It is readily tested that equations (6), of which only (r - 1)(n - 1) are inde-
pendent, express the equilibrium conditions in the exchange reactions (the re-

distribution of components 7 and j between phases a and 8). 1In analyzing sili-
cate solid solutions in the subsolidus region it is desirable to distinguish one
of the solution components as that forming the framework (the additive component
[17]), while the others are considered as interstitial. We assume for definite.-
ness that the framework one is component »n (e.g., SiO2 in the MgO-Fe0-Sio Sys-
tem). We introduce the new functions 2

n-1
" _ , ¢
B’y iney ™) =glwt, . .., 55, 1——-:3 xa).

By virtue of (1) and (3) we have

n-1

Bo=g%— 3 22 (0g%0x2), 0g%0xe=pu—pin, i=1, ..., n—1. L

k=1

Conditions (6) can be rewritten as
0ge/oxt, = dghloxh, i=1,..., n—1. (8)

These are equilibrium equations for the exchange reactions involving the inter-
stitial components.  The other independent equilibrium equations number r - 1

and can be represented as conditions for the equality of the chemical potentials
of the framework component in the phases:

- n-1 - P n-1 -
& — 3] %2 (08%0xe) =g — S xb (93°10x). (9)
(=

i (=1

We now assume‘that the concentrations of one of the components in all the
phases havc_a beer_1 fixed (but are different), which means that the concentration
space of dimensions n - 1 has the phases corresponding to hypersurfaces of di-

mensions n - 2, We take the concentrations of component k as fixed k(x.*=c¢s")
and introduce the functions

ga('\,al, sy xa-h—t1 xah-H» teay xan—i) =§a (xa,l, ceay Ca,h, Ceay xa"") .

Equations (9) can then be rewritten as

n-1 ~ ~

Py Lty _ k (08%) = T g8 2

g — 3w (Gge1ork) —c (d;cik)=gﬁ—2 HiE_ 9 (10)
i=1 a = B 3
(=k l’?‘;k

If we introduce the partial Gibbs energies of the phases
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n-1

"= g=— 3\ ¥\ (9g/0xd), an
ih
we get the following necessary equilibrium conditions* from (10):
k ~ ~
(ev —ch) 6" + (cf — k) 6"+ (. — by 6 =o. 4

Equation (12) can be interpreted as an equilibrium condition in a three-phase

reaction (between phases o 8 and y)**. The number of independent reactions of
the type of (12) is r - 2, In conjunction with the (» - 1)(n - 2) relations

(8) (
05“/3x2=0§ﬂ/0xé.i=1,...,k—-1,k+1....,n—1 (15)

we have in all a total of (» - 1)n - r equilibrium conditions. For r<n,these

equations are sufficient to define the unknowns x.'(i%=Fk ossibly not uniquely),
which are related by the constraints (iz=k) (p y

Nn=1
g k
Xoo— | —Cq.
I=1,{%k

Let us now generalize (12) and (15). In subsolidus systems of this type,
in addition to the independent components, we can introduce phase components
[17] or minals, which are stoichiometric compounds of specified composition re-
presenting the end-members of the solid solutions for each of the phases. We

introduce the symbols E,* for the molar fraction of minal 4 in phase «, 4 = 1;
vee, n3 Ta' for the molar fraction of component < in minal 4. The matrix for

the latter is specified, while the values of T’ are the unknown variables. We
have

m n
Sta=1, Jxa=1. (16)
A=1 =1

*If there is a pair of phases for which Cot=cp*, the corresponding equilibrium is singu-

lar, and the equilibrium condition analogous to (12) takes the form aﬂ=ﬁﬁ_
%*Reactions of the type of (12) should not be confused with phase reactions, which occur

for example in the univariant association having r = n + 1l; the latter are characterized by the
stoichiometric coefficients being dependent on the compositions of the coexisting phases. For

example, for a univariant phase reaction

n+1
) veAT=0 (13)

a=1

the stoichiometric coefficients v -~ are defined (apart from a common factor) by the system

n+1 n+1

S vk =0, X va=0. (14)
a=1

=1

whose solution can be writﬁen out explicitly (Korzhinskiy's determinant rule [3]). The equili-

brium equation for (13) is -

2 veg*=0

=1

and can be derived as a consequence of (3).
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The molar fractions of the minals in the mixture are

ro
ac..‘l_
!/A= Zg gctv

. a=1
and according to (16) we have

m

> yi=1

A=1

The Gibbs energy of a phase is represented as the sum of the partia] molar s
energies of the minals: T Gibpg

g°= N tgats, P, 1),

A=t
so the energy of the phase mixture is

m

G= D gay™.
A=1

The constraints of (4) can now be written as

m A—[ 0
> yhxa=xt. (17)
A=1

We note that these equations are linear in the unknown functions, so we can shift
to a reaction basis [7, 17] and formulate the equilibrium conditions in terms of
the minal reaction set:

o
Mva B=0, I=1,...,R, (18)
A=1

where 3% are the symbols for the minals and vﬁ are the stoichiometric coeffi-

cients in the reactions, which are defined by

m

S\ v x4=0, i=1, ..., ml=1,..., R (19)
A=1 -

Introducing the activities enables us to write the corresponding equilibrium
conditions '

m - ‘
E gAVA =0
A=1

in the form of the law of mass action [7].

. The number of independent reactions R clearly coincides with the number ﬁf
linearly independent solutions to (19); we take the ranks of the concentrati®
matrix X=IZ4l, as » and get that R = n - 1. Thus the stoichiometric matriX
W=|v 'l has m columns and m - n rows*. As each minal belongs only to oné ph
we conclude that the number of §,* to be determined is m, of which only m -7

ase,

*The stoichiometric matrix W is not uniquely defined by (19).
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dependent. There are m - 5

aré inand the number of equationg equilibrium equations to define these quanti-

cies» £ coincides with the number of unknowns for 7 =
sitions o isti :
The compo the Ccoexlsting phases for given f.* are defined by

Ne

4nd the phase fractions {* are then found from (4).

Thus the phase-equilibrium conditions here have been formulated by three
pethods. The ?lrStmethOd’ that of (3)-(5), requires a solution to equations ex-
ressing equality of the chemical potentials for the components in the phases.
The second, from (12) and (15), is based on considering two phase (exchange) and
three-phase minal reactilons. The third, (16)-(19), is an extension of the se-
cond and involves considering any reactions between minals. Although the second
" i based on a special design for the stoichiometric matrix and is thus less gene-
cal, it gives the best means of incorporating the specific features of these sub-
solidus systems.

These equations can be used with the known phase composition to determine
the chemical_CQmPOSIthnS of the coexisting phases, but the determination of the
phase composltilon remains an unsolved problem. To discuss methods for this, we
pust turn to a general formulation of Gibbs energy minimization:

G (&% xa P, T)=D)t%* (%, P, T)— min (20)
o

. i
e 4

3 o 0,
subject to the constraints of (4) and (5); one chooses the x' such that Dy x'=1,

{
so ) t¢=1. There are also inequality constraints on the E* and X't
a

>0, ¥, >0. (21)

\%

The problem of (4), (5), (20), and (21) is complicated by the presence of pa-
rameters® whose variations affect the solution structure substantially (assem-
blage variability). This nonlinear parametric optimization is extremely compli-
cated in such a general formulation and there are no universal algorithms for
handling it at present (see however [7-13]).

For what comes next we need to consider a particular case: a system con-
taining pure (stoichiometric) phases. In this case the compositions of the co-
existing phases are given, and the task is that of minimizing the linear function

G=g*(P, T)

subject to linear constraints on the §* in (4) (a classical problem in linear
programming [5, 6]). We assume for definiteness that rklx./l=n,where n is the

number of components. The constraints of (4) define a subspace of dimensions

M - n in the M-dimensional space of £¢®. Shift to the reaction basis of (19)
denotes in essence a natural parameterization of this subspace. The constraints

of (21) define a certain polyhedron there, and the initial problem concerning

the minimization conditions reduces to one of unconditional minimization on that
Polyhedron. As ¢ is linear, its minimal value is attained at one of the vertices;

the vertices correspond to n-phase divariant assemblages (sets of numbers E%,
=1, ..., ¥, of which only n are different from zero). We can thus derive the

——— '
*For example, ¢ is dependent on P and T, while constraints of (4) are dependent on the pa-

r : o
smeters y* characterizing the overall mixture composition.
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The molar fractions of the minals in the mixture are

.
uatﬂ.
yr= 28 %

. a=1

and according to (16) we have

The Gibbs energy of a phase is represented as the sum of the partial molar Gibbs
energies of the minals:

n

¥ - — A
g°= Y teas, P 1),
4=
so the energy of the phase mixture is

A=1

The constraints of (4) can now be written as

m - 0

2 yﬂqu =x!, (17)

A=1
We note that these equations are linear in the unknown functions, so we can shift
to a reaction basis [7, 17] and formulate the equilibrium conditions in terms of
the minal reaction set:

Zv’A BA=o0, I=1,...,R, (18)
A=1

where B4 are the symbols for the minals and “2 are the stoichiometric coeffi-

cients in the reactions, which are defined by

m
ng x4=0, i=1,...,nml=1,..., R (19)
- . ) ‘
Introducing the activities enables us to write the corresponding equilibrium
conditions

m

2 EAqu %0
A=1

in the form of the law of mass action [7].

The number of independent reactions R clearly coincides with the number of
linearly independent solutions to (19); we take the ranks of the concentration
matrix X=IZ'll, as » and get that R = n - 1, Thus the stoichiometric matrix
W=|v4| has m columns and m - n rows*. As each minal belongs only to one pha
we conclude that the number of §,* to be determined is m, of which only m - 7

se,

L

*The stoichiometric matrix W is not uniquely defined by (19).
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re independent. bzgegg :re o= u quil%brium equations to define these quanti:
iiesy and the num quations coincides with the number of unknowns for r =

The compositions of the coexisting phases for given f,* are defined by

Nle

and the phase fractions {* are then found from (4).

Thus the phase-equilibrium conditions here have been formulated by three
pethods. The flrStmeChOd’ that of (3)-(5), requires a solution to equations ex-
ressing equality of the chemlca]__ potentials for the components in the phases.
The second, from (12) and (15), is based on considering two phase (exchange) and
three-phase minal reactions. The third, (16)-(19), is an extension of the se-
cond and involves considering any reactions between minals. Although the second
is based on a special design for-the stoichiometric matrix and is thus less gene-
ral, it gives the best means of incorporating the specific features of these sub-
solidus systems.

These equations can be used with the known phase composition to determine
the chemical compositions of the coexisting phases, but the determination of the
hase composltlon remains an unsolved problem. To discuss methods for this, we
must turn to a general formulation of Gibbs energy minimization:

G (&%, xo, P, T)= D t%g% (x5, P, T)— min (20)
.3 ga,xé
. o 0,
subject to the constraints of (4) and (5); one chooses the ¥ such that D x'=1,
]
50 2§a=1_ There are also inequality constraints on the E* and x,':
a

Bl 2 200 (21)

The problem of (4), (5), (20), and (21) is complicated by the presence of pa-
rameters* whose variations affect the solution structure substantially (assem-
blage variability). This nonlinear parametric optimization is extremely compli-
cated in such a general formulation and there are no universal algorithms for
handling it at present (see however [7-13]).

For what comes next we need to consider a particular case: a system con-
taining pure (stoichiometric) phases. In this case the compositions of the co-
existing phases are given, and the task is that of minimizing the linear function

G=tg*(P, T)

subject to linear constraints on the §* in (4) (a classical problem in linear
Programming '[5, 6]). We assume for definiteness that rklx./ll=n,where »n is the

number of components. The constraints of (4) define a subspace of dimensions
M - n in the M-dimensional space of £®. Shift to the reaction basis of (19)
denotes in essence a mnatural parameterization of this subspace. The constraints
of (21) define a certain polyhedron there, and the initial problem concerning

e minimization conditions reduces to one of unconditional minimization on that
Polyhedron., As ¢ is linear, its minimal value is attained at one of the vertices;

the Vertices correspond to n-phase divariant assemblages (sets of numbers E¥,
LS PPy M, of which only n are different from zero). We can thus derive the

\-‘

*For example, G is dependent on P and T, while constraints of (4) are dependent on the pa-

Ta Q
"eters +* characterizing the overall mixture composition.
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optimal assemblage by surveying the vertices. The phase compositiop of
assemblage changes when we vary the parameters. For example, let p P the
fixed T, which may tilt the optimal hyperplane for the level of the tarreasefOr
tion with respect to the permissible-state polyhedron. A shift frop Onget fune.
to another occurs when the two vertices and the segment joining thep 1i§ Vertey
optimal hyperplane. That situation corresponds to special values of p M0 the
that case we get a univariant equilibrium of » + 1 phases. Any variation
the second group of parameters, which expressed the overall mixture Cg n
tion, also changes the equilibrium assemblage, but the changes have 4 di ?Posi-
nature. In that case, the polyhedron itself is deformed, so the switqp p €rent
equilibrium assemblage to another occurs at a degenerate vertex corresPOnggm
to n - 1 phase assemblages. ing

For a stoichiometric system the concentration space of nn is d
. the construction of the P-T phase diagram can be reduced to linear
on a finite number of points in P-T-x coordinates, with subsequent refineme
of the positions for the univariant curves. When a P-T diagram for 3 Systent
containing solid solutions is constructed, the direct minimization must’pe 2
plemented with special procedures for searching for the univariant cuy o
invariant points, since the latter are characterized by certain compositiong ¢
the coexisting phases; if we specify the overall chemical composition ang steoi
through P and 7, we may simply jump over them. Such procedures are considereg&‘
in the second part of the paper. To determine the variability in the phase

iscrete so
Optlmizat10n

rves angd

o
assemblage during the minimization, with P, 7 and x' specified, we may begin b
distinguishing the possible regions in P-T coordinates characterized by a Sing{e
qualitative picture for the phase relationships. This task is equivalent to
identifying mineral facies.

ALGORITHM FOR CONSTRUCTING A P-T PHASE DIAGRAM:
MgO-FeO-SiO2 SYSTEM

The method of constructing the P-T phase diagram is based on the connected-
ness of the network in P-T coordinates that consists of stable univariant curves
(M curves)**, lines for univariant equilibria, and can start (end) only at in-
variant points (4 points) or diverge to infimity. It is clear that if we know
some stable ¥ curves and Z points, we can construct curve bundles to represent
the missing ¥ curves and then define on them points corresponding to new stable
invariant equilibria, from which we can construct the complete P-T diagram. Fur-
ther, if we determine the compositions of the invariant and univariant assemblages,
we can use Schreinemaker's rules [2] to recover the qualitative picture of the
phase equilibria in the divariant regions for the entire range of possible over-
all compositions. Enumeration of the phases participating in the equilibrium
then allows us to define their compositions. Hereé we can use direct minimiza-
tion or can utilize the necessary equilibrium conditions directly.

A phase diagram is constructed by this method by beginning with analyzing
subsystems of fewer dimensions. The basic concept is that stable M curves and
H points corresponding to a subsystem remain stable in the diagram for the com-
plete system and can be used to start the "sliding" process***, As a rule, sub-
solidus systems of this type include stoichiometric subsystems, and we will show
that the corresponding diagrams can be constructed by standard methods.

We now illustrate the algorithm on the MgO-FeO-SiO2 system, which is very

characteristic as it has MIgO—SiO2 and FeO-SiO2 as stoichiometric subsystems.

The complete (ternary) system has three series of solid solutions: MgO-Fe0,
Mg2§104-Fe25104, and MgSi03~FeSi03, and the corresponding end members may be

taken as phase components (minals). The MgO-"SiO2 and FeO—SiO2 subsystems have
been examined in considerable detail. The corresponding P-T diagrams were first

*That method enables us to construct a P-T section for the complete phase diagram correo
sponding to a specified mixture composition. There is a discussion in [18] of the structures
such sections or subsolidus systems that are close to stoichiometric.

**The network may consist also of a set of connected components.

***This also enables us to distinguish the stable M curves from the metastable oness
the latter usually causing the most difficulty.

with
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ted by means of the simplex

met ; to
r mantle and transition zone hod (6] for the range corresponding

the UPPe

je on - "IDary system; from each such # point, there emerges &
iv?rlaqt iﬁ:raEEZisaigglllbglum line, which either term?nate; at an analogous
y point in e subsystem (FeO—SiO2 for MgO-SiOZ) or else diverges

¢ infinity- 1§§Chaczrves intersect'at H points in the ternary system. We cal-
culate,P(T) ausegthe cggrvi by solving (12) and (15) at each step in 7, where
h time we culations from the previous step as an approximation-

eacC . . . B .
o numerical implementation is simplified because dP/dT can be calculated from

the clausius-Clapeyron equation:
dP/T == (Zvasa)/(Zvav“), (22)
a 3

a a ;
shere § and v~ are the molar entropies and volumes of the phases, while v are

the stoichiometriﬁ ciefficients of the univariant phase reaction, which can be
calculated from the known compositions of the coexisting phases from (13) and

(14) .

If we have a complete set of the potential phases, we can readily enumerate
the # points that lie on thg stable or metastable parts of a given M curve. To
distinguish tbe stable # points, we note that the M curve arising from a stable
g point remains stable as far as the next ¥ one; here we essentially use the
connectivity of the net. Thus the first K point encountered (after the initial
one) is Stable.

Let us now egamine th%s in more detail. The analysis is simplified and the
most important points are }llustrated by restricting consideration to a system
of five phases: (Mg, Fe)Si0, (P), (Mg, Fe)SiO, (I), (Mg, Fe)O (M), (Mg, Fe),
5i0, (v), and Si0, (S) (Table 1). These phases are of the main interest as re-

gards interpreting a second seismic boundary at ~ 670 km [6, 14].

This five-phase system has five # points within the MgO—SiO2 system; the

phase diagram [6] shows that only three of them are stable in the range of in-
terest here (190-250 kbar and 1500-2500 K): (P, M, S, v), (I, P, M, yv), (I, P,
vy, S)*. Figure 1 shows also the metastable # points (P, I, M, §) and (v, I, M,
S). The FeO—SiO2 system is much simpler at these P and T': there are no #

points, and only the FeO + SiO, assemblage is stable [6].

In the Mg0-Fe0-5i0, system, there are four phases of variable composition

(I, P, y, M), which for definiteness we consider as ideal solutions [19], to-
gether with a phase of constant compositions (S). This is a unique nondegene-
rate § point (I, P, v, M, S), whose position is to be determined.

We begin, following the algorithm, with the four-phase M curves emerging
from the stable # points in the Mg0-5i0, subsystem**, There are four possible

positions for the four-phase univariant-equilibrium curve in the region of the
§ point (P, M, S, y) (cf. Fig. 2), but even tbe qualitative analysis indicates
preference for form a, since only it agrees with the data on the FeO—SiO2 system

and satisfies the empirical regularity FO> X0 > 5,0 >0,"0 [14], Similar ar-

guments enable us to construct curves for the other stable # points, which are
degenerate (singular) and contain indifferent phases [2] (Fig. 3).

ee—
*As there are uncertainties in the thermodynamic data and equations of state, it has been

Suggested [6] that there may be two topologically different forws of d?agram for the Mg0-Si0,
System. To illustrate our algorithm, we examined one of these in detail, namely the simpler one.

We give only the summary P-T diagram for the alternative (Fig. 7).
**The H points considered below are of the degenerate type [20, 21]; see the Appendix for an

analysis of this type of H point, which explains the subsequent constructions.
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Table 1

Solid Phases in the MgO-Fe0-5i0, System Stable at the

P and T of the Lower Boundary (670 km) of the
Transition Zone in the Earth's Mantle

. Abbrevia-
Formula Mineral tidon

Sio, Stishovite S
(Mg, Fe).SiO, Spinel g
(Mg, Fe),SiO, Modified spinel

(Mg, Fe)SiO, Ilmenite structure I
(Mg, Fe)SiO, Perovskite structure P
(Mg, Fe)O Magnesiowiistite M

r

Fig. l. Part of the phase diagram for the stoichi-

ometric Mg0-Si0, system at the P and T of the lower

boundary in the transitional mantle zone (topologi-

cal scheme, see [6] for details), The numbers de-

note the invariant points: 1) (y, P, M, S); 2) (I,

P, M, v); 3) I, v, S, P)=. 4) (v, I, M, S); 5) (p,
I, M, S).

Using the technique developed in the first part, we will write the equations
for P(r) and x.'(T) on the (P, vy, M, S), (I, P, v, S), and (P, M, v, S) univariant
equilibrium lines.

1. TFOUR-PHASE (P, vy, M, S) EQUILIBRIUM (Fig. 4a)
We determine the four unknown functions
= OUT), e = aBONT), = NEO(T), P(T)
by means of four equations™*:
*To derive these equations from (12) and (15), it is necessary to take 5i0, as the compo-

nent whose contents in the phases are fixed, while the component 7 in (12) and (15) is taken as
FeO, For convenience, the molar fractions of the remaining component MgO have been replaced by

the cporresponding minal concentrations. The partial functions @'0‘ from (12) correspond to FeO.
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Exchange reactions:

| OMgssion  °Fesio, Oy s :
b 5 (S — &) — (gpSio é{;“ioi) —RTIp U= g (23)
(1 —xp) v, '
1, "mesiop "resio o 0
2. 5 &) —(@n " — g R U T {2
(1 =Xy Ay
Three-phase minal reactions:
OMQS'O; 0 Si 0 2
3. (2gP 1 _g?"ﬂ.s Oa_- gs) _ RT ]n X"\: — O, (25)
£
"Mgsio,  ° o :
4. (@ — g\ —g) —RTIn M o, (26)

*p

The equations contain the standard Gibbs i which
e ohen a8 known FuReTohe Of b a5l 7 energies of the pure phases,

We introduce the equilibrium constants

: 1 0' :Si0, 0‘(‘2 i i i
Ky(P, T) =exp {[ (@05 — gfosioy _ (gyesc — b ] /RT).

/
1 A 2Si 01‘
Ko P T) = exp [ (@0~ g% — (ghe°— gt | /RT}
0

0 .
Ko (P, T) =exp ((2gh™' — g0 — go)/RT),
Ky (P, T)=exp {(gh"™® — gi#° _ go)/RT).

When xp, Xy and Xy have been eliminated from (23)-(26), the equation for
P(T) becomes

K;’ (Kx - K2)2 = Ks (K2K1— K1K4 — Kz = KleKq)Z-

2. FOUR-PHASE (I, P, y, S) EQUILIBRIUM (FIG. &4b)

To determine the four unknown functions

x=xM""%(T), xo(T), x,(T), P(T)

we have four equations:

Exchange reactions: 1, see (23), and

g (gog‘ESiO: _ é,geSiO;) o (éT\gSiOJ_éreSiO;) — RTIn x (1 —xp) —0: 7
(1 =—x1) xp
Three-phase minal reactions: 3, see (25), and
6. (ég‘ESiO; e é-f]“ﬂSioa) e RT 1n _x_[_ =] ; (28)

*p

Where the last equilibrium is singular (see footnote 1).

We introduce the equilibrium constants for reactions 5 and 6:
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Fig. 2. Part of the P-T diagram for the MgO-Fe0-Si0, system.

We show schematically the possible forms a-d for the positions

of the nondegenerate univariant (P, M, y, S) curve (dot-dash

line) around the singular invariant point relating to the sto-

ichiometric Mg0-SiO, subsystem (point 1 in Fig. 1), The phase

compositions in the divariant regions are shown in the concen-
tration triangles.

0 n 0 0 (1]
Ky (P, T)=exp {[(gp™*'* — gF**'%) — (g}'es1% _ gFesiony) pry.
0 0
Ky (P, T) = exp {(gh'™'% — 2l YRTY,
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and get the equation for P(T):

2 (K, — 1)? = Ky (K KKy — Ko Ks + Ky — Kq)*.
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AN

IS, /TR

tructure of the i i '
S univariant assemblages in concentration space for the MgO

Mg0 Fe0 Mg

Fige 4.

. a) (P M, S); b R -Fe0-5102

systen ’ E(ll'l;L lésel:lbl:.ées)ei]j:_’t}i, Ys 8); c) (P, I, M, v); the dashed lines show the divari-
sting at the P and T of the univariant equilibrium.

3. FOUR-PHASE (P, M, I, y) EQUILIBRIUM (FIG. 4c)

To determine the five unknown £ i ¢ . :
o have five equatioms: unctions xp(T), xm(T), x:(T), x(T), and P(T)

Exchange reactions:

1), see (23); 2, see (24); 5 see (27).

Three-phase minal reactions: 6, see (28) and

O M SiO, 0 L 0y
7. (ghesiO _ ghesi% _ gl¥%) — RT In (xpxm/a3) = 0. (29)

We introduce the equilibrium constant for reaction 7:

0

0 + . 0
K, (P, T) = exp (g} — g8 — g )RT) =

Ka

and get the equation for P(T):

Ko (K Ko— Kot K=K K Ks) =
= KK (1—K,) (K Ks— K Ki— I K— KK Ka)

Thus the position of each of the M curves can be determined from a unique equa-
tion; the A point corresponding to. the intersection of.two M curves is found by
solving a system of two equations. When the pressure 1S eliminated, this system
can be written as a single equation of ¢(T)=0 type.

The value of dp/dr along the M curve is cglc_:ulated from (22); (13) and (14)
allow us to show that the stoichiometric coefficients for the four-phase univari-

ant reaction v.A:+ \'5Aa+v,A,+wA.s=0 can be taken as

. (L'g‘o’ _ Cgioz) (x$1g0 _ xglgo) — (cglOz . CEIOz) (xgﬁgo _ xgdgo)

o b B g0, — (10 — SO >
@ (SO cﬁlO:) (M0 — AE0) — (e c5' ™) (%, — xp %)
i : v 1 5i0. Si0s [ MEO MgO
(ci'o’»' — (;Z'Oz) (,\‘}:,‘E'O—- —\'{;‘LO) i (03 e Cot.l ) (s —Ya )

n == = 1 Si0: SiO, MO __ MgO ’
b= O (A — A — G e )

i i MgO Gi0s _ SiOx (ME0 _ (MKO
(cgnog__ cg‘oz) (xﬁ‘go——x};“" ) — (g — % ) (xs o)

Ve = . Mg0O MOy Si0y __
p (‘%’loz' 5310:) (rﬁg I (¢}

Si0: MiO MgO, !
7 o ) (xp ™ — X )

vo=—1.

For the case of the (P, vs M» 5 equilibrium, we get

Vi =4(xr-\'u)/(2v ——\'M-"\‘p)' \‘\;—:-2(Xp——.‘ﬁ)/(2x1-‘v\'.\1"-\'|')3 \’1=3("'M'_"'l‘)/(2-\'1_-\'.\1—-\'1')-
Ny Xy A . 9 h
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When we write expressions that include molar quantities (Gibbs energies, ygo1

and entropies for the phases), we have to incorporate relationships of Hhs oics

y A ; ; 1o Mgsio, .
$(5", P, T) = 1/35,()5° P, T), sp (¥, P, T) = s (™, P, 7).

The (P, v, M, S), (I, P, vy, S) and (P, M, v, I) ¥ curves intersect at a
five-phase # point, which is represented schematically in Flg..S. The two Mmisg
ing M curves arising from the # point are constructed by Schreinemaker's methOd‘
(2]. This multisystem thus has four stable invariant assemblages, three of whi
relate to the subsystem and are singular. The complete phase diagram of Fig, ch
enables us to state the possible equilibrium phase assemblages for each of the
divariant regions.

We now will explain our method of positioning the M curves near the y point
(I, P, vy, S, M), Figure 6 shows that in principle we could have two topologica].
ly different schemes for the M curves, both of which satisfy the empirical Tre-

lation v\"*<C v"*Y<y 'Y< xy"Y, In the first case, the points corresponding to p

and I lie in a concentration triangle on one side of the y-S tie line, while iq
the second, they lie on opposite sides of it. When one shifts from one form to
the other, the order of the (S, y, I, M) and (P, I, S, y) M lines changes. Qual-
itative considerations are inadequate to choose between these two forms, and
only the available measurements [22, 23] indicate preference for form a. An
analogous choice was made in [14], but the scheme given there for the disposition
of the M curves differs from ours: it is a mirror image with respect to the axis
I = constant passing through the # point (I, P, y, S, M). *The discrepancy arises
from differences in interpreting the measurements [22, 23]*, The decisive fea-
ture is that only our scheme agrees with the available data for the Mg0-Si0. sub-
system [6] (no such matching was performed in [14]). 4

We now will show how (12) and (13) can be used to calculate the coexisting-
phase compositions in divariant regions; let us consider the region bounded by
AB, BC and CA in Fig. 5, where there are the four three-phase assemblages (y, P
My, (I, s, M), (P, I, M) and (P, I, S), with the last degenerate. We give the
formulas for the compositions. ’

’

1. Three-phase (y, M, P) equilibrium: Unknowns xp, X;, and .x,. Exchange

reactions: 1 see (23) and 2 see (24). Three-phase minal reaction 7, see (29).

2. .Three-phase (I, S, M) equilibrium: unknowns z_ and z,. Exchange re-

action. I M
0peoc 0r o 0 0. , X (1 — x
(&]1551% — gf*51%) — (g — ght®) — RTIn M=% _ (30)
(I — Xp) X
Thrée-phaée minal reaction
0 7 0 [} X
(g™ — gu*® — gs) — RT In—* =0. (31)

3. Three-phase (P, I, M) equilibrium: unknowns xp, Xx;, and xy. Exchange
reactions: 5 see (27) and

0 O e 0 o —X
(8% — g% — (M — g% — RTIn MU =% ek
(I—--xM)xP

Three-phase minal reaction 6 see (28),.

*The experiments of [22] were performed by diamond anvils and laser heating: recently,
there has been firm evidence that the temperature was higher than that given by the authors by
1000° [24], so we suppose that the data of [23] obtained in an apparatus of sectioned sphere
type relate to the temperature range below this H point, while the measurements of [22] give
the phase relationships above it. The converse sequence was adopted in [l4].
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Fig. 6. Topologically distinct schemes for the positions of

the univariant curves in the region of the nonsingular (y, S,

P, M, I) invariant point. Forms g and b differ in their phase

configurations in the concentration triangle, with form a agree-
ing with experiment.

We now calculate the phase proportions from the known overall composition.
Let phases a, B and y be in equilibrium. Then we solve (4) to get

0 ' 0
MgO MgO, .FcO FeO FeO FcO, ,,..MgO MgO
(x 14 _xvg )("'ﬂc ....xve )—.(x € _xvc )(xB — X, )

o == — T -
(€0 MED) (0, Fe0) (x?aAgo —AE0) ( xgeo —&0y

0 oo . ‘
g (80 — xJ10) (x50 — x5%0) — (xFC — £T0) (180 — ey 3
g = - r 2 '
(R0 = 9) (70 s tf9) s (RO a0y (420 o RO
E") = I s goa - Eﬁ'

In the particular case of the (P, v, M) three-phase equilibrium, we must substi-
tute the following into:  (33): ’

M | MgO 2. MgO
" _FeO 1 .FeO 2 o)
Xp =3—(1—xp),‘ Xy F—‘E(l—xv), g =1—xu:

The conditions 0<<E.<<I, 0<<E<<I are in essence constraints on the overall com-

position x™#, x™° for which divariant three-phase equilibrium occurs for the
given P and T; if these conditions are not met, the system is in trivariant two-
phase equilibrium*. Here there is a unique constraint on the coexisting-phase
compositions as the equation for the exchange reaction. The phase compositions
can be identified unambiguously only by specifying the overall mixture composi-

tion. The additional equation for .Y M0 g

#0nly one phase may be stable for special overall compositions.
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0
( MO xi;‘“o) (. FeO TeO

0
Yo — Xy )= (xFO__ '\,Ir;‘o) (’\_\igO_ LY

(74 T )

che case of (v, P) equilibrium, we have
In

0 n
’ M - i
2, (2 (MO 4F0) _ 1y _ paweo

3 (xMEO | gre0) _ g

. equat%on in conjunction with (23) enables i nd
'i:h(lp ) uniquely. us to determine ¥,(P,T), a
1 ’
gne. additional phase complicates the pattern considerably; let us consider
for example El}(g.sgtsoi_.’ Pi Ly 13 M, S and 8, where we have addZd the phase 8-(Mg,
Fe)ZSiOA (modified spinel) to the initial five-phase system. The phase rela-

;ionShiPS in the FeO-Si02 subsystem are unaltered [6], but the P-T diagram for
gl Mg0-S10, subsystem becomes more complicated. The total number of # points

jncreases from 5 t?:. 12: hLinear optimization [6] enables us to identify the
srable B polnks; OL WALC there are four in the parameter range of interest.

We will make only some brief comments on the ternary system. For each four-
phase M curve we can derive only two five-phase # points; the stable # point (P,
M, S, v, 1) considered above remains stable in the extended system. The only
four-phase univariant assemblage involving phase B whose stability can be judged
reliable is (8, v, M, S), and the corresponding M curve is shown by the dashed
line in Fig. 3. Thus'although the P-T diagram for the subsystem becomes more
complicated, no new five-phase H points arise in this parameter range on includ-
ing the 8 phase.

The situation differs in the alternative diagram (see footnote 8). Without
repeating the analysis, we merely give the resultant MgO-Fe0-Si0, diagram (Fig.

7). There are other four-phase # points stable in the Mg0-Si0, subsystem here,

although the number of them is unaltered: instead of (P, M, S, y) and (8, M, S,
y), we have (P, S, v, 8) and (8, v, P, M). The five-phase H point (I, P, M, v,
S) already considered is here accompanied by a nondegenerate X point (B8, vy, M,
S, P). At present, the measurements are clearly insufficient to choose unambig-
uwously between these two types, but recent experiments [23] appear to indicate
negative slopes for the (I, P) and (P, M, y) ¥ curves in the Mg0-8i0, system, so

we can prefer the form in Fig. 7.

These diagrams are to be considered only as illustrating the algorithm; a
quantitative analysis requires a careful discussion of the input thermodynamic
parameters and is the subject of a separate paper.

APPENDIX

We will show how the singular # points may be described by Schreinemaker's
method [2]. The discussion relates to the general case of an n-component system.

) In a divariant assemblage D, given some special cqmpositions of the coexist-
ing phase, a phase reaction can Ooccur that is accompanied by changes in the pro-

portions of the phases for a fixed composition, This is possible if delllv.'|l be-

comes zero, so the reaction corresponds to a certain M curve. A typical parti-
cular case of such a reaction is the nonsingular univariant transformation in a
subsystem containing n - 1 components. 1f there are several such transformations
in the subsystem, the corresponding curves may intersect in the P-T plane and
define g points. These H points in the n - 1 subsystem are nondegenerate and

can be described in terms of Schreinemaker's scheme, and the same points will
occur in the P-T diagram for the n-component system and denote the bounds to the
nonsingular ¥ curves for n + 1 phases. Although n + 2 ¥ curves arise from such
a8  point, there are only n + 1 phases coexisting there when allowance is made

for the indifferent ones.

Let us consider the structure of the D fields near a singular H point of
thiB type.
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” '
Schrelnemiﬁig Z miiﬁg? c%early enables us to recover the disposition of the
curves neaf?]) Wépassuﬁe t§;E (E)' (¢), ..., which relate to the subsyStem
75W“ 1s ofnent éystem arising fro; §h9081t10n of the nonsingular ¥ curve for)

-comp? : is # point (equilibrium a + b + ¢ F* -
chene gefined, as the construction method ig discugsed in the main text. The

can compositions of the coexisting phases in the univariant assemblage enable
elds, which may also be denoted by

wwz“ determine the dispositions of the D fi

us @y, (¢), and so on in relation to the given ¥ curve [20, 21]; here it must
w)éemembered that ? aS;emblage (a) should lie in the sectér 5oundéd by this M
be ¥~ and the singular curve of (a). Thus near the nonsingular ¥ curve there

aﬂvn +#10D fic_aldsc When we pass from s
are Correspondlng D assemblage vanishes
th converse case. To solve this pro
lzctor il e Egggegegerate M curve and complete a circuit around the #

s The corresp ng D assemblages are introduced or eliminated on passing

int.
polft h the M curves and can enumerate the D fi i
iel and return
tgrigé initial set of D assemblages. ds in each sector
t

ector to sector via a singular ¥ curve,
if it was present previously or appears
blem, it is necessary to begin with a

1f the phase thermodynamic parameters (molar volumes and entropies) are not

availableé, the 501Ut10¥h15 not unique, since there are n + 1 ways of drawing the
onsiHSUIar M curve.l e ambiguity arises because .the planar polyhedron corre-

onding to the 7 + 1 phase assemblage in the concentration space of the system
containing 7 - 1 components can be transformed in different ways into a volume
PolyhedFOQ 1nfthe conceggratlon space for the n-component system. Clearly, the
regularizing factor wou be to specify the set of D associations for at least
one of the sectors.

Wwe are indebted to V. A. Zharikov, I. D. Ryabchikov, M. Ya. Frenkel', and
R, F. Galimzyanov for a valuable discussion.
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ORGANIC-MATTER TRANSFORMATION IN BOTTOM SEDIMENTS OF
THE BERING SEA DEEP-WATER TROUGHS*

T. G, Chernova

Institute of Oceanology, Academy of Sciences of the USSR, Moscow

A study has been made of the roles played by organic
matter in sediments in the Aleutian and Komandorsky depres-
sions in the processes of petroleum formation by reference
to changes in compositional features, accumulation condi-
tions, and bituminous-component distributions. Data have
been obtained on the content, composition and distribution
of the bitumoids in columns down to a depth of 4.5 m, which
show substantial organic-matter transformation that is not
characteristic of diagenesis in shallow sediments. The pa-
rameters identified, which correspond to the conversion of
organic matter as far as the level of protocatagenesis, are
related to the unusual diagenetic facies. There are high

contents of Corg (up to 1.87%) and hydrocarbons (up to

4.0%), while the organic matter is mainly of aline nature,
so these sediments may be considered as potential oil-pro-
ducing ones.

This study concerns organic matter (OM) in sediments in the Komandorsky
and Aleutian deep-water trenches, which are associated with an active continen-
tal margin. Almost nothing is known about the organic-matter geochemistry of
the sediments here, but the composition of the organic matter in such sediments
is of interest as regards oil formation, since the main economic oil pools in
the North Sakhalin basin are associated with such beds [1, 2]. The region is
seismically active. During 4 week in the 29th voyage of the R/N Dmitriy Mende-
leyev, ~ 120 tremors were recorded at a single point. Seismic energy can ac-
EE%Efate OM transformation considerably at low temperatures and favor hydrocar-
bon formation [3, 4].

In this rgg%on, there are very high rates of accumulation of terrigenous
and biogenic siliceous maFerlal, and very high rates of production by diatom
phytoplankton, together with considerable amounts of siliceous spongy benthos

#Translated from Geokhimiya, No. 5, pp, 713-718, 1987.
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