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Passive viscoelastic response of striated muscles†

Fabio Staniscia ‡*a and Lev Truskinovskyb

Muscle cells with sarcomeric structure exhibit highly non trivial passive mechanical response. The

difficulty of its continuum modeling is due to the presence of long-range interactions transmitted by

extended protein skeleton. To build a rheological model for muscle ‘material’, we use a stochastic

micromodel, and derive a linear response theory for a half-sarcomere, which can be extended to the

whole fibre. Instead of the first order rheological equation, anticipated by Hill on the phenomenological

grounds, we obtain a novel second order equation which shows that tension depends not only on its

current length and the velocity of stretching, but also on its acceleration. Expressing the model in terms

of elementary rheological elements, we show that one contribution to the visco-elastic properties of the

fibre originates in cross-bridges, while the other can be linked to inert elements which move in the

sarcoplasm. We apply this model to explain the striking qualitative difference between the relaxation in

experiments involving perturbation of length vs. those involving perturbation of force, and we use the

values of the microscopic parameters for frog muscles to show that the model is in excellent

quantitative agreement with physiological experiments.

1 Introduction

One of the simplest biological systems, that still defies the
attempts to reproduce it artificially as a macroscopic material,
is the striated muscle.1 Its mechanical complexity is due to the
presence of a large number of hierarchically organized micro-
scopic sub-systems that are strongly coupled through long-
range interactions.2 This makes the task of reconstructing the
macroscopic constitutive relations describing even its passive
mechanical response rather challenging.3

A broadly used phenomenological theory of the passive
viscoelastic response of striated muscles, proposed by Hill,4–7

does not rely on coarse graining techniques,8,9 and therefore
does not offer a link between macro and micro parameters. Since
Hill’s rheological relation involves a single characteristic time-
scale, it also does not capture the puzzling differences in the
passive response exhibited by striated muscles abruptly loaded
in soft (isotonic) and hard (isometric) loading devices.10,11 Here
we refer to the two complementary experimental setups: in the
former one controls the force applied to the extremities of a
muscle fibre while measuring the length, and in the latter the
force is measured as one controls the length.

A microscopically guided stochastic approach to (passive) mus-
cle viscoelasticity was proposed by Huxley and Simmons,10,12,32

who assumed that the individual force producing units (myosin
cross-bridges) are stochastically independent. A mean field
interaction between the cross-bridges was incorporated in a
closely related model by Shimizu.13–16 The two approaches have
been recently unified.2,17–19 In the present article we use this
framework to rigorously derive from a micro-model a (passive)
linear rheological response theory for a muscle half-sarcomere.
Our analysis builds on the work of Shiino20 who obtained a
similar linear response theory for the related model of Desai
and Zwanzig;15,16,21 other related out-of-equilibrium systems
were studied in ref. 22 and 23.

Our main result is a four-element linear spring-dashpot
scheme, which reproduces the mechanical behaviour of a
muscle fibre subjected to a time dependent perturbation. Each
element can be characterized in terms of the microscopic
properties of the muscle. In contrast to the three elements
classical model of Hill,4,5 the proposed rheological equation
contains not only the first but also the second order time
derivatives of the macroscopic displacement.

The model is characterized by two timescales that can be
associated with the characteristic times of the first two tran-
sient stages of (short time) muscle response known as phases
1 and 2 of the fast force recovery, see Fig. 1 and ref. 10 and 25–27.
The presence of these two timescales reflects involvement of
the two parallel passive processes: the (microscopic) conforma-
tional change in the myosin heads and the relaxation of the
myofilaments in a viscous environment. The obtained
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rheological equation provides an explanation for the longterm
puzzle that the fast phase of the relaxation in isotonic conditions
is slower than in isometric conditions, and for the fact that phase
1 is truly instantaneous only in the isometric case. Furthermore
we use the values of the microscopic parameters for frog muscles
to show that our macroscopic model, which does not depend on
any parameter fitting, is in quantitative agreement with physio-
logical experiments. In addition to delivering the macroscopically
adequate description, the proposed minimal model also reveals
the microscopic origin of the viscoelastic response and explains
its perplexing anomalies.

2 The microscopic model

The striated muscle is a hierarchical chemo-mechanical system
with the smallest scale represented by force generating half-
sarcomeres.2,28 The latter can be viewed as a scaffold of parallel
thin actin filaments intermingled with another scaffold of
parallel thick myosin filaments. This configuration allows
protruding myosin heads to attach to the binding sites on actin
filaments, forming cross-bridges which can cause muscle con-
traction either passively, by a conformational change (power
stroke), or actively, by detaching and reattaching to a new
binding site.2,29 While the cross-bridges are essentially active
elements, we can still interpret their mechanical response
as passive at the timescales of fast force recovery (B1 ms)30.
The cross-bridges’ active behaviour, involving detachment of
the cross-bridges, becomes dominant only at timescales of the
order of 40 ms.31

To reproduce the passive response of this molecular
machine we use a simple microscopic model17–19,32,33 based
on Huxley–Simmons’ theory.10 It relies on an assumption that
the fast force recovery (transition from phase 1 to phase 2 in
Fig. 1), which is due exclusively to the power stroke, can be
modeled as a mechanical response of a passive bistable system.

Following this approach we represent the pre- and post-
power stroke states of each muscle cross-bridge as two isolated
minima of a potential V(x). The asymmetry of such potential
(bias, maintained actively) allows the system to generate (stall)
force in the physiological regime of isometric contractions. It is
known that the cross-bridge configurations are more
numerous,26,29,34 but given that all these different configurations

are fundamentally similar,11 introducing just two neighbouring
states will prove to be enough to characterize the main relaxation
timescales.

We model the half-sarcomere as a bundle of thick and thin
filaments linked by N cross-bridges, as shown schematically in
Fig. 2. In view of our focus on passive behaviour only, and
following Huxley and Simmons, we include in the description
only cross-bridges that are attached. The detailed description of
this model is presented in Section S1 of the ESI,† while here we
proceed with the study of the reduced version of the model with
some of the fast degrees of freedom already relaxed.

We assume that in isometric conditions the half-sarcomere
can be described by the energy:

E ¼
XN
i¼1

VðxiÞ þ
kc
2
ðy� xiÞ2

h i
þ kf

2
z� yð Þ2: (1)

Here the variables xi represent the configuration of individual
cross-bridges, and z is the position of the thick filaments
backbone. The variable y characterizes the displacement of
the part of the thin filaments which is bound to the cross-
bridges (see Fig. 2). The first quadratic term in (1), which
couples it with the xi through a spring with a stiffness kc, has
the effect of creating a mean field type interaction between the
cross-bridges. As detailed in Section S1 of the ESI† the quantity
z � y mimics the elastic stretch of the filaments, which have a
combined stiffness denoted by kf. In view of its association with
macroscopic elasticity, we can consider that the variable y relaxes
instantaneously,35,36 so it can be adiabatically eliminated (Section
S1 of the ESI†) and replaced by its equilibrium value:

y ¼ Nkchxi þ kfz
Nkc þ kf

; (2)

where we introduced the notation:

hxi ¼ 1

N

XN
i¼1

xi: (3)

If instead of isometric system we consider the system in isotonic
conditions, loaded with the tension s, we should work with the
potential:

H = E � zsA (4)

where A is the cross sectional area of the sarcomere.
To simplify the analytical expressions we can define dimen-

sionless units by rescaling the lengths by the size of the
maximum size of the power stroke a and the energy by kca2.
In these new units: kc - 1 and kf - lfN � kf/kc.

Fig. 1 Schematic representation of the first two stages (phase 1 and 2) of
the transient response of a skeletal muscle subjected to an abrupt (a)
isometric and (b) isotonic perturbation. Here s is the stress and z is the
elongation. (a) Adapted from ref. 24, with s0 = 293 kN m�2, (b) adapted
from ref. 11, with s0 = 230 kN m�2.

Fig. 2 Simple schematic of the model described by (1). See Section S1 of
the ESI† for a detailed one.
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Finally, we note that since z(t) is also a macro-variable, (given
that filaments are much larger than myosin heads), its
dynamics can be considered deterministic and is then governed
by the relaxation equation:

n
dz

dt
¼ �@H

@z
¼ lfN

hxi � z

1þ lf
þ As: (5)

Here we use the non-dimensionalized time variable normalized by
the time scale gx/kc, where gx is the friction coefficient associated
with viscous interaction of individual myosin heads with the
surrounding sarcoplasm. Then n � gz/gx is the dimensionless
viscosity coefficient of the whole filament. This equation is written
using H as the potential, however it can be naturally adjusted to
isometric conditions. We note that the timescale

tz ¼
nð1þ lfÞ

lfN
(6)

characterizes the evolution of the macro-variable z and it will be
one of the two main timescales of our macroscopic
rheological model.

For the evolution of the micro-variables xi, we use the
equation:

_xi ¼ �
@H

@xi
þ xi ¼ �

@E

@xi
þ xi; (7)

valid in both isometric and isotonic conditions. Here we
account for the thermal noise xi, characterized by the standard
relations hxii = 0 and hxi(t)xj (t0)i = (2/b)d(t � t0)dij; b is the
inverse dimensionless temperature. The characteristic time-
scale of the microscopic dynamics tx will be introduced later
in the paper.

Our goal is to relate the small perturbations in macroscopic
tension ds(t) = s(t) � s0 with those in macroscopic position
dz(t) = z(t) � z0, where s0 and z0 are the equilibrium values. The
corresponding ‘rheological’ relation between dz(t) and ds(t)
should involve averaging over the noise and can be expected
to emerge in the form of a deterministic differential equation.
The ultimate goal is to rationalize the typical physiological
experiments, like those shown in Fig. 1 (see ref. 25 and 37 for
other possible applications) and relate the rheological macro-
parameters with their microscopical analogs.

3 The rheological model

Under the assumption that N is large, the single particle
probability density p(x, t) can be found from the non-linear
Fokker-Planck equation20,21,38,56,57

@p

@t
¼ @

@x

@V

@x
þ x� hxi þ lfz

1þ lf
þ 1

b
@

@x

� �
p

� �
; (8)

whose derivation is recalled for convenience in Section S2 of the
ESI.† Here we express hxi ¼

Ð
dxpx, which is equivalent to (3),

and shows that there is a backbone induced mean-field type
interaction of each cross-bridge with all other cross-bridges.

The stationary solution of (8) is:

ps(x) = Z�1 exp(�bU), (9)

where Z is a normalization constant and U(x, z) is the effective
cross-bridge potential:

Uðx; zÞ ¼ VðxÞ þ 1

2
x� hxisðzÞ þ lfz

1þ lf

� �2

: (10)

Here hxis is the equilibrium value of hxi, which satisfies the self-
consistence condition hxis ¼

Ð
dxpsðxÞx.39

After the equilibrium properties are established, we can
develop the linear response theory using as a starting point
the approach developed in ref. 20. To linearise (8) we consider a
small perturbation dp(x, t) = p(x, t) � ps(x), associated with a
small change of the macroscopic displacement variable dz(t).
The linear equation describing such perturbation is:

@dp
@t
¼ Ldp� 1

1þ lf

@ps
@x

ð
dxxdpþ lfdz

� �
; (11)

where we defined the operator L:

Lp ¼ @

@x

@V

@x
þ x� hxis þ zlf

1þ lf
þ 1

b
@

@x

� �
p

� �
: (12)

Using (11) one can show that the evolution of the average
configuration of a cross-bridge hdxiðtÞ ¼

Ð
dxxdpðx; tÞ is

described by:

hdxiðtÞ ¼
ð1
�1

hdxðt 0Þi þ lfdzðt 0Þ
1þ lf

wxxðt� t 0Þdt 0; (13)

where

wxxðtÞ ¼ �YðtÞ
ð
dxxeLt

@

@x
psðxÞ; (14)

is the susceptibility and Y(t) is the Heaviside function. In
Fourier space (13) reads

hdxiðoÞ ¼ lfwxxðoÞdzðoÞ
1þ lf � wxxðoÞ

: (15)

Next we write the conventional fluctuation–dissipation type
identity (see Section S3 of the ESI† and ref. 20)

wxx ¼ �bYðtÞ
dSxx

dt
; (16)

where

Sxx(t) = hx(t)x(0)i � hxis2 (17)

is the auto-correlation function of a single cross-bridge. Given
that in linear approximation each cross-bridge can be viewed as
conducting independently a Brownian motion in a double well
potential, we can use the Kramers approximation to obtain:40,41

SxxðtÞ ’ lU
2e
� t
tx þ d2e

� t
t0 (18)

(see Section S4 of the ESI† and ref. 42), where

tx ’
2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U 00ðxMÞj j
p ebUðxMÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U 00ðx0Þ
p

ebUðx0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 00ðx1Þ

p
ebUðx1Þ

; (19)

characterizes kinetics of the the barrier crossing while t0 C
1/U00(x0,1) characterizes the kinetics of relaxation inside a single
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well (with x0,1 being the minima of the potential (10) and xM the
local maximum between them).

The pre-factors can be also computed explicitly (see Section
S4 of the ESI†). We obtain:

lU ¼
x0 � x1j j ffiffiffiqp
ð1þ qÞ (20)

and

d ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

bU 00ðx0Þ
þ q

bU 00ðx1Þ

� ��
ð1þ qÞ

s
; (21)

with

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 00ðx0Þ
U 00ðx1Þ

s
eb Uðx0Þ�Uðx1Þ½ �: (22)

We will neglect the second term in the right hand side of
(18) since in physiological conditions the relaxation within a
single well is much faster (t0 { tx) and its effect is much
smaller (d { lU) than the corresponding effects due to the
barrier crossing.

We can now rewrite (16) in the Fourier space

wxxðoÞ ¼
lU

2b
1þ iotx

; (23)

and use (5) to obtain the desired linear response relation
between the macro-variables dz and ds:

�o2txtz þ io tz þ tx �
blU2tz
1þ lf

� �
þ 1� blU2

� �
dzðoÞ

¼ iotx
1þ lf
lfN

þ 1þ lf � blU2

lfN

� �
AdsðoÞ:

(24)

In the real space the resulting rheological relation can be
rewritten in the form:

yZf
d2

dt2
dzþ ðyEf þ ZfÞ

d

dt
dzþ Cdz ¼ dsþ y

d

dt
ds (25)

where

C ¼ EcEf

Ec þ Ef
; y ¼ Zc

Ec þ Ef
: (26)

The expression of the rheological model (25) in this from
allows one to interpret the coefficients

Ec ¼ Nð1� blU2Þ=ðblU2AÞ

Ef ¼ Nlf=ðAþ AlfÞ

Zc ¼ Ntx=ðblU2AÞ

Zf ¼ n=A

(27)

as describing the components of a spring-dashpot model
shown in Fig. 3. The next step is to use the available micro-
scopic data on molecular components for the quantitative
interpretation of the results of the macroscopic physiological
experiments with actual muscle fibers. We notice in this respect
that (25) is a relation between the displacement and the stress,

and not between the strain and the stress as in usual rheo-
logical models. Therefore, to obtain the elastic moduli one has
to multiply the values of Ec and Ef by the length of a half-
sarcomere l0 and similarly normalize the kinematic viscosities
Zc and Zf.

4 Physical interpretation

The proposed rheological model, which provides a relation
between the perturbations of tension and position, involves
(see Fig. 3) at the inner level a parallel bundle of an elastic
element Ec and a dashpot with viscosity Zc, and at the outer
level a spring with elastic element Ef and a dashpot with
viscosity Zf.

The inner level of Fig. 3 accounts for the cross-bridge
dynamics, since it comes from the linearisation of (8), and its
elements depend on the properties of cross-bridges. For
instance Ec characterizes the elasticity of myosin heads’
configuration. It depends on the parameter lU, which is an
effective width of the potential (10). This quantity is finite if the
two minima have comparable energy, which means that the
cross-bridge can actually switch between them. Instead, its
value is close to zero if one of the two energies is much larger
than the other and in this case the system will not fluctuate
between the two states. Under such conditions, which are not
physiological, the dynamics would be dominated by the term d,
describing the amplitude of fluctuations within the single
wells. Note also that Zc is an effective viscosity which sets the
timescale y of the cross-bridge dynamics. It depends exponen-
tially on the height of energy barrier between the configurations
of the cross-bridges (through tx), and has the effect of delaying
their adaptation to external perturbations. Overall, we can
conclude that for small perturbations the cross-bridge
dynamics can be described by a Kelvin–Voigt model.

The outer level in Fig. 3 represents the dynamics of the
filaments described by (5). Here Ef is the combined stiffness of
cross-bridges and myofilaments per unit area, which ties the
backbone position dz with the average cross-bridge position hdxi,
while Zf is characteristic of the friction felt by the filaments as
they move in the sarcoplasm. If n = Zf = tz = 0, (25) reproduces the
rheological structure of the (passive) Hill’s model.

To make a quantitative comparison between the model (25)
and the Hill’s model, we can define in isometric conditions the
storage modulus G0H and the loss modulus G00H as real and
imaginary parts of the ratio Ads(o)/dz(o); in isotonic conditions

to obtain the similar quantities G
0
S and G

00
S we must consider

Fig. 3 Schematic representation of the rheological model (25).
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instead the ratio dz(o)/Ads(o). The frequency dependence of
these parameters is illustrated in Fig. 4. Note the divergence of

G
00
H at large o in qualitative difference with the Hill’s model

where this parameter tends to zero. Similarly, in the Hill’s

model G
0
S has a finite limit at large o while in our model it

tends to zero. We also note that the entropy production in the

system scales with the loss modulus G
00
H and the fact that the

latter is always positive insures the thermodynamic consistency
of the macroscopic rheological model.

While the rheological eqn (25) was obtained for a single half-
sarcomere, it can be renormalized to the scale of a muscle fibre.
To this end we need to assume that the response is affine,
at least when perturbations are sufficiently small. We can
then view a myofibril as a chain of L B 104 half-sarcomeres
connected in series, and represent a muscle fibre by a parallel
arrangement of M B 200–2000 such myofibrils. The renorma-
lization will then reduce to the substitution dz - dz/L with ds
remaining unchanged.

5 Tensorial form

Viewing muscle as a passive viscoelastic bulk material we can
rewrite the rheological relation (25) in the tensorial form. Given
that our focus is on liner response, we can neglect the non-
linear effects, for instance the ones associated with objective
time derivatives. Under the assumption that the deformation is
incompressible we need to relate the deviatoric part of the
Cauchy stress tensor rab with the deviatoric part of the strain
tensor eab = (1/2)(uab + uba), where a, b = 1, 2, 3, uab = qua/qrb, rb is
the position vector and ua is the displacement vector.

We can describe the rheological response of the outer layer
by the differential relation

rab = De
abcd _ecd + Ee

abcd(ecd � ci
cd). (28)

Here the superimposed dot denotes time derivative and we
introduced the fourth order tensors of elastic Ee and viscous De

moduli in the outer layer. We also introduced the inelastic
deviatoric strain gi

ab developing in the inner layer of the mode.
Next we introduce the deviatoric stress ri

ab in the inner layer of
the model. Here we can use the standard Kelvin–Voigt model
and write

ri
ab = Di

abcd _ci
cd + Ei

abcdc
i
cd, (29)

where we introduced the tensors of elastic Ei and viscous Di

operating in the inner layer of the model. Finally, the outer
and the inner layered are coupled through the stress balance
relation

ri
ab = Ee

abcd(ecd � ci
cd). (30)

It is straightforward to check that eqn (28)–(30) represent a
direct tensorial generalization of the model (25) and reduce to it
when the considered deformation is purely longitudinal.

To obtain a more transparent representation of the same
tensorial model we can eliminate the internal strain ci

ab.
We thus write the stress balance:

rab = rl
ab + ru

ab (31)

where rl
ab = De

abcd _ecd is the deviatoric part of the stress
produced in the outer layer due to viscous friction (lower
branch of Fig. 3). Using the initial condition uab(0) = 0, the
stress generated by the upper branch of Fig. 3 can be written
in terms of the corresponding exponential tensorial kernels
K and L:

ru
ab ¼

ðt
0

Kabcdðt� t 0Þecd þ Labcdðt� t 0Þ _ecdð Þdt 0: (32)

6 Comparison with experimental data

We can use the relation (25) to calculate the response of a
striated muscle fibre to canonical step-like perturbations43

imitating in this way typical mechanical experiments.
In the isometric conditions we study the tension response to

a perturbation of the sarcomere length. In our notations, one
expresses the perturbation in the form:

dz(t) = dz0Y(t). (33)

The response can be calculated using (25). We obtain the
corresponding stress increment in the form:

dsðtÞ ¼ dz0 Ef � Cð Þe�
t
y þ C þ ZfdðtÞ

h i
YðtÞ; (34)

were d(t) is the Dirac function; the corresponding singular con-
tribution to the response usually cannot be detected in experi-
ments given that the perturbation is not strictly instantaneous.
Note the first jump in tension

lim
t!0þ

dsðtÞ ¼ Efdz0; (35)

which takes place simultaneously with the applied length step
(phase 1 in Fig. 1a). This is the signature of a purely elastic
response24 illustrated in Fig. 5a, where we compare the results of
the direct numerical experiments conducted using the original
microscopic model (see more about this below) with the predictions
of our macroscopic rheological model. The elastic phase is followed
by an exponential relaxation (phase 2 in Fig. 1a and 5a) with the
timescale y. The condition y4 0, or equivalently, 1 + lf� blU

2 4 0,
then serves as a condition (which is approximate since we are using

Fig. 4 Frequency dependence of the loss and storage moduli in isometric
and isotonic conditions for the physiological choice of parameters.
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an approximate expression for the correlation function Sxx) for the
mechanical stability of the equilibrium system in the hard device.

In isotonic conditions we study the response of the system to
a small step-like perturbation of the tension which we can write
in the form

ds(t) = ds0Y(t). (36)

The corresponding increment in displacement dz(t) can be
again calculated from (25). We obtain:

dzðtÞ ¼ ds0 �
tþt�

Zfðtþ � t�Þ
1� tþ

y

� 	
e
� t
tþ

�

þ tþt�
Zfðtþ � t�Þ

1� t�
y

� 	
e
� t
t� þ 1

C

�
YðtÞ;

(37)

where we introduced two new effective timescales:

t� ¼
Zc þ Zf
2Ec

þ Zf
2Ef
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zc þ Zf
2Ec

� Zf
2Ef

� �2

þ Zf
2

EcEf

s
: (38)

The approximate stability condition obtained from the sign of
the timescales is now 1 � blU

2 4 0. Note the difference between
the stability thresholds in soft and hard device reflecting the
expected ensemble inequivalence in this mean field system.19,44

Observe also that according to (37)

lim
t!0

dzðtÞ ¼ 0; (39)

which suggests that there is no ‘synchronous’ purely elastic
response to a step-like tension perturbation. Instead the
relaxation in the stages 1 and 2 is characterized by two-scale
exponential decay with timescales t� and t+. Since t�{ t+ the
first relaxation process, associated with the timescale t�, has
sometimes been interpreted as purely elastic. The two-scale
nature of the relaxation in isotonic conditions predicted by our
rheological model also explains the long known difficulty10 of
separating stages 1 and 2 in the corresponding transient

response, see the experimental Fig. 1b and the theoretical
Fig. 5b. To address this puzzle more elaborate chemo-
mechanical models were formulated to match the experimental
data, see for instance,37 however, none of the proposed models
can be compared in simplicity with (25).

Note also that the immediate stress–strain (tension–length)
response during sufficiently fast perturbations (B150 ms) which
is usually expected to be linear elastic, shows instead a funda-
mental rate dependency in isotonic conditions. In other words,
under such conditions there is an appreciable rate dependent
delay operating already at the timescales of perturbations in
physiological experiments. This effect is well known to experi-
mentalists as it effectively drives the instantaneous response
data away from a linear elastic one which would mean instan-
taneous relaxation.26 We emphasize that similar effects have
not been observed in the isometric experiments25 which can be
viewed as another justification of our rheological model.

Using the basic physiological and physical constraints on
the parameters, b Z 0, n Z 0, lf Z 0, one can show that in
stable regimes necessarily t+ 4 y, which is in agreement with
the experimental observations that the relaxation in the soft the
device is slower than in the hard device.11,25 Our rheological
model allows one to rationalize the observed difference of these
two timescales: in a length perturbation the backbone position
dz is controlled, and the relaxation timescale y depends only on
the rates of transitions of the cross-bridges, in other words, on
the kinetics of the macro-variable variable hdxi. Instead, after a
tension perturbation, the relaxation timescale t+ is also affected
by the viscous dynamics of the backbone variable dz. Therefore,
if in the case of the hard-device, the time scale y will effectively
describe the relaxation of a single variable, in the soft-device
the time scale t+ will characterize the relaxation of the two
variables. Since we refer here to the relaxation between the
same configurations, the kinetics in the soft device will be
slower than in the hard device at least due to the larger
dimensionality of the relevant configurational space in the
former case.

6.1 Simulations

We are now in the position to evaluate to what extent the
microscopic stochastic model and the macroscopic deterministic
rheological model can reproduce the outcomes of the realistic
experiments. Numerical simulations of the microscopic model
were conducted with a second order stochastic Runge–Kutta
algorithm. We simulated the response of the microscopic model
to a step-like perturbation dz in a hard device, and ds in a soft
device, computing the corresponding responses ds(t) and dz(t).

The results are summarized in Fig. 5 where we compared
them with the predictions of (25). We used the physiological
values of parameters (for the the justification of our choices,
see the next Section) with the exception that instead of the
realistic value N B 500 000, we used the computationally
reachable value N = 32 768, while appropriately rescaling
the parameters n and A to ensure that the behaviour is the
same and that the timescale tz remains at its realistic value.
Numerical experiments aimed at a single bundle of thick and

Fig. 5 Response to a step like perturbation in the rheological model (25)
(analytical), compared with direct numerical simulations for N = 32 768
cross-bridges averaged over 10 realizations (numerics). (a) Hard-device,
(b) soft device.
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thin filaments with N = 128 were performed using the same
rescaling and it obtained results that were qualitatively the
same. In both cases the agreement between the stochastic
model and the rheological eqn (25) is excellent for both hard
and soft devices.

6.2 Calibration of the model

To make quantitative predictions and compare our results with
physiological measurements, we need to substitute in our
model the physical values of parameters and reintroduce
dimensional units. For the cross-bridge stiffness we take the
value kc = 3.29 pN nm�1,45 while the combined stiffness of
actin and myosin filaments can be estimated at the value kf C
153 pN nm�1.35,36 To estimate gx we assume that a typical
myosin head has the diameter h C 6 nm and that the
sarcoplasm has the effective dynamical viscosity m C 2.3 �
10�6 pN ms nm�2.46,47 Approximating the head as spherical
we can use Stokes’ law to obtain gx C 3pmh C 1.3 �
10�4 ms pN nm�1. The friction coefficient for the bundle of
thick filaments constituting the half-sarcomere can be now be
estimated as gz C xA, where x C 3 � 10�4 pN ms nm�3 is a
viscosity coefficient obtained in ref. 45 and 48–50 from experi-
ments on unstimulated muscles, and A C 8 mm2. For a single
thick filament we can instead take gz = x/rf C 0.480 ms pN nm�1

where rf ¼ 2

 ffiffiffi

3
p

b2
� �

is the density of thick filaments in the
cross section of a sarcomere, in which the thick filaments
form a triangular pattern and lie at a distance b = 43 nm,51

and A = 1/rf.
To model the double well potential we use the simplest

quartic polynomial:

V(x) = c4x4/4 + c3x3/3 + c2x2 (40)

where the two minima are centred around x = �a/4 and x = 0
and the maximum power stroke length is a = 11 nm. More
specifically, we assume that the bias is towards the post-power-
stroke state x = �a/4 whose energy level is shifted down at
12.5 zJ below the energy level of pre-power-stroke state x = 0. The
maximum between the energy minima represents the energetic
barrier and defines the activation energy for the muscle power
stroke. It was previously estimated to be either 55.3 zJ or
95.1 zJ.52,53 We have chosen the smaller value as more relevant
for the the fast time transient response. These estimates allow
one to determine the parameters of the quartic potential V which
in the dimensionless form are c2 C 61, c3 C 757 and c4 C 2050.

Using these values of parameters, and the temperature 273 K,
we obtain the time scale yC 0.35 ms which is compatible with the
relaxation time measured in ref. 25. Next we estimate the elastic
modulus involved in the instantaneous response of a half-
sarcomere in the hard device. Given that l0 C 1.05 mm is the
length of a half-sarcomere and r C 0.83 is the fraction of the cross-
section of the muscle fibre occupied by sarcomeres,54 we obtain
EY¼ lim

t!0
dsðtÞArfrl0=dz0’NArfrkf l0=ðNkcþkfÞ’57�106 N m�2,

close to the value measured in ref. 25. Finally we compute the time
scale t+ C 0.44 ms which is also in good agreement with
experimental observations26,37 and another time scale t� C 0.004

ms which has not measured before, but whose small value justifies
the fact that phase 1 is usually considered instantaneous even in
isotonic condition.

7 Conclusions

We have shown that the fast time viscoelastic mechanical
response of striated muscles, involving such physiologically
important phenomenon as the ‘fast force recovery’, can be
quantitatively rationalized through a minimal stochastic model
of the microscopic structure of a half-sarcomere. From such
micro-scale model we derived a deterministic rheological
model which describes linear response of muscle fibres under
time dependent loading conditions and found explicit relations
between the macroscopic and the microscopic parameters.

The fact that the derived rheological relation involves not
only first but also second derivatives, showing rather unusual
dependence of the generated force on the acceleration of the
straining, allowed us for the first time to rationalize the
qualitative differences in the mechanical response of isometri-
cally and isotonically loaded muscles. The important advantage
of the proposed model is that it is not phenomenological as it
offers an explicit link between the macroscopic and the micro-
scopic parameters. This allowed us to calibrate the model using
the experimental data for the microscopic model, and obtained an
excellent quantitative agreement with physiological observations
without using fitting parameters.

It would be of interest to check experimentally the anti-
cipated quantitative link between the mechanical response to
fast perturbations25,37 and the power spectrum of mechanical
fluctuations.55 On the theoretical side, the main challenge is to
develop an adequate description of the active element which
can be incorporated into the rheological model to capture the
mechanical response of striated muscles at longer time scales.
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