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COMPARISON OF QUASICHEMICAL AND REGULAR
DISORDERING MODELS FOR MINERALS

WITH MELILITE-TYPE STRUCTURES *

yu. 1. Sigalovskaya, L. M. Truskinovskiy and V. S. Urusov

adskiy Institute of Geochemistry and Analytical Chemistr
Vext USSR Academy of Sciences yeies SR

A systematic comparison has been made of the results
of the simulation of cation distributions in minerals having
nonequivalent positions in regular and quasichemical models.
For certain values of the energy parameters characterizing
the short-range and long-range interactions, types of depend-
ence of long-range order parameter on temperature can be dis-
tinguished in both models: the ordering and antiordering
regions are separated in parameter space by a transitional
zone showing mixed behavior. More detailed incorporation of
the short-range order into the quasichemical model smooths
the temperature dependence of the order parameter and elimi-
nates the phase transitions predicted by the regular model.
A description is given of the order-disorder transitions in
terms of the variations in the proportions of various types
of clusters, which provides a higher "resolving power" than
the usual models of ideal or regular mixing. Regular and
quasichemical models are devised for the disordering of Al
and Si over tetrahedral positions in gehlenite, Estimates
are made of the preference-energy differences of cations in
the Tl and T2 positions and of the energy of interaction of
the cations with their nearest neighbors. Detailed agree-
ment between theory and experiment is obtained in both models
when one incorporates the nonconfigurational contribution to
the entropy, which is S$* = (3.1 * 0,5)R, The identical signs
of S* and the disordering enthalpy AH show that there is a
balancing effect, in which AH/S* = 2700 % 300 K agrees well
with the value estimated for isovalent replacement in hal-
ides: 2800 = 500 K.

Disordering is characteristic of the crystal structure of most rock-form-
ing minerals. The dependence of the degree of disorder on P and T enables one
to use it as a major indicator for the P and T of mineral formation.

Ideal-mixing models are usually used to consider disordering in minerals.
That approximation incorporates only the long-range interaction of an atom
(cation) with the entire crystal, which is expressed as a positional preference.

eShort-range order can be incorporated in a simple fashion in a regular mix-
model, Although it enables us to elucidate major qualitative features of

edlsordering due to short-range interactions, it remains illogical because
theﬁ.ssum.ption of the absence of correlations in the distribution of cations
their nearest neighbors [1, 2].

% The quasichemical model describes the short-range order more logically; it
§ developed initially for alloys [3] and extended [4] to any mineral structure

\
*Translated frop Geokhimiya, No. 9, pp. 1338-1351, 1990.
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containing two types of nonequivalent and differently coordinated Osity
This model represents the crystal as a mixture of noninteracting POSit{g NS,

groups (clusters) with different atomic POPu]"’:‘tions'd 12 J:'t’ one incorpo al
the correlation in the disposition of the cations an thelr nearest neigﬁates
and the configuration entropy is therefore nonideal. bors,

Recently, cluster methods have been used to derive phase diagrapg £o
ordered alloys [5, 6], and Kikuchi's cluster-variation method has been usr
to describe disordering in carbonate phase diagrams: CaCOs-Mgcos, Cdco ed

CaC0,-MnCO, [7, 8] (clusters as tetrahedra) and in the hematite (Fe203)

; ; "ilme .
(FeTiO,) system [9] (trigonal prism cluster). The application of the q Mite

Uasic
ical model to Al-Si disordering in albite [10] (square cluster) alloyeq i _
be described as a first-order transition and gave good agreement with expm_io
ment. b

The differences in the degree of detail to which the short-range order ;
incorporated in the regular (R) and quasichemical (QC) models leads to
tive discrepancies in the results of simulation of grderlng, Here we
a systematic comparison of those models for a melilite-type structure,

MIXING MODELS

Let us consider a mineral having the composition A,_:B.[Y¥]; the A ang B¢
tions participating in the disordering occupy two crystallochemically nonequi?-
valent positions o and B that occur in the ratio c:(l.-.c). The numbers of
cation positions in the immediate environments of positions o and B are ; and

o

is the number of positions of B type adjacent to an o position,

xa’ “ga’ and Epge

The long-range order w is represented as the proportion of B atoms in q
positions. In the completely ordered state, the maximum possible number of A
atoms will occupy o positions (w=w,) the completely antiordered (inversed)
state corresponds to the largest number of B atoms in a positions (w=w,) and
the state of complete disorder corresponds to w=w,=c [4].

Zgs while 208

with analogous definitions for =z

The main task is to calculate the equilibrium value of w(TI) from the con-
dition for a minimum in the configurational free energy F(w, T). F as a func-
tion of w is determined by the model. Let us recall the basic relationships
for the R and QC models (see [4, 11] for details).

Regular mixing model. This involves the assumption that all microstates
having the same » are indistinguishable and have the same energy U(w).

The long-range interaction of an atom with a crystal field may be charac-
terized from the energy ez. of an atom, e.g., of cation k (k = A, B) in position
i (2 = a, B); €x1 denotes the interaction energy for cations k and 7 in adja-
cent positions*.

The configurational energy of the crystal is [4] dependent on ei and €,
only via the combinations of them €, + €, and €y Parameter e,=e,"—e\*+ £nt—Ey
is the energy of the reaction A(a) + B(B) — A(B) + B(a), which characterizes

the relative positional preference of the cation. The characteristic for the
interaction of an atom with its cation environment is €.=Eg,4+ epn—2€an, the

energy of 2AB—~AA+BB. Sequential incorporation of short-range cation inter-
actions leads [4] to redefinition of the long-range interaction energy, which
is made up of By and €3;=2.Eus+2p€rs— (2+25)esn, the contribution due to interac-

tion between cations and their nearest neighbors. We follow [11l] in assuming

*As in [4, 11], by pair interaction energy for cations we understand the energy excesS_bY
comparison with the sum of the energies ew+ej (k I=A, B; i, j= «.p), arising from lattice det:her
formation and/or change in local valency saturation in the bridge anions when cations with ©

sizes and charges enter adjacent polyhedra.
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change in €, Produces a proportional change in its contribution €4 to

.range ?'_nteraﬁtion energy, then e;=fe, The coefficient of proportional=
102har3°ter1§esz;: ecgﬁe‘gme‘t\:’iylof.ghe structure; if the positions are equally
A 2, =2p= ’ = =9 lle 1 z ?52’ " Bt in

n{;g;gng aand interactions. «7-2p, T characterizes the asymmetIy
osl

7 (@) can be written apart from a constant as [4, 11]

U(w)= Nx (Elm' + %E,mﬂ) .

the total number of cations (positij _ _ o and
Heredﬂq zre geometrical parameters: P ions), E,=¢,+¢€,(E—p), L. £.0,
an
4
=2q + al (zpp — ; x
P e A Rk 1= =g e —Zas + ¢z — )],

The configurational entropy in the R model is

S{d =Nk{clnc—|- (l —C)!]](I —"C)—xwlnxw——x(l —H‘.')]I’l.\’(l —UL')—
—(—w)Inc—wx)—[l—c— (1 —w)x]In[l —c— (1 —au)x]).

ye minimize the free energy F=U—TS" with respect to » to get an equation for
w(T):
lenK:E,-}-sz,

K=(I—w)(c—w.\')w"[I—C—(l—w).\‘]“’. )

e solution to (1) is governed by the relation between ¢

; detail-
ed analysis has been given [11]. i g #0d: §: & Hekad

General quasichemical model. Let us split the crystal into ¥ identical
groups (cIusters) each containing sm o positions and (1 - s)m 8 ones. A group

can be filled with A and B atoms in 2" ways; the atomic configuration is charac-

terized not only by w but also by the set of numbers {&), that specify the pro-
portions of the groups of type a, a =1, ..., 27,

The assumptions are: 1) the.interactions between the clusters can be
neglected, so the crystal energy is the sum of the cluster energies; 2) micro-

states characterized by identical sets of w and {&} are indistinguishable, and
the number of them ¢(w, {£.}) is proportional to the number of permutations in
the set of clusters to the power \:

" T) — M! 8
g(w, (&), T) go(w)[——ﬂ(ma)!].

Introduction of parameter A enables us, in counting the cluster perturbations,
to preserve the number of adjacent-position pairs in the sets of groups equal
to the numbers in the crystal; by definition, A= (N/2rM)[c(2a—z,)+24], where r
‘¢ the number of pairs of adjacent positions in a cluster [4], while golw) is

defined by the condition g(T=o0)=exp(S"/k).
When we shift from the crystal to the set of groups, the number of posi-

ti .
ttgns (atoms) should be conserved. Therefore, the £, are not independent, and
Corresponding constraints are

Sta=1, Q&g =0

wx/c, i=1,...,sm (2)

b= (1 —w)x/(1 —¢), i=sm+ | [P
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Here ¢/”=1(=0) if position ¢ in group a is occupied by an atom B(4),

. The condition for absence of internal conflict in the model jg (4
terion for splitting up the crystals that restricts the choice of CIUSteiscri‘

S e— 3] F(l— = — 2,

i=1 (=sm+1 (3)

in which 2. is the coordination number of the positioms ¢ in a group, For
ex-

example, if the o and g positions have equal coordination numbers, Which j
typical of alloys, this amounts to equality of the mean coordinat
for the o and 8 positions in a group.

: S
ion numbers

Differentiation of the free energy E with respect to Ea and taking the 2

cf:onstraints into account allow us to express the equilibrium &,(7) ip Paramety
orm: t

)

m (a)

m (_n)
E(T) = []:[ ;Lf" exp (— ea/kT)]//[Z I ;tf’ exp (— ea/kT)] . )

i=1 a i—1

The group energy e, is as follows when (3) is obeyed: o= Amiie,, in which m'g)
is the number of pairs of AA type in group a.

The parameters p; (i=1,..., m) are defined by substituting (4) into (2):

€a I o (@
‘,E: exp| — T : iy
e (a) b/‘ (56.)

3 e~ | T

a

These equations are used with the equilibrium equation for parameter w:

sm m
/e |/ 1/(1-¢) Gtel—z) N
([[ Wi )/ [ oI w ] exp [“kT | =

i=1 i=sm+1
N

~ N
(1=2) — (1=A") —
_(c——wx) M [ (l —w)x il
. wx | —c(l —w) x ’

(5b)

in which

A.=;"smM X,=l(l—s)mM
N’ (I1—¢N "’

and form a closed system, whose solution in that approximation defines w(I).
As in the R model, the form of the solution to (5) is dependent on €15 €y and

C.

SIMULATING CATION DISORDERING IN MELILITES

In the melilite-type structure, there are two types of tetrahedral positioh
Tl and T2 (correspondingly o and B) in a 1:2 ratio over which one can distribute
the Mg?*, Fe?*, Fe’*, a1’*, g7, si**, and so on. Direct x-ray methods [12] azge
structure simulation [13] have been used to study the cation distributions iD
melilites. An empirical relationship of w to T has been derived for gehlel?z-ite
Ca,Al,Si0, [13]. It has been found that order inversion occurs in the soli¢”

. . n-
solution series formed by gehlenite with borian gehlenite C.’:\ZB?_SiO7 at the bor?
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Fig. l. Decomposition of 4 mixed anion melilite

layer [Tl T2],. into clusters composed of six [Tl,

T2;] tetrahedral positionss: a and c) ordered stat:a-
b and d) antiordered (inversed) state. '

rich end: there is a transition from an ordered structure (0<<w<C1/3) to an an-
tjordered one (1/3<w<).

Thermgdynamic simulation of.disordgring in melilites in the ideal-mixing
gpproximation [14] did not explain the inversion of order in the B-gehlenites
(vithout change 1in preference energy sign).

Regular model. For melilite structures with the gehlenite composition*
MABO; z2=4, 25=3, 2w=1, 2aa=0, 2ap=4, 2. =2, c=1/3, the basic equation in the R
model (1) is written as

kT In K=¢,+¢€,(£—2,5) + 3,5¢,W,

(6)
K=(1—w)*w' (1+w)-!.

Ideal mixing corresponds to €, = 0. Order inversion in the B-gehlenites can be

explained on the R model by large values of €pe
Quasichemical model. The tetrahedral layers in a melilite structure are

isolated one from another by layers of large polyhedra with eight vertices for

Ca2+ Sr2+ B512+
’ ’

: , and so on, so we assume that the T cations are redistributed
in each layer independently. Criterion (3) here takes the form

sm

252—1/2 2 Z=f/5
1

sm+1

An examination of all decompositions of the melilite tetrahedral layer shows
that for m < 6, only three of them satisfy the criterion:

T9—T1 TI—T2—T1 T2—TI—T2—TI
T

and

< ; | |
T2—T2 TI—T2—TI1 T2 T2

I - : 3
t can be shown that if the equivalent o or B positions are symmetrical in a

\

of g4 e consider gehlenite-type structures M,?+A,*DB*O; of main interest from the viewpoint
hrg:ordermg theory; in them, of the two tetrahedral cations A * and B+, the latter has the
T Preference for the T2 positions because of valency undersaturation at the unshared oxy-

th.:ertex: but the similarity in the charges and sizes of the two cations make it possible for
&-‘*o, °t e Tedistributed as the temperature rises. In structures of the akermanite type M,2+A2+
]

he difference in charge for the T cations prevents such mixing,

13



group, the corresponding . are equal, 8O choosing a symmetrical cluste, fac;
4.

tates the solution, and on that basis, we choose the secgnt_i group, which -
tains only two independent positions: Tl and T2. A melilite tetrahedyrs) 1o
can be split up into groups of that form in a single way (Figs. lc and d) EaaYer
group nominally contains one Tl position (each Tl position belongs to fq,, h
groups) and two T2 positions, so in that decomposition we have n/m = 3 )

~ = 1,
A 4, A= 1.
Under those conditions (5b) becomes

l“"[‘] _ w )3._11_

-ET—z_(l—w o’ (7)
in which

u=exp [—(e,+Ee.) /RT], v=exp (—e./kT)

and (5a) is

in which

O=v(@+pn)+pi, 1+ pr)t + 201e (1 4 pr)?® (v + pr)?,
Oy =pr, [0 4 prg)® + p2, (1 4+ pn)® + pn (14 pn) © + po) (T4 2pr 4+ )],
O, =p2, (1 4 pn)* +pr (1 + pr)? (V4 pn)*

To determine the equilibrium w, we thus have (7) in the quasichemical
approximation (“Tl oo are expressed in terms of w from (8)), while we have
L]

(6) in the regular mixing one. Those two equations contain the same set of
energy parameters €, €, and z. Only two of these three parameters are inde-

pendent, and the choice of the third is equivalent to specifying the tempera-
ture scale, so in the numerical calculations we used the dimensionless parame-
ters y=le./e, and r;, together with the reduced temperature 0=~kT/e,.

DISCUSSION

Long-range order. Figure 2 shows the forms of solution to (6) and (7)
schematically for x and c.

At high temperatures, the regular model in Fig. 2a and the quasichemical
one in Fig. 2b predict quantitatively similar disordering patterns; monotonal
variation in w with T. For 6—>oc , we have w—w, = 1/3. I1f ¢ > 4.25, they
both show that order inversion is lacking: w decreases as x increases at con-
stant 6.

In both models, there are regions in (¥, {) space corresponding to ordering
(0) and antiordering (A) as the temperature falls, between which there is &
transition zone (4/0), which corresponds to a mixed condition, The latter 13
characterized by the fact that w(0) for 0<6 _ is located in the antiordering

region (6—0 for w—l), while for 9>9cr, one has ordered values of w. The

sizes and positions of the transition regions differ slightly for the two
models:

1/(11/3—8) >340>1/(4,25—C) ®
1/ (11/3—8) >ya,0>1/(4—F) qc

Qualitative differences'appear when we examine in detail the behaViOr_ﬁ_
w(0) in each of the (x, §) regions. In R, the model predicts additional equ:;‘ween
brium states for certain values of the parameters, and thus transitions be
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Fig. 2. Regions in X and ¢ space differing in disorder-

ing for the regular model (a) and quasichemical one (b)

[10]. O ordering region; A antiordering, A/0 transition-

al zone., The insets show the corresponding w(6) schema-
tically,

them (insets 3-5 in Fig. 2a). 1In QC, there is only one solution to the equili-
brium equation in the range (0, 1), and ©(0) is continuous at all temperatures.
In the 4/0 zone in R, one can determine 6,, the temperature of the first-order
phase transition of disorder — order type. 1In QC, the analog of 8, 18 CH

the point where w(0) meets the straight line w = 1/3, 6., may vary throughout
the temperature range as (x, §) vary, whereas the 6, range is finite from 0 to

8,, the temperature of the antiorder — disorder transition that is absent for

the QC model. The first-order transition predicted by R of antiorder — anti-
order type in region 1(3.1 - g) > x > 1/(11/3 - ) (curve 5 in Fig. 2a) is
also absent from QC; there is merely some increase in the slope of w(0) near
the boundary between the 4 and 4/0 regions.

More detailed incorporation of the correlation in the disposition of the

- tations and the nearest neighbors in QC thus smooths the w(0) curves derived

fron R and causes the additional roots in the equilibrium equation to vanish.

In QC, there is a smaller variety of forms for w(0), and the additional division
into subregions in 4 and 0 is eliminated. In spite of these qualitative (topo-
03ical differences in the w(0) curves for the two models, there is general
Qualitative agreement between them for given values of €1r € and ¢ (Fig. 3).

conf-configurational entropy. In these approximations, the expressions for the
lgurational entropy in the two models differ:

1/(11/3 =) > xa0 > 1/(4.25—0) R
1/(11/3—5) > xa0>1/(4—8)  «c 9)
Sp=R[2In2 —winw—2(1 —w)In(l —w)—(1 +w@)In(]l 4 w)],
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Fig. 3. Melilite w(0) from regular (dashed line)
and quasichemical (solid line) models; 1-4) points
in x and ¢ space and corresponding w(l)) curves.

The inset shows the w(l)) curves for the 4/0 region.

Skx=—3R[winw + (1 —w)In(l —w)] —
—R[—In®+ 4winpr, + (1 —w)Inpr.] + (10)

e : J;”T‘) [(© 4 1) + 40 (0 + p1)* + 4pre (1 + pr)?].

+ R

The equilibrium S(7) from these are shown in Fig. 4a. At high tempera-
tures, the two models indicate a monotonal increase in S with asymptotic

approach to Sg = R(3In 3 - 21ln 2) = 3.742 eu for 0—co. At low 7, there is a

qualitative difference, which reflects features in the behavior of w(). In R,
there are entropy steps at the phase transitions (Fig. 4b), while in QC, 5(8)
varies monotonally as § falls from S5 to Sg = 2RIn 2 = 2.775 eu in 0 and from
S, to zero in A4 and 4/0 regions (Fig. 4a).

Number of neighbor pairs. The short-range order parameter can be taken
as the number of pairs of adjacent atoms:

NAB - NAB,m
g=—"0 25>
Nago—Nup

in which N Nawe, and N,z are the numbers of AB pairs correspondingly for the
given temperature, zero temperature, and infinitely high temperatures. It has
been assumed that the atoms are randomly disposed in the sublattices in the R
model, so the number of pairs of adjacent atoms is determined by the product
of the probabilities of encountering the atoms in the corresponding positions
[&, 11):

N NG v, g
i B B f Ng . Np
Napr= N3 (zaa —Na + Zaﬂ_Nﬂ + Na (Zlﬁa‘_Na_ + 2 NP ) !
in which 2id is the number of j positions in the immediate environment of an %

position (Z, § = a, B).

For melilites we have (per position)

Nanr= (Tw*—4w +5) /6.

116



AF ﬁl/
A & e \
\\ I-Z
e N |
’ Se \\-7 0
N )’74/5 A0 g 14z
A A
Seu
- b 14
\\
N
J
l
\\ __‘2
\ /
\
\
=% 1 >3/
—— — —t/
c
J
2
/
- 1 7
4 7

Fig. 4. Configurational entropy of melilite as a

function of 0=kT/e;; a) based on the QC model with

various x=g;/€; b and c) based on the QC (solid

line) and R (dashed line) models for x = 0,144 (b)
and x = 0,2 (c).

In a state of complete order at zero temperature, NAB & (6 =0, w=0) is
: )

3/6 for an antiordered structure and ¥ (6 =0, w=1) is 4/3; for 0—oc and

=W = 1/3 we get N

AB,R

g m (6—oc0) = 20/27. Figure 5 (dashed lines) shows the

8uilibrium dependence 0 (8).

ber
the

0)

For

sigt

In i i = mis, where mi is the num-
Qc, yp,qc 15 given by ¥, oc D) Emis AB

a
°f AB pairs in a cluster of type a. In the 0 region for (x, §), with 60,
Crystal consists only of ordered clusters (Fig. lc) and NAB,QC (6 =0, w =

Per position is 1/2; in the 4 and 4/0 regions, for 6 = 0 the structure con-

g_f&ly of antiordered clusters (Fig. 1d) and NAB,QC (6 =0z w=1) is 2/3,

» We get
Nas,qc (8 - 00) = ) & (8 — o0) - mis == 0,3704.

At high 8, 0(6) in either approximation behaves in much the same way; for
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Fig. 5. Temperature dependence of the normalized

number of unlike pairs of nearest neighbors in the

regular (1) and quasichemical (2) approximations.
{ = =3, numbers of the curves .

%R LB R
MR 523838 38

238 2
XX R K

TI—T2—TI

Fig. 6. Independent methods of filling a TI—T2—TI1

cluster with A and B atoms.

—oo , 6—0 in both cases (Fig. 5). At low 6, the equilibrium o(8) curves have
qualitative differences, which reflect the features in the behavior of w(0).
The transitional zone in the R model is characterized by stepped nonmonotonal
behavior in ¢(0), while in the model QC, the corresponding curves are monotonal
and continuous. QC is distinguished by the absence of a minimum on o(6) which
is predicted by R for the 0 region in x and ¢.

Disordering mechanism. Let us now consider the temperature dependence of
the cluster proportions with particular atomic arrays in the QC model.

For a melilite, the chosen decomposition into clusters means that there
are 64 ways of filling the clusters with A and B atoms, of which only 24 ?rzom_
independent because of the symmetry of the cluster (Fig. 6). The state o2
plete order (Fig. la and c) corresponds to a cluster array in which one T
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ied by a B atom*, whil ’

is occupie ’ 1le the other positions contain A atoms;
asiﬁi‘l’nchat array dcompletely ordered (group No. 5,pFig. 6). Similarly, a com-
Pl cal? _priorderec Structure can be split up into groups that contain B atoms

we o1y itions and A in T2; cor ; C
te osi H respondin letely
plethedz:;l-eﬁ (Fig. 1d, group No. 10 i Fig. 6)% groups will be called compleé

"

lﬂtior . 11 .
e symmer_rlca y equivalent positions in a cluster have identical ¥, (71,

’r + 3
only two of the u? 01:.th Ok iR el m independent for our cluster: one for
soe 7l positions equzva ent-: one with the other, Mr,» and the other for the T2
- jpions» V12’ To determine those two quantities, we have two equations in
905 4hich can be solved for them:
(58)1
] _3w l _3 9
pr = [—l—v + (1 Ly w) Tovw | /
l—w l—w + 1 — /4y
v+ pr, \? w o -1 (11)
W12 = ( N ) - + / w + | 4w ,
T v(l —wj v(l—w?  ov(l—r)

v=exp(—x/6).

we substitute (11) into (7) to get the equilibrium w=w(0,y, ) and determine
l"‘l‘l’—'-l—"'l.‘i(e, x'C)’ ""“:p’“(e’ X C)' and then §¢=€c(9| % %)

For 000, & is not dependent on how the cations are distributed over the
psitions and is determined only by the cluster composition; (4) with pr,1:(0=o0)
P 1/2 gives

8 gla) nl@

Ea(B=00)=2"" ¥ ' /3°=0,0137.2 A,

=1

! . a g .
| in which ng ) is the number of A atoms in an ¢ group. For O=c0, the mixture
of groups includes seven types as regards the number of B atoms in each (nlga)

=0, ..., 6); the proportions of the groups of the given types in the mixture
are equal.

We have v—0 for 6—-0, so up to terms of higher order in the small parame-
ter v

(14 w)?
2w (l —w)

2w | 3
Py =10 o’ H1, =0 (12)

1

Substitution of the asymptotic (12) expressions into (4) gives a result depend-
ent on v for 0=0. For w(6 = 0) = 0, the numbers of all clusters apart from the
ordered one (No. 5) are zero; for w(8=0)=1, a nonzero value occurs only for the
number of antiordered clusters (No. 10). Thus ordering (antiordering) is attain-
ei‘ in a single fashion: at 0=0, all configurations vanish apart from the com-
Pletely ordered (antiordered) ones.

The Simulation shows that there are three types of cluster as regards E.(0),

initilrSt type contains groups Nos. 1-6 (Fig. 6), whose numbers in the 0 model

that ally increase as 6 falls but then decrease. In the A region, clusters of
type show a monotonal decrease in £, as 6 falls, with E.<<E.(0—-o00).

behav}':he second type consists of Nos. 7-18 (Fig. 6), where A shows nonmonotonal
°f but 0 shows monotonal character.

\

%
oy It ig assumed that an ordered crystal contains equal numbers of groups in which the B
utyg € in each of the two T2 positions, so we do not consider possible ordering over the
€0t positions,
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Fig. 7. Al-Si disordering in gehlenite. Experimental
data from structural simulation [13]. Calculations in
the QC approximation: 1) &/k=8000 K, L=1, e,/k=300; 2)
€1/k= 8000 K, {=2, €2/k=300; . 3) &,/k=800 K, {=3. £2/k=200 K;
4) €/k=8000 K, {=4, €/k=200 K; 5) &/k=16000 K, =1, e/k=
1000 K; 6) &/k=16000 K, {=1, e2/k=1000; 7) &,/k=4000 K,
=1, €/k=300 K; . 8) &/k=4000 K, =3, €/k=300 K; inset I
is from the regular model, while inset II shows the ranges
in ¥ and ¢ in which theory and experiment agree (within
the experimental error for R and QC models, the latter
hatched).

The third type has numbers that decrease monotonally as 6 falls for any y
and ¢ (Nos. 19-24, Fig. 6).

The assignment of a cluster to a type is correlated with the number of po-
sitions whose filling is different from that for the completely ordered or anti-
ordered clusters. If for example the numbers of such discrepancies (numbers of
incorrect atoms) are more than two, the corresponding clusters are disfavored
by energy, so their numbers decrease as 6 falls. On the other hand, some in-
crease in aa as 6 falls occurs in configurations having one or two incorrect

atoms, but further 6 reduction leads to differentiation for that type of cluster
in accordance with the number of incorrect atoms: at first, the numbers of
groups containing two such atoms decrease (No. 3) and then these with only one
(Nos. 1, 2, 4 and 6), and finally only the ordered configuration remains (No.
)

Al-Si disordering in gehlenite. The R model cannot describe the 6 depend-
ence of w for gehlenite found by experiment in any detail [11], as there are dis-
crepancies in curvature between the empirical and theoretical w(7), which is
particularly evident in a plot of 1n X against 1/T (Fig., 7, inset 1), Varying
€11 €y and ¢ cannot bring these curves into coincidence. The curves in the R

model can be brought into coincidence by adding an additional term TS* to the
first part of (6). S"; which is ~ 2.9°% 0.3 R, has the dimensions of entropy
and is independent of w and 7. When S* is incorporated, a fit is obtained be-
tween theory and experiment with e.,/k<< 2000 K, 0<<t<< 4, and e,/k~ 8000 K,

Here &,k is comparable as regards order of magnitude with the positional
preference energies in other aluminosilicates. In magnesian tschermakite [15],
the energy from Al-Si exchange in the tetrahedral positions is equivalent to
4915 K. For completely ordered albite at room temperature, the ¢,/k derived from
the Madelung position potentials [16] is ~ 4000 K with effective charges for
the aluminum of +1.0 and for the silicon of +1.,1-1.15.

The Madelung potentials and lattice energies may be calculated with the
[12] cell parameters and atomic coordinates to estimate e//k for gehlenite. The
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rigure 7 zggz:e:hihzgsg}l;ts of calculations in the QC approximation. Vary-
g X and ¢ 1N Al e B € empirical w(T) curve cannot be reproduced in that
e 1. Agreﬁ"-)“enin bty il glne% again by multiplying the right-hand side of
17) by exp (S B R i h tl‘i close to the analogous quantity estimated in the
g modele The ieepfor Y = nggetlcal and empirical curves in ln X plotted
against 1/1 agre fi BB v and r 5 K, and the fit persists within the experimental
cor for a reglo X and ¢ displaced from the corresponding region in the R

Er [¢] l (2 . a
owards larger ¢ (inset 2 in Fig. - - .
;uge%.;; e e il 5, Seewrs §2'83_g:51}atChed). This implies the constraint

The range in e./k derived from the Madelung potentials gives an upper bound
to the short-range lnteraction energy for gehlenite and an estimate of the con-
tribution from it to the long-range interaction energy:

R: 1040<Ce./k<<4800 K, 2600 K<e,/k<<12000 K.
QC: 900<Ce./k<<2400 K, 1500 K<Ce,/k<<7200 K.

In either model, S*, the excess entro is muc
nakes a more detailed correction for the sggr"t-rangehoige‘:rsgﬁi'haghiigct:lzoggz
fect on S*, so we conclude that the excess entropy is not of configurational
origin. S* indicates a compensating effect [18]: a linear correlation between
the mixing enthalpy AH and the nonconfigurational entropy S*. The above esti-
mates of the energy parameters give AH/S'~g,/S*= 2700 + 300 K, which agrees
v‘rgll with the value [18] AH/S' = 2800 + 500 K for isovalent replacement in hal-
ides.

It has recently been shown [19] that one cannot match the gehlenite ther-
modynamic functions to experimental data based on phase equilibria involving
that mineral in the CaO-A1203—8102—C02-H20 system. The nonconfigurational en-

tropy of gehlenite provides for making appropriate corrections to calculations
of phase equilibria.

We are indebted to L. S. Dubrovinskiy for calculating the Madelun ten-
tials for the gehlenite positions. o PR
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THE NATURE OF ORIENTED ILMENITE SEGREGATIONS
IN ILMENORUTILE AND CORUNDUM *

N. R. Khisina, V. G. Senin, L. V. Petushkova and V. 0. Polyakov

Vernadskiy Institute of Geochemistry and Analytical Chemistry,
USSR Academy of Sciences

The conditions governing the formation of platy
ilmenite segregations in ilmenorutile, magnetite and
corundum have been considered in order to discuss the
origin of the mineral in reactions in the FeO-Fe203—

Tio,, FeO-FeZOB-TiOZ-NbZOS, and A1203—Fe0-Fe203—Ti02
systems. The decomposition in corundum is of the oxida-
tive type, which characterizes the high-temperature peg-
matite stage. Platy ilmenite in ilmenorutile arises from
reductive decomposition of the latter, which occurs in the
late low-temperature stages. Oriented ilmenite segrega-

tions in oxide minerals can be used to indicate the redox

conditions in the different temperature stages of mineral
formation.

Oriented mineral intergrowths are quite common and can form at various
stages in the formation of rocks and minerals: during crystallization (eutec-
toid structures, epitaxial intergrowths, twine); during subsolidus cooling
(solid-solution decomposition structures, polysynthetic twinning); and as_a
result of metasomatism (topataxis intergrowths). These intergrowths may be ma-
croscopic or may consist of submicron inclusions of one mineral in another. The
general crystallographic and thermodynamic regularities in these intergrowths

*Translated from Geokhimiya, No. 9, pp. 1352-1359, 1990.
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