11. Lazarev, A. N., B. F. Shchegolev, M. B. Smirnov and s, P. Dol
Dokl. AN SSSR, v. 292, No. 5.

12. Dikov, Yu. P., V. L. Pekharsky, G. L. Gutzev, et al., 1986 .
Miner., v. 13, 48. ¢ hys_Che

13. Dikov, Yu. P., I. A. Brytov, Yu. N. Romashchenko and s, P. Dols m,
Osobennosti elektronnogo stroyeniya silikatov [Features of tﬁlln’1979
Structure of Silicates], Nauka, Moscow. © Elegpy.®

14. Levin, A. A. and S. P. Dolin, 1979. Koordinats, Khim., v, 5

15. Levin, A. A. and P. N. D'yachkov, 198l. Zh. Neorgan. Khip, ' 320,

16. Fujinaga, S., 1983. The Molecular-Orbital Method [Russ
edited by L. A. Shelepin], Mir, Mosgow.

17. Popov, N. A., 1975. Koordinats. Khimiya, v. 1, 731,

18. Baronovskiy, V. I. and O. V. Sizova, 1974, Teoret,
v. 10, 678.

19. Dewar, M., 1972, Molecular-Orbital Theory in Organic Chemistry [

in, 1986

rOHiC

2291,

. y V., 9’
lan translati0n

i Eksperinp, Khimiy
a’

translation, edited by M. Ye. Dyatkinal], Mir, Moscow, Rusﬁﬁn
20. Basch, H., A. Viste and H. B. Gray, 1965. Theor. Chim. Actgy v. 3
21. Dolin, S. P., A. N. Lazarev and A, A. Levin, 1980. Tez,. VseéOYGz » 458,

po fiz. i matem. metodam v koordinats. khimii [Abstracts for the Al
Conference on Physical and Mathematical Methods in Coordinati
Kishinev.

SOVeshc
the A1iycshen
n ChemiStry]

UDC 550.425:548.4

SHORT-RANGE FORCES IN MINERAL DISORDERING:
MELILITE-TYPE STRUCTURES*

Yu. I. Sigalovskaya, L. M. Truskinovskiy and V. S. Urusov

Vernadskiy Institute of Geochemistry and Analytical Chemistry,
USSR Academy of Sciences

Cation disordering in a mineral structure having two non-
equivalent positions is described by a regular-mixing model.
The atomic-configuration energy calculations incorporate not
only the long-range interaction (average field) but also the
interactions between nearest neighbors, The short-range 1n-
teraction contributes to the long-range energy if the posl-
tions are unequally coordinated, and the crystalline-field
effect can be accentuated or balanced out as far as order 1n-
version. The general trends are demonstrated in the example _
of cation disordering in the tetrahedral positions in a Struc
ture of melilite type.

The tightening of the need for accuracy in calculations of min%iz ideal-

dynamic functions is reflected in more complicated mixing models. hig _temper®’
mixing model, which until recently was the basic approximation for ~21.
ture disordering, has been recognized as inadequate in many cases -
; a
e interf
The main shortcoming in that model is neglect of the short-rang 19“‘3rgy

. ; io
tion between the disordering atoms when one calculates the configurat

*Translated from Geokhimiya, No. 7, pp. 931-941, 1988.
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It seems clear that one needs to incorporate such pair interactions, which can
usually be reduced to nearest-neighbor ones.

The simplest way of incorporating the short-range order is in terms of a
regular-mixing model, which was devised originally for disordering (mixing) in
alloys [7-9] and has been applied as a purely phenomenological model to minerals
(2, 3, 10]. 1In [11], the basic formulas were derived for the fairly general
case of two-position disordering, including differences in coordination between
positions. A statistical model gave a relation between the phenomenologlcal.
ordering coefficients on the one hand and the basic geometrical characteristics

(composition and coordination) and energy characteristics (elementary-volume en-
ergies) on the other.

Here we examine qualitative features of disordering in minerals arising
from the assumption of regular mixing; the main attention is given to the rela-
tive importance of the short-range and long-range interactions. The model is
applied to disordering in melilite-type structures, It is found that incorpora-

ting the interaction of cations in adjacent polyhedra explains the observed
antiordering in boron gehlenites.

CATION REGULAR-MIXING MODEL

Let us consider a A,_.BJ[Y] solid solution in which N(1 - x) cations of type

A and Nx ones of type B are distributed over two crystallochemically nonequi-

valent positions o« and B; the disposition of the Y atoms is fixed. Let the struc-
ture contain Ne¢ o positions and ¥(1 - e¢) B ones,

The complete-order state or normal state is that of a cation array in which
the maximum possible number of 4 atoms occupy o positions, while complete dis-
order is a uniform distribution over the cations, and complete antiorder (or in-

verse state) is a distribution where the maximum possible number of » atoms are
in o positions.

We define the long-range order characteristic w as the proportion of B atoms
in o positions; the cation distribution is described by

(ArsreBi)* (Aimetiat Biaia)® V1.

Here w may vary over the following ranges: preferential ordering corresponds
to wy< w<¢; preferential antiordering to c<w<w, and complete disorder for

w = c¢. The values of w in complete ordering (wo) and antiordering (wl) are

0, I<x<Ll—cg,

L ‘%={£:&211>x>1_c
5 __{c/x, c<xL1,
! I, ¢=x=0.

The model is based on random mixing within independent sublattices, which
is an extension of the ideal-mixing model, and it includes not only the long-
range interaction (average field), which amounts to the position preference, but
also pair interaction of cations (nearest neighbors),

The energy of the crystal U is the sum of two terms [11]:
Uy =e4N% + eEN% + ehNG + eBN8,

Uy = N5ieXh + Ni%e%s + N&kels 4+ N%ed, +
+ Nuedh + N3hedd + N5%e5% + NOPieffy - NBaefl 1+ NESeER,

Here 32 and Nﬁ are the energies and numbers of atoms of type k (k = 4 or
B) in the ¢ positions (i=a, B), while e/, Nij (i, j=a, B; k, =4, B) are the energies
and numbers of kI pairs in the ¢{-j positions. By energy of a pair of adjacent
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atoms e%?Y one means the excess energy of the pair by comparison with el e
k T8,

atoms k and 7 in positions ¢ and j. Atoms at the centers of adjacent
do not usually form bonds one to the other, and the excess energy is g4
lattice deformation and/or changes in the local valencies of the brid -
when cations that differ in size and charge enter adjacent polyhdedrage aniong
may be an additional contribution from the direct interaction bethen'thThere
tron shells of transition elements in a polyhedra joined by their faceg ¢

example in nickel arsenide structures. The assumption of randomness gives %
w{cN, Nf= (1—w)xN, No=N (c—wx), NS= [1—¢c—(1—w)x]N. The number of atg -
NZ and the number of pairs Nﬁ are related by g

Jk fiz

Polyheg
ue to ti:

elec-
» 4as fOr

2uNE = 2N + N's (i=a, B, k=4, B),
2iNk=Nk + Ns(i, j=0, B, i~ ], k=A4, B).

Here we have retained the symbols of [1l]: =z and 2z, are the position co-

ordination numbers, which are the numbers of nearest cation positions around ,
and B positions correspondingly, while Py is the number of type j positions ip

the immediate cation environment of an 7 position (Z, j = o, B). The following
relations between 2; and 3 (¢, § = a, B) follow from the geometry: gz,= Zu

Zaay 26=2pa+ 2ps, CZap= (1 — C) 2pa.
Then U can be written as
1 Nx*w?
U == Nwx (g; + &3) — — ——— {C | 2aat™
(& + &) 20(1_0){low.2+
+ 2pE?P — 2poef* — 2ppelP] + 2goel* —

1 x
— 2ant) — -+ Nuox {]—_C (223888 — 2o (28 - £8)] +-

+ 220087 + 2z (678 - £0%) + 2o, (0 — a:ﬂ)} 418,

—_ ol o ___ B if — otf 7 ] e
e, =ef—e% +eg—eb, el =, +ell;—2f, i j=0,p,

&3 = Zaa (5% — ¢%%) + 2up (eZf — %) +

+ Zpe (€8, — £B%) + 25 (eBF, — £Bf),

where ¢ is a term independent of w.

In a mineral structure, the & (i, j=a, p, k, I=A, B) are determined on the

one hand by the types of 4 and B in adjacent polyhedra* and on the other by the
types of polyhedron and the mode of their junction. If the types around the ¢
and B positions are the same, as are the modes of joining, the bond energy Wi
be determined only by the type of cation. For example, in albite or ge;hlenlte’
one gets Al-Si disordering over two types of tetrahedron joined by their ver-

D 2 { { . e
tices. For such compounds, differences such as e{(fk—-e{f, are independent of th

.. . . - the
type of 7j position; there are three energy parameters in the expresslon for
internal energy:
e, =eff —e% + e —ef, (1
€y =844+ a8 — 2848, €y=2Enp + 23844 — (2a 1 2p) €AB-
which such

In what follows, let us restrict consideration of structures for
energy-parameter substitution is possible,

of €8~
*Here we are speaking of the true coordination polyhedra, the anion environments
tions A and B.
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. The free (configurational) energy in that approximation is F=U—TS",
where

S*=Nk{clnc 4+ (1 —c) In(l — ¢)— xwIn xw—

—x(l —w)Inx(l —w) — (c— wx) In (c — wx) —
—[l—c— (1 —w)x]In[l —c— (1 —w) x]}.

When the free energy is minimized with respect to w, we get an equation for the
equilibrium w as a function of temperature [11]:

kT In K=E,+wE,, (2)

in which

(1 —w) (c — wx)
W[l —c— (1 —w)x]

E1’=81+8; — &3P, Eg=—82q,

] (3)
pP=2q+ T (28 — 2:8),

q=c(l_f-c) (202 — 2aa + € (20 — 2p)].

1° €5 and €, in addition to the tem-

perature.and structural characteristics; these characterize the various types of
interaction, Here €, corresponds to a cation interacting with the crystalline

field and is equal to the energy resulting from the elementary exchange

In (2), we have the energy parameters e

A(@) +B@B)>APB)+ B(). (4)

The sign choice for €, is equivalent to defining the normal and inverse
states. We will subsequently take ;>0 and use symbols for the cations and po-
sitions such that (4) consumes energy.

Cations in adjacent polyhedra show a pair interaction characterized by €95

the energy arising from the formation of two pairs of like cations from two pairs
of unlike ones [12, 13]:

2AB= AA + BB.

It follows from (3) that incorporating short-range cation interaction results
in an additional contribution to the long-range energy, so the latter is ey+e;.

Nearest-neighbor interactions are responsible for €, and €45 €, varies in
association with isostructural changes in composition. For example, €, charac-

terizes the Al-Si, Si-Mg, Si-B, and other such interactions for the melilites:
gehlenite, &kermanite, borian gehlenite, and so on, where one gets discrete
changes in Eye One can get continuous €, variation in solid-solution series,

e.g., from gehlenite to B-gBehlenite, if Si is taken as one of the cations and
the other is taken as (Al,_.B.), where z represents the composition.

As €y and €q have the same nature, one naturally expects that the two vary
proportionally, so as a simplification, we take ey=(e,, where z characterizes the

effects of the interaction between a cation and the immediate coordination sphere
on the long-range interaction energy. If the positions are equally coordinated,
2,=23=2), (1) implies ¢ = z; any deviation of ¢ from z characterizes the differ-

ence between the o and B positions. For given 2, and Bgy L is dependent accord-
ing to (1) on the relation between the energies e.=eia—=€is and e,=epy — e,5.
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Fig. 1. Parameter {=es/e; as a function of e./es=(ess—Ean)/(Ens
—¢€4p) for minerals having unsymmetrical (z47%2p): ML melilites
(T positions), 0L olivines, Opx orthopyroxenes.

The e/, dependence of ¢ is governed by the relation between z, and z
(Fig. 1):

8

e
a
zﬂ‘s—-{-za
b

=

e
2 4
€p

Positive ¢ correspond to strengthened short-range interaction strengthening
the long-range, which applies in particular for equally coordinated positions,
where §=2;,=2=2. 1In a close-packed structure having high cation coordination

numbers such as in a spinel, where z = 12, one naturally expects that there will

be a considerable contribution to the long-range energy from the interactions
between nearest-neighbor cations.

Near-zero ¢ correspond to open structures with unequally coordinated posi-
tions (olivines), while structures having {<0 are interesting, as the short-
range interaction weakens the long-range one., The short-range interaction there
may weaken or eliminate the ordering effect from the average field and also cause

antiordering.

CATION DISORDERING IN MELILITES

There is an extensive group of minerals and synthetic compounds having the

general formula M2T307, in which M is a large cation having a low charge and T

is a smaller tetrahedral cation having the same charge or a higher one; the struc-
ture here is of melilite type [1l4].

There are nonequivalent positions here, and the scope for isomorphous re-
placement is extensive, so the compounds are of interest as geothermometers; the
most notable are the widely occurring natural melilites in the series from gehle-

nite Ca,Al,Si0, to dkermanite Ca,MgSi,0,.
Such a structure (tetragonal, space group P42,m) is formed by layers of

large figures with eight vertices linked on their edges and faces and alternat-
ing with mixed anion layers composed of T tetrahedra (Fig. 2). The tetrahedral
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layers have a 1:2 ratio be
types (T1 and TZ) over whi 9
the T positions (T2), there is in each case a free vertex (an uncompleted O
anion), which leads to the T2 positions being filled preferentially by the small-
er and more highly charged cations, so the larger low-charge T cations are dis-
placed to the T1 positions.

tween the crystallochemically distinct tetrahedron .
ch the T cations are distributed., In the smaller o

In a gehlenite-type melilite, M,T,*T‘**O, the cation distribution correspond-
ing to bond valency balance [15] is ordered, M,(T’*)™(T**T**)™0,; disordering may

_ . T1

occur as the temperature rises, i.e., some of the T** may enter T1 M, (T{%Ts)
3 4+ \T2 . . . .

(Tiiwlite) 0, cation distribution.

An dkermanite-type melilite corresponds to M, (Ti,Te) " (T Te ) ™0, but it
. : 24 ; .
is unlikely that T will enter T2 because of the marked valency unsaturation
tn thg)free oxygen vertex, so it seems that such melilites are always ordered
w = .

Gehlenite probably becomes disordered as the temperature increases because
there is a spread in the lattice parameters for

gehlenite synthesized at various
temperatures [15]. Structure refinements for natural and synthetic gehlenites
[16-18] however leave the extent of this disordering open. A structure refine-
ment has been given for high-temperature gehlenite [18] based on the bond lengths
in the T1 and T2 pol

yhedra, which gave w as 0.014. However, there is no tempera-
ture assignment for the [18]

J . estimated disorder, so there is only a limited pos-
sibility of using it.

Melilite cation distributions have been simulated (14, 15], and the lattice
parameters allow one to

estimate w(r); estimates from [19, 20] for gehlenite
give w(1400°C) = 0,12(1) (Table 1), Such simulation has been applied to the
series from gehlenite to borian gehlenite CazBZSiO7 [21] with the [22] lattice

parameters, which showed order inversion: it is likely that there is antiorder-
ing in the essentially borian varieties.

A thermodynamic explanation can be
In [23, 24], the cation distributions we
antiordering can be attained only if one assumes a negative preference energy
(long-range interaction energy). At the same time, the valency balance [15] in-
dicates that highly charged cations prefer T2 positions, so that energy would be

positive. Thus the ideal-mixing model does not adequately describe disordering
in melilite,

given for the disordering in melilite.
re described using an ideal-mixing model;

REGULAR MODEL OF CATION DISORDERING IN MELILITE

The general regular-model formulas obtained earlier are used to describe
disordering here.

The following parameters characterize a gehlenite-type melilite structure:

s w
¢ 1/3 Wy 1
(1 —w)?
%0 4 K w1+ w)
Zﬂ 3 2.5
Zom 0 q 3.5
Zaﬂ 4 E1 & -8y — 2.5ey
gy 2 Ey —3.5¢ey
Zua 1

These features mean that small highly charged cations prefer T2 positions;
we subsequently denote them as B, and the T2 positions are taken as B ones. Then
e, >0, ang as we do not consider the clustering case, we have e,>0 and g,/e;>0.

A zero value for €, clearly corresponds to ideal mixing.

The corresponding w(T)
is
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Fig., 2. Melilite-type structure, complex—-anion layer, (001) pro-
jection. The insets show the normal cation array (ordered I) and
the inverse one (antiordered II).

Table 1

Long-Range Order in Gehlenites Synthesized at 620-1440°C
(Structure Simulation [20])

T, K w InK T InK
[19]

913 0 — —
1173 0,015 4,157 4876
1323 0,037 3,18 4207
1423 0,067 2,50 3558
1567 0,074 2,37 3714
1623 0,097 2,04 3311
1673 0,097 2,04 3413
1733 0,119 1,77 3067

[20]

943 0 . —
1293 0,048 2,89 3802
1593 0,071 2,43 3870
1693 0,116 1,80 3044

2 (1 —uw)

, w=exp (— & /kT).

; itive ¢’
The normal state occurs for ,>0; order inversion is impossible for PO°
in Which

If e, 70 (2) describes the disordering. The form of w=w(0), gl
en

(6=kT/e, is the reduced temperature, is governed by the relation betwe
mensionless energy parameters §=esfe; and x=e./e; (Fig. 3).

di-
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Fig. 3. Regions showing order O and antiorder A in the space of the

€nergy parameters X=e,/e; and {=es/e;. The intermediate A/O region lies

between the curves y=1/(11/3—) and y= 1/(4.25—); the insets show topo-

graphically distinct solutions to (2). The solid lines represent the

stable states and the dashed ones the metastable and unstable ones.

The hatched region in x and ¢ has been derived by measurement for geh-
lenite (Table 1),

The following conditions governs the existence of a 6-unbounded branch of
w(8) in the ordered (antiordered) range of values of w:

x<(>)1/(11/3—¢).

As x is positive, ¢ larger than the critical 11/3 mean that this branch cannot
go over to the antiordered range in w (inversion order) for any x; for §{<11/3,
there is B ™ 1/(11/3—¢).

The regular model thus explains the order inversion for positive e, found
in B-gehlenites and the marked effect of the short-range forces. This conclusion
can be derived qualitatively by counting the like and unlike pairs in the gehle-
nite structure in the ordered and antiordered states per cell (Fig. 2). If there
is a marked short-range effect, antiorder is preferred, since then the cell con-
tains eight unlike and two like pairs, whereas the ordered state leads to a re-
duction.in the number of unlike pairs to five and an increase in the number of
like ones to five. The regular model allows one to evaluate this quantitatively,
namely to state what strength the short-range interaction should have.

For sufficiently small and sufficiently large ,
x<1/(25—¢), x>1/(6—¢)

and (2) has a single root correspondingly in the antiordered and ordered ranges
of w (curves 1 and 7 in Fig. 3). For intermediate x and low T, (2) has three
solutions: one (intermediate w) corresponds to maximum free energy, while the
other two correspond to minima, with deeper minimum corresponding to the stable
state and the less deep one to the metastable state. Calculation of the free
energy for 6 = 0 and w = 0 and shows that w = 1 is the stable root for x > 1/
(4.25 - ) (curves 3-7 in Fig. 3), while w = 0 is stable for x < 1/(4.25 - )

(curves 1 and 2 in Fig. 3).

Thus in x-z space there are three major regions with differences in behav-
ior of the stable solution to (2); two correspond to the partially ordered state
(0<w<1/3, w(6=0)=0; region 0 in Fig. 3) and the antiordered state (l/3<w<],
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NABmax - NABmin

Here N,z is the number of 4p pairs for the given w, while Nas,,, and Nas,, are

the largest and least possible values of N, If the structure contains positions

surrounded Onky by positions of another type, disordering reduces the number of
AB pairs, so ABp.. and N}smﬂ are the numbers of 4B pairs in the states of com-

plete order and disorder correspondingly. If the structure contains pairs of
a—a or B—pB type, disordering not only reduces the number of 4B pairs but also
reduces the number of corresponding like pairs. The balance between these results
in a minimum on the curve of the dependence of w on N,p at an intermediate value

of w. The number of 43 pairs in a melilite is [11]

Nas =N(c—wx)[zu%+ Zap U——w)i]-{-

l—c¢

| —

+ N[l —c— (1 —w)x] [zm“%+z%“_—"’2"] =l—§-(7w’—4w+5).

Here N,p is minimal at 4,439 for w = 4/14 (Fig. 4). There is also a minimum on

the Suzve of the equilibrium o as a function of 7; the temperature representing
g = ]

T(0=0) =3.04[e,/k+e,/k (5 — 1.5)].

gpr complete disorder ¢ = 0.028, and o(T) approaches this asymptotically as
4 =00,

' Al, Si DISORDERING IN GEHLENITE

Although the regular model describes a qualitative effect (order inversion
is B-gehlenites), no detailed fit to the existing measurements on disorder in
gehlenite is attained. It is readily seen that the w(T) curves in the O region
(Fig. 3) give the correct qualitative picture, but the theoretical and empirical
lines differ in curvature, as is most readily demonstrated in plots of 7 1n X
against w. The regular model gives a straight line with a negative slope, while
the empirical T ln X decrease as w increases (Table 1), so one could choose the
energy parameters to fit theory and experiment. However, least-squares fitting
to the measurements gives £~z (4840%140) K and E,~(15500+ 1700) K, which define
in x-t space a zome x2¢1/[3.59 + 0.04) - t] that is entirely in the A region
(Fig. 3), which shows that the theoretical w(T) corresponds to the metastable
branch in (2), while the antiordered state is the stable one at the correspond-
ing x and z.

That inadequacy is due to the regular model being illogical; although cation
pair interactions are incorporated in the internal energy, they are not for the

entropy, since AS=AS'". The near-linear 1/T dependence of ln X indicated non-
ideal entropy, since least-squares fitting to Table 1 gives

K= @.(:;—%9-—3.1 (£ 0.5).

This may be due to more complicated behavior of the configurational entropy on
account of the short-range cation ordering or to nonconfigurational entropy de-
pendent on changes in the vibrational spectra on disordering. The model needs
to be improved on that basis to determine the nature of the nonideal entropy
terms S°~~ (3.1 % 0.5)R.
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CONCLUSIONS

A regular-mixing cation model has been proposed for 4 dims
containing nonequivalent positions, whgre there are interactionrderin
long-range interaction between the cation and the entire crystas t

range interaction between cations in adjacent polyhedra ¢

€ mj
1 (e(+83) anypes:

) . 2+ One ¢qp
the long-range energy, e, 18 determined by the cation positi Po

contributions to ¢, come from the cations and anions not part
disordering, while €4 describes the contribution from the ghq

Shg
5 Neng 4.8
.n’ Where t "
1Clpating in Majy
. . s rt‘range .
to the crystalline field. If thg positions are equally coordinat
nearest neighbors, &;=2¢,; while if the disordering positiong are ﬁg
€qua]]
y

ordinated, €, is an independent parameter. The relation between th
€ ey

rameters is governed not only by the types of atom but also by th
numbers and modes of linkage of the coordination polyhedra, The i 8eOomet .
short-range interactions may be unidirectional or have different d9ng-rm%egnme
the space of €1s €95 and €3 contains a region in which there 5 o lrecgion& ag
Versio,
)

rder
where the mean field is balanced by the short-range forces,

-

89 pa.

The model is applied to melilite disordering and explains the order
sion in the B-gehlenites for positive € rder inyey.

On the other hand, the model does not give a detailed fit betwe
served and theoretical w(T) curves for gehlenite; the observed 1/7 dZn the qp.
of 1n X shows that the entropy is nonideal. The model must therefOrepsnd@me
to incorporate more detailed structure symmetry features. € 1mproyeg
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UDC 550.8.014:552,3
DIOPSIDE-WATER LIQUIDUS SURFACE DETERMINATION®

L. L. Perchuk, I. Kushiro and A, V. Kosyakov

Institute of Experimental Mineralogy, USSR Academy of Sciences,
Chernogolovka and Geological Faculty, Tokyo University

The diopside-water liquidus surface has been examined
in detail up to 30 kbar. New measurements have been made at
10, 15, 20 and 25 kbar, and a formal treatment of an ideal
two-component solution model gives AH(Di) 18.5 += 1 kecal, AV(Di

0.142025 - 0.1095 x 107 - 0,25498 x 10~!!p2 cal/bar. With
these values, Schrdder's equation describes the liquidus sur-
face satisfactorily (including the water-saturated range) in
the CaMgSizoé-HZO system; AH(Di) and AV(Di) do not correspond

to the actual enthalpy and volume effects in diopside melt-
ing [1]. Therefore, liquid models have been devised concerned
with the dissolution of water in the liquid and applied to
estimating the energy and steric factors required for the co-
existence of OH¥*, HZO*, and CaMgSi206 groups in diopside-H20

liquids at various pressures [2].

Eggler [3] was the first to examine the diopside~water system on the 20
kbar isobar at temperatures up to 1430°C; Hodges [4] made measurements at 20 kbar
up to 1500°C. Then Rosenhauer and Eggler [5] repeated Hodges' experiments and
found a large discrepancy in the solubility of water at the invariant point
(Table 1), and two years later [8] they adhered to those results. Eggler and
Burnham [6] gave diopside-water liquidus data recorded with a gas vessel at 2
kbar. Table 1 collects the published data for the water-saturated liquidus.
Detailed measurements have been made on diopside melting under dry conditions
[1]. Analysis of the published evidence for this system indicates that the data
are not only very limited but also conflicting. There are no unambiguous results
on latent heats of fusion determined by calorimetry, as the range is 18.5-34.1
kcal/mol. The thermodynamics of dry melting of diopside have been examined re-
peatedly (Table 2), and substantial differences have been found in the enthalpies
of the crystal-liquid and crystal-glass transitions. Figure 1 is from [17] and
illustrates the relation between the latent heats of melting and vitrification

of diopside.

Theoretical analysis [6, 18] shows that the heat and volume change in melt-
ing of the mineral alone do not allow one to reproduce measurements satisfactor-
ily from Henry's law or Schrdder's equation as applied to ideal solutions. One

*Translated from Geokhimiya, No. 7, pp. 942-954, 1988,
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