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Subsolidus transformations under nonisothermal con-
ditions have been simulated not on the basis of 777 dia-
grams but by integrating the kinetic equations together
with the heat-transport equation. Measurements of Al-Si
ordering in alkali feldspars have been used in determining
the quenching conditions in a particular system. We have
taken into consideration the dependence of the equilibrium
and kinetic parameters on temperature, pressure and compo-
sition and the influence of water pressure on grain size
on the ordering rate constant. Variation in the cooling
rate allowed us to examine the ordering process under vari-
ous cooling conditions. Differences are noted between the
quenched and equilibrium degrees of transformation, and
studies have been made on the discrepancies between the
quenched degree of order and the quenching conditions de-
rived by the proposed method and by means of 777 diagrams.

It is becoming increasingly obvious that equilibrium is often not attained
in a geochemical system and that kinetic features control its state. Research
on reaction kinetics not only enables us to characterize the evolving phase re-
lationships but also to explain grain zonation, rock textures, and so on. Ki-
netic analysis is a necessary step in describing processes within the planet
and is the basis of geospeedometry. A study of reaction kinetics must thus be
a basic aspect of geochemistry [1-3].

An important step in the study of the kinetics of reactions is the rela-
tion between reaction rates and the rates of change in the external parameters
T, P and u, as well as the transport rates of the reacting components. This
enables us to determine when equilibrium is attained in the natural system, and
if it is not, how far the observed phase relationships deviate from equilibrium
ones. Kinetic studies may in particular be used to examine the conditions of
quenching of mineral transformations.

Reaction rates are low at low temperatures such as in diagenesis. Equili-
brium may not be attained, although the reaction may continue under constant
conditions for geologically significant periods. When igneous rocks cool or
when magmas and xenoliths are transported from a deep site to upper parts of
the crust, the extent of reaction should be controlled by the rate at which ex-
ternal conditions change. Thus one estimates the temperatures and pressures at
various stages in rock emplacement by the use of geothermometers and geobaro-
meters would be impossible without careful research on how mineral reactions
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single phase (degree of ordering), and so on. At equilibrium, ¢ should have
reached a minlmum, SO the equilibrium values of tE,.=t"(P, T, X,) are defined by
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The linear thermodynamics of irreversible processes [4]) indicates that a simple
kinetic equation describing the relaxation in a system having one degree of free-
dom towards equilibrium is

d§ oG
-—a-c—k.—
- % (1)

in which k > 0 is the kinetic coefficient, while dG/dt characterizes the driv-
ing force and is defined by equilibrium-thermodynamic methods. The closeness
of k to zero at sufficiently small T causes quenching, although the different
degrees of freedom may be quenched at different temperatures.

Here we consider a method of estimating quenching conditions. As an ex-
ample we will use the Al-Si ordering in alkali feldspars. The usual approach
is based on time-temperature-transformation (I7T) diagrams. Here we propose
a rigorous solution obtained by numerical integration. The method of defining
the conditions of quenching that were developed and the relationships between
the quenched degree of order and the transformation parameters that were found
with its help indicate the effectiveness of using the feldspars are effective
for solving problems of geospeedometry as cooling rate indicators.

SOLID-STATE REACTIONS UNDER NONISOTHERMAL CONDITIONS

Analysis 777 diagrams is the most familiar method of examining the noniso-
thermal kinetics and quenching conditions of solid-state reactions. Figure 1
shows the principles of constructing TTT diagrams. One uses kinetic curves from
isothermal experiments, i.e., functions E=E(7, 1, &), in which §o=f E(T, 1=0) is
the initial value of £, which characterizes the degree of completion of reaction
and 1 is time reckoned from the start of the experiment. To construct a TTT
diagram one needs to draw contours for E(T,rh o) (transformation) on the tempera-
ture-time r-1 plane. Let T* be the equilibrium temperature corresponding to £

i.e., E,=E(7", 1=00). Then (1) shows that the rate s 48 yepimal K & mex-
tain supercooling r*-7, which governs the specific form of the TTT diagram (Fig.

ring cooling, a gurve‘is superimposed on the
diagram that describes the temperature changg with time. The intersections be-
tween the cooling curves and the ¢ lines define the sequence of changes in the
sfructural state. Figure 2 shows that ¢ as a function of 1 initially increases
along a typical cooling curve
which cor¥25ponds to t%e point where the cool
(T, 1) line, is usually taken as the instant O

rrect approach in using these diagrams to deter-
during cooling because the.g = constant curves
the process is not isothermal, as

To analyze the reaction du

but then passes through a maximum. The latter,
ing curve is tangential to some
f quenching [6-9].

o There is an element of inco
& Ne quenching conditions and £ Gu
Te derived from isothermal kinetics, whereas
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Fig. 1. TTT diagram construction: a) kinetic isotherms of a
conversion characterized by temperature dependence of the equi-
librium constant (ionic, isotope exchange, ordering, etc.); b)
levels of the degree of conversion for the case shown in Fig.
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Fig. 2. I77 sanidine ordering diagram for XOr = 0.7 con-

structed on the assumption that the structural state at the
initial instant when T = T, corresponds to complete disor-
der, i.e., yo = 0.5: 1) El'dzhurta granite cooling curve
[5], horizontal axis time scale for crystals ~ 1 cm in size

for various PHzO; 2) lines of equal degrees of order.

Ganguly pointed out [7]. If we wish to determine the state of the system of
the moment when 7 during cooling has attained Tx’ we can use the diagram if we

represent the process as consisting of two stages (Fig. 3). Firstly, at the
start (1=0, £=%,), T falls instantaneously from T, to Tx (Fig. 3a), while &,
remains unchanged. Secondly, under isothermal conditions at T s the reaction
occurs in the interval t -1,, which produces ¢ (Fig. 3b). Let us step outside
the 77T method and divide To-T,, into two parts: T -7 and T =T and represent

the reaction in two stages (Fig. 3c). This means that initially the tempera-
ture fell instantaneously from Ty to T, and in the first stage, the reaction

0 (Fig. 3d). Then at

1 , there was a jump to a new stage with temperature I _ and another initial value
. . . X

of £gr L.ee, there is a shift to a nmew TI'TT diagram. At this degree, the reac-

tion described by the £(T_ ) isotherm begins at the point corresponding t© the

state £, and continues for a time T,~7,- The positions of the £(7,) and g(T,)

occurred isothermally along the E(T,) curve for a time 1 -1
Y
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Fig. 3. One-stage and two-stage models for trans-
formation during cooling: a) transformation along
the cooling curve represented by the one-stage mod-
el; b) transformation isotherm corresponding to

temperature Tm’ with Ex the degree of conversion at

time Tx; c) two-stage model; d and e) differing de-
grees of conversion &; and £g at time T in two-

stage model.

isotherms may result in reduction or increase in g or £ when 1_ 1is attained

(Fig. 3d and e) by comparison with the single-stage model. If we increase the
number of stages without limit, we will get the true value of Er during continu-

ous cooling. The essence of our method of egtimating the conditigns'lies in
passing from TIT diagrams to a kinetic equation of type (1) that is 1nd§pendent
of the initial state. The division into infinitely small steps is provided dur-
ing the computer solution. In order to avoid getting a curve‘WLth a turning
point (as occurs in the 77T diagram method), which lgcks phys%cal sxgnlflcapce
the quenching conditions are estimated from the slowing-down in the change in

COOLING LAW

T i conditions, we need to define thg cooling rate as a
functigna?%igzgngugﬁgztggute for it into the kinetig equation relating the rate
of change in ¢ to the current values of ¢ and T, which is then solved. In that
approach, we neglect the heat effects of the transformation, which enables us
Lo separate the kinetic problem from the thermal one; the latter can usually be

handled by standard methods.

emperature T,, into which we introduce

; 3 i a constant t A
Consider a medium having The temperature distribution

an object with volume V and temperature Py = L
. i i ith the initial con-

at any instant can be derived from the condugt}on equation wit

ditioz T(x, 0) : Ty (x) and the boundary condition r(1) = T (at the boundary of
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volume V). £ general solution can be obtained by separating the variables iy
the form of an infinite series [10]:

. S v, (x) d
T(x, 1) =Tt To—Ta) 3 Vul¥)

= f V2 (x) d

v

,—JO. F1d

Here T(x, 1) is T at a point z at time T, with X the thermal diffusivity of the
added body, while An and V.(x), n=1, 2, ... are determined uniquely by its geometry

For example, for a stratum with thickness Z: An= (2n—1)*a*/l*, and V', (x) =sin
[(2n—1)nx/l]. For a sphere with radius a: A.=(nn/a)’, and V.(r)=sin(anr/c). For
a cylinder with radius R: A are the positive roots of Jo(R, &) =0, in which 7,

is a Bessel function of the first kind and V,(r)=/o(r, 2, 7) [11]. It can be shown
that the (2) series converges, and beginning at a certain time, the first
nonzero term in (2) begins to predominate over the sum of the others. To ex-
amine differences in quenching conditions, thus we can compare the TTT method
with the kinetic-equation one on the basis of a simplified cooling equation:

T (1) =T+ (To—T) €, (3)

in which K.=yA, is a parameter with the dimensions of reciprocal time, which
we subsequently call the cooling rate constant (for a stratum K.=y(a/l)? for a
sphere K.=y(n/a)?, and for a cylinder K.=yA,, in which A= 2.4/1?2). At the same

time, when we examine the zonation generated by uneven cooling, it is necessary
to use the complete solution in (2).

EXPERIMENTAL DATA ON THE KINETICS OF INTRACRYSTALLINE TRANSFORMATIONS
IN K-Na FELDSPARS

These general concepts may be illustrated in one of the fundamental petro-
logic systems: the alkali feldspar solid solutions, in which Al-Si ordering
ocours. The behavior of the ordering during cooling is examined using experi-
mental data [11-13] on the thermodynamics and kinetics of their transformations.

The alkali feldspars are represented in nature by monoclinic varieties —
K and K-Na sanidines and orthoclases — and triclinic forms, which include the
essentially potassic ordered microclines and sodian albites and the anorthoclases.
The last are solid solutions enriched in the albite component, and they are mono-
clinic at the time of crystallization at high temperatures, but during cooling,
they become triclinic as a result of a shearing transformation, while retaining
their monoclinic topochemistry, i.e., the Al-Si distribution corresponding to -
sanidine [5]. To examine the thermal history of a rock on the basis of
feldspar ordering, the most suitable varieties are intermediate and essentially
disordered (in AI-Si distribution) varieties which have monoclinic topochemis-
try: sanidines and anorthoclases.

Al-Si ordering at constant temperature is [1l, 13] described by a second-
order kinetic equation:

ﬂ_ ﬂ‘(T)—\P‘(T,P,X) 2
i — k(T Puo, l
T (T, Puo I)[ Ty x)] ) (4)

It is second ordgr because it is necessary to fit the observed kinetic curves
for small deviations from equilibrium. Here y characterizes the ordering. For
monoclinic forms, $=2{,, i.e., ¥ corresponds to the proportion of Al atoms 1T

the two T, positions per formula unit in the feldspar (K, Na)AlSi, O, relative

to the total amount (of one) in the four tetrahedral positions 2r, + 27, [14].
The ordering is catalyzed by water and probably involves a reaction front

advancing within a grain, so we assume that the rate constant k should be de-
pendent not only on T and PHzo but also on the effective grain size. There 18
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ffect from th
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po €V3_ " independent of it. 1In accordance wi e P, which suggests that the
e . it with [11
;:;e is independent of the composition ¥ in the saﬁigl?jaé :iasiigtzsigioghat "
me 7 dependence is defined by the messured activation energy of ssniding
orderité “a of ordering of sanidines as a function of

: umed to be the sa : ==
is ass me as for albites, for which the rate is } Pno [15]-

Py,0 ; :
Hz . : .
idine ordering in e .
pata On san -1 _lg xperiments [11, 13] may be used with change in di-
menSi°n5 from h to y to get
Rk (yr=1) = 10801 Pii% exp (— E/RT), (5)
in which Py o 18 3% bar. The size of the experimental crystals was ~ 1072 mm.

These data cannot be transferred directly to the real setting. i the
ordering constant for natural crystals, we use the data gi\l;grgi byT‘S)cgilt’n;i al.
[16],_Wh° ca'.!.culated tl‘_le'coo]_.lng conditions in a layer of ignimbrites having a
rhyolite-dacite composition in Nevada, and also derived the unit-cell parameters
for the gsanidines there. Those cooling conditions were calculated [16] by a
gtandard method based on the error integral. An exponential law can be used to
describe the cooling, as we have shown, and then (3) for the central part of the

layer is

T (1, K) =298+ 755exp (—7,65-10"* 1). (6)

The initial cooling temperature was [16] 1023 K; the cooling rate constant was
found to be X, = 7.65 x 10-4 y-1.

Using the ur_li1;-cell parameters with Luff's formulas [5], we estimated the
state and composition of the sanidines from these Nevada ignimbrites which at
the central part of the stratum had characteristics 2¢, = 0.59 and x = 0.72.

One can simulate the potash feldspar ordering in the (6) mode of cooling and
solve the inverse problem: from the cooling rate and the quenched degree of

order, one gets k as

k=10"**Plioexp (— Ed/RT). (7)

We assume that PH o was ~ 100 bar and the crystal size ~ 1 mm.
2

There are two sanidine generations in the El'dzhurta granite [5]: pheno-
crysts and groundmass. The groundmass crystals are also ~ 1 mm in size, so we
assumed that at the same T and Pl_120 they would order at the same rate as the

KFs in the ignimbrites. Here BE; = 0.67 and the temperature at the start of

%goling was T, = 1003 K, Puo=~ 1 kbar. Our method gave X, = 1::26 x 107° y'l in
). ’

The sanidine phenocrysts evidently cooled in the same way as the groundmass.
They are ~ 1 cm in size, and 2t1 - 0.64. We derive k from them by simulating
the conversion during cooling on the law derived for the El'dzhurta granites
from the groundmass sanidines:

T(1, K)=298+705exp (—1,26-10"* 1). (8)
r the phenocrysts at P, . 1000
2

The quenching of the structural state found fo
ar is provided by the rate constant

k= 10°"Ps exp (— Eu/RT). (9)

We thus have three estimates for k: (3), (?), and (9), whose differences
e ascribe to the effective sizes of the synthetic and natural crystals. Sub-
Sequent calculations of the cooling rate from the degree of order have been
one for rocks where we have observed or could assume that the crystals were
- cm in size, i.e., we used the k corresponding to (9).
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Fig. 4. Phase relationships in the NaAlSi;0g-KAl
Si30g system at P = PHzO = 1 kbar [l1l, 12], The

sanidine solid-solution region SAN calibrated from
degree of order 2({y=+; mon/tri, monoclinic-triclin-
ic inversion line; ha, high albite; la, low albite.

The equilibrium ¢'=2f, are shown in Fig. 4 as functions of 7, P and X.
They can be calculated from a formula for the positional distribution constant

KD derived from measurements as used in constructing Fig. 4 [11, 12]:

InKp (T, P, x) =In —¥ U E¥) o 1gxs_
o = e iy — 18
— 2.7X2 4 0.1X —0.8) 4 (1996 X® — 2777X% 4+ 1885X -+ (10)

1
+ 981) — — p (0,009X* — 0,002X —0.01)—; .
In (10), T is in X, P is the total pressure in bar, and x is the molar fraction
of KAlSisos in the K-Na feldspar solid solution. The equation is applicable for

0.2 < x < 1.

SIMULATING THE CHANGE IN ORDER DURING COOQLING

In what follows we will exgmine two models based on different choices o£
the initial state y,. In the first, it is assumed that the rock existed at To

for a time sufficient for the feldspar to attain equilibrium y at the start of
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ronal cooling at 14, and then ¢, in th
0 0 at state corresponded to equilibrium

n
” i.e., vo=v"(T0o).

at To’

The second model involves a different ass :
. i . T umption i
1 state: the liquid precipitated c°mplete§y disggdEEdezigzggié?nwggcghe

jnitid P =
were 7 ﬁggzélbrggﬂtﬁzs?s82§flc}ently high temperature or were formed as metar
stable P ) periments [13, 15, 17] indicate that disordered

e1dspa§zscg2dcigsggiiiigriﬁmtemgﬁratures at which the disordered state does
not COTTESP : e temperature T at the start of slow cooling

either_cgigglges(z;ﬁgtggg)Czysta%l@zgtion temperature or else the temperature
reductio 0 s sufficiently rapid for the initial disorder not

ro alter substantially during that preparative stage. Thus Y, was taken as 0.5

in this mOdgi;reinoggg itandard 777 method, it is usually assumed that the ini-
tial state c° P 0 gomplete disorder, although the method can be used
with any choice for the initial state.

We used (4), (9) and (10) with various cooli i i
: . ° ng rates obtained by varying
o and X, in (3) to examine the ordering. We will assume in this that, by in-

troducing the dependence of t.:he coefficients in the isothermal kinetic equation
on temperature, we can describe a nonisothermal process.

The nuTeriﬁal calculations were performed for 7, of 1000-1400 K, ¥ from
-6 - - ¢
100°t0 10 ° ¥y " Py 0.1-1 kbar, and various feldspar compositions X. P in
accordance with (10) had very little effect on y*(r) in the range of several
kbar. We also neglected how P affected the rate. We therefore neglected the
role of P in the calculations and took it as 1 kbar.

Figure 5 shows the results for 7, = 1000 K. For comparison, we have used

contrasty conditions: k  of 107% and 1072 y"!. We considered two models for

the initial state: v, = 0.5 and Yy = $*(1000 K). The parameters P = PH20
1 kbar and ¥ = 0.7 were kept unchanged. For this composition, v*(1000 K)
0.557.

Along with the cooling curves (1) and the ordering curves (2a and 2b),

Fig. 5 shows y(1) curves with turning points (3a and 3b) that were derived by
the 777 diagram method. Figure 5 also shows the equilibrium ¥ (lines 4) on the
T(1) curves, which are the values that would be obtained if equilibrium were
attained at each instant. The v, = 0.5 model leads to a discrepancy between

the calculated and equilibrium values at the initial point.

btained by numerical solution are continuous and
do mot have turning points, in contrast to the ITT ones. Thus determining the
s in a certain sense nominal. Quenching was

quenching parameters from them i ! 3

defined here as the instant when v passed through the point gorrespondlng to

997 of the complete range between V¥, and v_» which on sufficiently prolonged
responded to the flat parts of curves

ed to change and cor : .
The order at the instant of quenching 18 denoted by Ve

2a and 2b in Fig. 5.

As all the y curves during cooling become Very geptly sloping as 300 K is ap-
proached, y on the flat part was determined as tne value attained at that tem-
perature: ﬁ;’m ~ y(300 K), so wq = 0.99(y(300 K) - Uo)

The conversion curves O

cooling virtually ceas

Figure 5, on which the instants of quenching are indicated, shows that the
transformation persists throughout much of the cooling interval. The changes
cease only when the rock has cooled to a few hundred degrees.

for v, ought to decrease as T in-

haracterizing complete disorder. The
= 1236 K, when the equilibrium

between the twWO models
s to the value ¢

0.7 sanidine at T,
e with this, the y(1) curves for the

ingle curve (Fig. 6).

The differences
creases because y*(T;) tend
differences vanish for X =

value is y*(1236 K) = 0.5. In accordanc
different Yo models come together as a S

-6 =1 e g
er cooling (X, 10" y ), the initial

Figure 6 also shows that with slow
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Fig. 5. Change in order on cooling from Iy = 1000 K (P =
Pyo = 1 kbar, X = 0.7). On the left, X = 10~%; on the
2

right, Kc = 10-2 y'lz 1) cooling curve; 2a and 2b) changes

in order calculated numerically for Yo = 0.5 (2b) and Yy =

¥* (1000 K) = 0.557 (2a); 3a and 3b) Y(T) from the TTT me-

thod (Yo = Y*(1000 K) in 3a, Yo = 0,5 in 3b); 4) equilibri-

um values along cooling curve, The vertical dashed lines

indicate the instants of quenching from the numerical and
TTT methods.

conditions are forgotten, and all the curves come together in the final stages,
with quenching for slow cooling occurring under similar conditions in spite of
the differences at the start. With rapid cooling, the calculated quenching
state is dependent on the Yo model.

EFFECTS OF THE QUENCHING STATE ON COOLING PARAMETERS

Figure 7 shows in more detail how y is dependent on the initial state.
For T, < 1236 K, the lines do not coincide when the v, are taken differently.
For practical purposes, one can assume that the differences vanish at about T =
1200 K.

Figure 8a gives the y_ derived numerically and from a T7r diagram. The
case T, 2 1200 K is shown, where the initial state is unimportant. The
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Fig. 7. Quenched degree of order Y in sanidine speci-

mens (X, = 0.7) in relation to cooling rate for various
Or

iti = ; 0.5; 1) Yo=
jnitial conditions. I) Yo P*(To) ; 1I) To> :
? 1200 K; 2) To=1100 K; 3) To=1000 K.

distances between lines 1 and 2 or 3 and 4 characterize the deviations in the

rmation is halted from thg quil%brium one at
resl state frozen vhen the yan A curate numerical solution indicates a more

t. The more ac by ol P
ézikgdaggfieganzebgiieen the quenched and equilibrium values ERIS) (R4

estimates.
dicates that the choice of Yo influences the

h cooling rates (X, =2 10° y'l). The de-
all the forms of the calcula-

Figure 8b for 7, < 1000 K in

result for the halt state only for hig

i bri i same in
viations from equilibrium remain much the

tions.

estimates of the quenching tempiratuies for
the nodes of cooling given in parts & gnd B o5 Fl%'tgé t§52e0¥eh31i°i§ Sﬁetﬂi-
temperature that would correspond tO_tl}e Bysken ah d of cooling is the equi-
Bumgs thu eth observed in the sanidine after the en o %ormation qf
librium . i that moment. This is the apparepthtggpzzzsgantially differegt
the struggﬁrgl state of the feldspar 7#(y1), which 1

Parts c and d of Fig. 8 give
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Fig. 8. Quenched and equilibrium degrees of order, the latter at the
quenching temperatures, for various cooling rates (P = PHzO = 1 kbar,

X =0.7). a) Ty = 1200 K, 1) wq derived numerically; 2) equilibrium

values at quenching temperatures (numerically); 3) quenched values
from TTT diagram; 4) equilibrium value at quenching temperature de-
termined by TTT method; b) To = 1000 K, lines 1 and 2 corresponding
to Yo = 0.5 and lines 3 and 4 to Y, = Y*(Ty). Quenching temperatures
(X = 0.7, P = PH:O = 1 kbar): ¢) Ty = 1200 K, 1) numerical solution:

2) equilibrium temperature for sanidine with degree of order T _; 3)

quenching temperature from TTT method; d) To = 1000 K, 1) yo = 0.5;
2) Yo = Y*(1000 K); 3) equilibrium temperatures for {_ derived from
two models, Quenching times (X = 0,7, P = PH g™ 1 kbar); e) To =
2
1200 K, 1) numerical solution; 2) TTT diagrams; f) T, = 1000 K, 1)
VYo = 0.5; 2) Yo = Y*(1000 K).
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Fig. 9. Effects of water pressure on wq for sani-

dine specimens with X = 0.7 and Ptot 1 kbar, PHzO:

1 and 2) 1 kbar; 3 and 4) 0.1 kbar; 1 and 3) Vo =
Wk (To); 2 and 4) Vo = 0.5; To: @) 1000 K; b) 1100
K; ¢) 2 1200 K.

The direct use of sanidine y to esti-

temperature. : L
formation is thus erroneous.

from the actual quenching . The
basis of equilibrium

mate temperatures on the

Figure 8c shows that the quenching
deviate appreciably from the 77T results,

the quenching temperatures for the various Yo

ing rates.
Parts e and f of Fig. 8 shov calculations of
the rock cools. This period terminates at the

changes occur in the feldspars_as ) )

instant of quenching and is T®1ied here the quenching EL7e: The results obtain-

ggfgy the two methods do not differ substantlally for the various v, models and
ering T,.

temperatures calculated numerically
while Fig. 8d implies that the wq and

models differ only at high cool-

the time Tq-TO during which
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Figures 5-8 thus imply that numerical solution in general gives quenchip
parameter estimates that deviate more from the equilibrium values as regards
temperature and y than do those from the less correct TTT method. The quencp.
ing parameters are determined primarily by the cooling rate, but at low initia]

-3 -1
temperatures (I, < 1200 K) and high cooling rates (k, 2 10 7 y 7), the esti-

mates are also dependent on the choice of the initial state. 1f we assume that
there was complete disorder in the Al-Si distribution at the start, the calcy-
lation leads to less ordered forms on quenching than in the case of an equilj-
brium initial value Vo = w*(TO).

As the ordering rate is dependent on Py o» V, decreases as the H,0 pressure

falls. Figure 9 shows estimates of that parameter. The curves have been used
to derive the thermal-history characteristics of certain feldspathic rocks by
reference to the sanidine specimens.

Figure 9 shows that sanidine ordering data can be used correctly as a

geochemical indicator only if Py.o is considered. For a given Py,o» Sanidine
2

(here with ¥ = 0.7) gives an unambiguous indication of the cooling rate down to
a state of order ¢y ~ 0.57. If the disorder is even higher (0.57-0.50), the

necessary branch in Figs. 7 and 9 can be derived only from additional informa-
tion on the initial cooling temperature. It is sufficient to know whether the
initial temperature range corresponds to T, = 1200 K, since all branches merge

above that temperature, or if T falls in the lower range, where one needs to

makg a more detailed examination of the estimates for the parameter. In vol-
canic and subvolcanic rocks that can be characterized by examining the sani-
dines, the condition To = 1200 K appears to be met in most cases.

CONCLUSIONS

A method has been devised for examining the conditions of quenching of
mineral transformations during continuous cooling, which is based on solving
the kinetic equations together with the cooling ones. The method has been used
to examine the conditions of quenching of K-Na feldspars. The basis is pro-
vided by experimentally established trends in the equilibrium ordering of the
feldspars in relation to 7, P and X together with data from kinetic research.
The quenched degree of conversion (at a certain temperature) may differ con-
siderably from the equilibrium one at that temperature. The method is found
to have advantages over the I'TT diagram one.

Feldspar ordering can be used as a geospeedometer, since it is dependent
mainly on the cooling rate. Reliable results are not obtained in estimating
the temperatures of origin of the rocks.
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