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A new approach based on exchange-reaction thermodynamics is proposed for research
on rock composition changes during thermal evolution. Kinetic equations of Onsager
type apply, which related the reaction rate to the deviation from equilibrium. In the
case of two-component cation exchange between two solid phases, a relation exists
between the kinetic coefficient and the self-diffusion coefficients for the components
in the two phases, the equilibrium constant, the phase sizes, and its temperature depen-
dence. The model has been applied to rates of cooling of metamorphic rocks and to
correcting and interpreting readings from ion-exchange geothermometers. The results
of modelling the compositions of the garnet-clinopyroxene pair, which shows Mg-
Fe2* exchange during continuous cooling, enables us to estimate the rates and times of
thermal events. It is possible to use exchangeable-component concentrations averaged
over grains as geospeedometers. This approach is applied to studying reactions to
obtain independent kinetic characteristics that can be used to examine various types of
mineral reaction during metamorphism.

Geothermometry, based on measurements on ion-exchange and isotope equilibria, is widely
used to recover the thermal history of rocks. Use of the method is based on equilibrium thermody-
namics, which relates the compositions of coexisting phases to pressure and temperature. If equi-
librium is attained and persists, the compositions reflect the P and T, but effects from preceding
processes are lost.

There are frequently major constraints associated with transformation kinetics. The main
problems here are related to how the quenched concentrations are dependent on the cooling rate,
and the extent to which the system remembers the initial temperature and the concentration
zonation. In that respect, geothermometry is closely related to geospeedometry, so one can consider
conditions of origins and subsequent thermal history together. In rate studies, the task of recovering
the temperature is transformed into one of recovering the T-t path of the system [1, 2].

Here we need to solve simultaneously the kinetic equation for the relaxation of internal
parameters to the equilibrium values and the equation describing the evolution of the temperature
field [1, 2]. When one simulates zonation in minerals associated with element exchange on€
considers mainly two types of reaction: diffusion of the main cations in rock-forming minerals
such as Fe?* and Mg and the distributions of trace components between coexisting phases, €.g., Zf
in ilmenite and ulvospinel [3-13].

Several studies have been done [5, 7, 14, 15] on the mechanism of cation exchange and the
role of factors that influence the readings of ion-exchange geothermometers. Equations have beed
derived for mineral pairs that govern the kinetic response in an ion-exchange geothermometer t0
any changes in T-t behavior related to the mineral sizes and shapes. The diffusion profile and
diffusion-zone width are determined for a given pair by the diffusion coefficients, exchang®
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enthalpy, initial conditions, and cooling history. In particular, the absence of zonation is not 2
guarantee of equilibrium for geothermometers based on garnet-pyroxene and olivine-spinel pairs,
e.g., slowly cooling rocks show almost no concentration gradients. When the diffusion rate for the
cations in one mineral differs considerably from that in the adjacent one, the applicability of a
geothermometer is controlled by the mineral with the lower diffusion coefficient in the working
temperature range.

Here we consider a new approach to the change in rock composition during thermal evolution.
A kinetic equation is proposed that relates the reaction rate to the deviation from equilibrium. That
equation relates the characteristic transformation time to the grain size and the diffusion coefficients
in the coexisting phases. It enables one to examine the kinetics no matter what the initial state and
allows one to estimate the effects from the uncertainty of data on the diffusion rates on estimates
of the cooling rate. The model operates with component concentrations averaged over grains.
These are used as thermal-history indicators to reduce the difficulties associated with measuring
composition profiles, particularly of small grains. An example is considered of reaction between
garnet and clinopyroxene. The kinetic equations are used to recover the cooling rates from the
frozen composition of the minerals.

KINETIC EQUATIONS

Let us consider an assemblage composed of r phases, each of which is an n-component solid
solution (r <n + 2). By C, we denote the molar fraction of component ; (=1, ..., n) in phase a (@
=1, ..., 4), while &? is the molar fraction of phase  in the mixture. For exchange reactions, the in-
dependent reaction degrees of freedom can be taken as the concentrations Cjli=1,.. n-1ofthe
components in the 7 - 1 phases (where there are various possible sets of 7 - 1 phases).

(r—1)(n—1) G
7,
16 E ot 1)

x=1

The increment in the Gibbs free energy for the assemblage is

in which {g, 0. =1, ..., (* - 1)(n - 1) are the generalized internal parameters, e.g.,
L= {E°Ca'}1 S | (2)

The internal parameters can be taken as the products & of the phase proportions and the
component concentrations, namely independent combinations of the variables (. For example, for
an exchange reaction in a binary solution, the number of internal parameters (o is (# - 1)(n - 1) = 1,
so one can use the concentration of one component in the two phases alone.

Using an algorithm from the linear thermodynamics of irreversible processes [15], we can
write a simple kinetic equation for the relaxation of the parameters {o={E*C,’} to the equilibrium

values: '
dt. G
Z - ZKaa‘—v (3)
B agﬁ

dt

in which K g is a symmetrical positive-definite matrix containing the kinetic coefficients, whose
components are functions of pressure, temperature, and the overall mixture composition. The
temperature dependence is usually of Arrhenius type:
- AH )
= — 4
K(T) Koexp( RT ) (4)
11



and K the frequency factor. The crosg Coe

in which AH is the activation enthalpy . : fhici
B) define the dependence of the rate of reaction o on thg extent of equilibration in reactfnts Ko @
explain the coefficients in K if we neglect the cross kinetic effects and take the e onp, y, ¥
Matrices K and G can be reduced simultaneously to diagonal forms, and G is ajsq ta)l((as diagocan
nal. Then the (3) system near the equilibrium state is written as en a5 diag,.
2
égf_.-:._-[(m_a__G; ‘(Ca“§a°),
dt 0%’ ! pore (5)

a=1,...(r—1) (n—1).
Here T = (K u02G/0Lo2) ! specifies the characteristic kinetic time-scale for reaction o

In the case of an ideal binary solution, we take (o= §*C,', and the rate of change i, Ci:
a

I [12]
i K CH(1=Cy) _
-—a—t:—————"g';‘( RTln (1—C“i)cbi Ag(P’ T)) .

Here K > O is the kinetic-coefficient matrix, while & is given by

(6)

: ; 0,
Ca &Gyl (1-E)=C"
0. :
in which C 4 is the overall mixture composition and Ag(P, T) is the standard molar free energy
As the &4 are fixed, Cp'is a function of Cp"
i 8‘ — Caiga
Cb — — Ec ° (7)

Substituting this into Eq. (6), we transform it to
0
dcai K Cai { — a_Ci+Cia Ag (P, T
—-—aRT (ln ( E o ag ) — g;li;f) . (8)
(1 —C.Y) (C*— C.'E)

—
§

dt

When the reaction occurs near equilibrium, we can obtain a linearized form for Eq. (8). Let
C,%4 be the equilibrium composition for the given T, P, C, and &?, which satisfies

i
d¢, —0, ©)

Ca =0aq

o
eqiq __ga__ (1 egea
Agt (P, )= RT In e =¥ —C +Cat)

(1 —C3h) (C*—Ca%")
(For a binary solution as considered here, we omit the i and a and take C°9 and C as the concent™
tions of component i in phase a.)

Then , ’
0 0 e
%%‘:_%RT g 0(1—50—6—%)(1—-0“)(5—03& =
(1—C)(C —CE)C*(1 —t—C —C™B)

K 0 (10)
=——TRTf (,,C,C,C%)
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(the logarithm on the RHS is denoted by AE, C, o C¢9). When the deviation from equilibrium is

small (C = C¥ + &, where § « 1), Eq. (10) is converted to linear form:
dC K

= e oo 11
T=— TR C—CYFEC,C. (11)

Here

Cu—p+Crt20c—Cr

F(E, 8s Ceq)= 0 o
C*(1 —C*9) (C—C*E) (1 —E—C + C*%)

To close the model and calculate the Kop, phenomenological consideration is inadequate, and
one needs a microscopic model for the component redistribution between phases.

EXCHANGE-REACTION MECHANISM

We derived the dependence of X in Egs. (10) and (11) on the diffusion coefficients, grain
sizes, and equilibrium constant from a simple model of redistribution of components between two
phases.

The zonation observed in grains of coexisting minerals is due to cations diffusing from one
mineral to the other in response to temperature change. The transport direction is governed by the
temperature dependence of the distribution coefficient. Retention of concentration gradients near
boundaries between grains indicates that the exchange is incomplete, i.e., the reaction rate has
fallen so much, e.g., in response to falling temperatures, that the compositions have been quenched.
The concentration profiles should thus be determined by the cooling history and can be used to
reconstruct the T-t path. We need to solve diffusion equations for the cation transport having first
determined the geometry (i.e., grain shape and size) together with the boundary and initial conditions.

Let us examine a one-dimensional model as a layered medium with phases a and b alternating
(Fig. 1). It is symmetrical, so we will consider two contacting grains of phases @ and . Let / be the
characteristic size of the two-phase layer, while £/ is the size of the grain of phase a and (1 - £) / is
that of phase . Neglecting the difference in the molar volumes, we assume that £ coincides with the’
volume fraction [7].

The physical assumptions are: I. At a certain initial temperature Ty, the two phases are in a
state of chemical equilibrium; II. During cooling, local equilibrium is set up at each instant at the
boundary. III. Only the two cations 1 and 2 (e.g., Fe?* and Mg?*) are exchanged, and the concen-
trations of all the other elements are unaltered.

Let Cy'(x, ) be the concentrations of component i in phase ¢ at a distance x from the bound-
ary at time ¢. The I equilibrium conditions at the start are:

Co' (z, 0)._C ! — const, (13)
RRT.X

= ob =% (To)s

ColC,2

where x  is the equilibrium constant at To. The conditions at the II boundary are:

C.'(0,t) 'Cb"(O, t) _ .
Cb't(O,t)CJ(‘O,t) —'K(T) (14)
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Phase a Phase b Phase a Phase b
Initial

Component 1 Component 1
S -t ]
Component 2 Compo_n_etit 2
9
Frozen
l, 8 s by

Fig. 1. Schematic representation of frozen concentration profiles for an exchanging COMponep;
after
the completion of the exchange in a layered system containing alternating phases g anq p,

Neglecting the effect due to deviations from ideal behavior in the phases, we assume that
% (D) is % (1) = xeAHYRT in which % is #(T) for T— o and AH is the standard molar enthalpy
of the exchange, which in general is dependent on T, P, and the coexisting-phase compositions
However, if the composition and temperature ranges are narrow, one can take AHC as constant.

Conservation of matter during the exchange requires equal component fluxes at the boundary,
The flux Jo(x) of component i in phase ¢ at a distance x from the boundary is given by Fick’s first
law:

: i
1@=-DimZ, (9
in which Dy(7) is the diffusion coefficient for ion i in phase @ at temperature ¢, so
aC.! 9C.* ‘
D (T)— =—D}(T)—— =
M= (T) ryl I
aCy! 9Cy*
=D (T)—==| =—D(T (16)
b()az . a()ax .,

Here x is the positive distance from the boundary and the D are normalized on the basis of the dif
ferences in molar volumes and cation contents in the phases. We subsequently assume that the
exchange is limited by diffusion in the bulk of the grains. Our one-dimensional model involves te
assumptions that the radius of curvature of the phase boundary is large by comparison with e
diffusion distance and that the direction of the concentration gradient coincides with the normal 1

the common boundary. Therefore, we need to consider only the component of the diffusion tensor
in the x direction. - ‘

The rate of change in the concentration of cation I at point (x, f) is

0Co'(z,t) 0 (. 8Ci(z1) (17
=g D2t
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As there is mutual diffusion between the components, the diffusion coefficients are the
mutual diffusion ones Dy, for a pair of ions in each phase. The temperature dependence of those
coefficients is Do, = Dy exp (~AEY/RT), i which AE,” is the diffusion activation energy, which
is taken as constant along with Dy, within the relevant composition and temperature ranges. Als0,
the composition dependence of Dy, and thus the x dependence will be neglected. The molar con-
centrations are related by the electrical neutrality conditions Cy!(x, #) + Cy%(, £) = const for all @, X,
and ¢, so the concentration profiles for components 1 and 2 are simply mirror images with respect
to the phase boundary. This means that we need consider only one component in each phase, €.8.,
FeZ* (component 1).,

As the grain sizes are small, we cannot always measure the composition profiles, and in
those cases we can use their means over the volumes, i.e.,

(=81
_ 1

- 1
C¢‘=—_ Ca’ y bi=-———-—— bl . 8
’él_£ I (z)dz, € =51 ‘;‘. C (I)dx (18)

On account of the symmetry of the profiles about the centers of the grains,

(1-)t/2

2 0 5 2
C'=— ] C; " f=- 5 :
El_;“,,z (z)dz, G, =y, OJ. Co' (z)dz. (19)

The conditions for symmetry of the profiles at the points - £//2 and (1 - £)//2 physically denote the
absence of component fluxes at those points:

aC,!
ox

—0, aC“]

x=—1/2 oz

=0. (20)

x=(1—%)1/2

For a given phase composition, § = constant, differentiation of Eq. (19) gives

0

0 2 oCs" -, 2 : 9*C,!
—C (t)=— ——dz=—D,(T * dz=
at el ., ot T )_JUZ e
2 aC,' l
=—D,(T
il (I— R (21)
c (1-§)t/2
ad _ 2 0 b£ 2 0051
—C'()=——D()— || ==—"-— =
otV (1-§)! N5 ! | TR TR
- (22)
The éondiﬁon for equal fluxes at the boundary gives a relation for the mean concentrations:
) El 8 ..\ (1—-8)
2 o) 8 (S0 0
( at 2 it 2 (23)
or after integration
C.'(t) E+Cs! (t) (1—E) =const=C", (24)
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in which C ! are defined from the initial conditions:
0 0
CAE+Ct (1 —B) =C.

25

The mean compositions are thus related by component balance conditiong_ ) ( )
parameter can be taken as C,!(f). One analyzes the model equations to get an ordj © Inte

equation for C,!(t) to relate the coefficients in that equation to the Dy, phase sizes, oveeay Srentig)

sition, and equilibrium constant. COompo.

The following are the equations for the model together with the initial and boundary mn(-iiﬁo «
N

1. Diffusion equations:

oCs' 0C  rel—t2,0):
at ——D.;(T)l"—a-;y Z [ E L] ]'
6Cy' OC  zel0, (1-g)r2 &
ot —Db(T)-—a;z—', x [ :( E) ]-
2. Initial conditions:
0
2‘,,1 = const, Cpl = const; @1
C 10y
= %(To) =%y;
CXC,2
0 0 0
ClE+ Gt (1 —t)=0C1,
in which the parameters C,! and C,! are related to C,2 and Cy2 by
0 0 0
Co' + Co*=const =Cy! 4 (2= Co» 9=a, b. (28)
3. Boundary conditions:
2C,!
oz
(29)
aC' 0

9C,'
R

C(0,4)C(0,8)
G (0,9 (0,t) — *T)

DN - _p,(1)

terested not in the soluti

~ on C,l(x, 4t hich in particulaf
demonstrates zonation) but in the behavior of the intGgra‘l’ c(har:?\ct:rtihs:itcsymm =
0
2
C. (t)= --l. 5 C,} (z)dz. (30)
E -kl/2
ISOTHERMAL KINETICS

the system 1S in &4



librium, and the component concentrations in the two phases are constant at their equilibrium
values for Tp. At time t = 0, the temperature changes by A7, and the equilibrium is perturbed: the
concentrations at the phase boundary alter and the flux of a component occurs through the boundary,
with the system relaxing to the new equilibrium distribution under isothermal conditions at 7= 70

- AT.

Let us rewrite Eq. (27) with the dimensionless variable x’ = x// and t = tDy//2:

aC.' D, 9*C,! ,
aC'  C
at/ - 63,21’ z E[Ov (1_5)1/2]'
: o Gads
Ct.!1 (xlr 0)=Ca1v Cb:l (-7:’9 0)=Cb1; oa ob == nov (32)
Cy'C,?
in which
0 0 0 0 0 0 0
Ca? =Cu—C! C?=C,—Cyt G+ Ct(1 —E) =C; (33)
3C.! ,
(34)

aCy' ,
5o ((1=E)/2,t)=0;

D, aC,! - AC,!
— 220~ t') = + 47y,
Db 61”(0’” dx’ (O ’t)’

‘ C'ai (01 tl)Cbz (O’ t”)

C,'(0,t')C.2(0,t)) w0 (T7) mmy,

1

OThe c%ncenuations are expressed in mol.%, so the dimensionless parameters are D,/Dy, S M
%0» Ca', Cp'. The last three define only the initial state, so the parameters in Eq. (10) should be

dependent only on &, D,/Dy, and .

Numerical solution of Eq. (34) enabled us to check Eq. (10) and the linear analog Eq. (11)
for the relaxation to equilibrium at constant temperature.

Figure 2 shows the numerical results. Lines 1 and 2 describe dC,! (t)dt during relaxation, where
Ca! - C,% defines the thermodynamic force (here C,¢7 are the equilibrium concentrations of com-
ponent 1 in phase a). Line 1 is from Eq. (10) and line 2 from Eq. (11). Near equilibrium, namely
~90% conversion, the rate of change in the mean concentration is proportional to the degree of
conversion. Curves 1 and 2 have a common linear section at small C,! - C,%4. This result indicates
that the kinetic behavior of the pair at small deviations from equilibrium follows Eq. (1 1). The
kinetic coefficient X is defined by the slope of the linear part of curve 1 in Fig. 2a:

fan o = g (KRT)F (£, C,2, C9).
b .

Figure 2b shows the lines for various initial temperatures T, < 7,0, which coincide as equilibrium
is approached. The relaxation rate on approach to equilibrium is independent of the initial state.
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)
dC) /dt

(Gy= €gY

Fig. 2. Rates of change of mean concentration in relatifm to deviation from
equilibrium: a) 1) from (10); 2) from (11); b) T 50 < 10 lines comresponding ¢,
various initial temperatures in Eq. (10).

We can thus examine how the dimensionless kinetic parameter in Eq. (11) behaves:

K—(ls/p,)KRT (3)
as a function of the characteristic parameters in the Eq. (34) model: Dy/Dy, &, and x, Whose vajyeq
may be varied.

We determined the kinetic coefficients for the ranges 102 < D,/Dy, < 102, 0.1 €<009, and 01
< %< 1. Figure 3 shows lines 1-3 corresponding to § of 0.1, 0.5, and 0.9. The solid lines comespond
to % = 0.1 and the dashed onesto » =1.

If the relation between the diffusion coefficients is D, < Dy, K (the reaction rate near equi-
librium) is higher for the system with the lower &, and conversely for Dg > Dy, it is higher the
larger the x for the phase with the larger diffusion coefficient D,. Near D, = - Dy, K is independent of
the phase sizes. It is also proportional to the reciprocal of the reaction time: X oc 1/Y = 2Dyt (we use
L o \Dt for the width of the diffusion zone).

2 In the first case, gaéDb « 1, the limiting phase is phase @, with grain size L =§/ 50 K o< (D/Dy)
, i.e., K increases as € decreases.

When D,/Dj » 1, the limiting phase is b, with grain size L = (1 - )/, and then Ke1(1-8%
which means that K increases with £, Also, starting at a certain D,/D;, K ceases to be dependent on
D,/Dp. In Fig. 3, this corresponds to the flat parts of the & = constant curves for D,/D > 10%.

When D,/Dj = 1, the process is limited by bulk diffusion in the two phases, L =/, K const., i€
is independent of the relation between the grain sizes,

- Figure 3 shqws that K i only slightly dependent on x because the dependence has alresdy
been incorporated in the expression for the thermodynamic driving force.



log (Da/Dp)

~
Fig. 3. Dependence of X in Eq. (11) on D,/Dp, €, and x . Lines 1-3 corre-
spond to the proportions of phase a for & of 0.1, 0.5, and 0.9. Solid lines
=0.1, dashed lines » =1.

determine the temperature conditions and evaluate the role of each kinetic parameter on the basis
of the mean composition, not the zonation.

NONISOTHERMAL KINETICS

T'may vary for example because rocks rise or sink or from cooling after eruption and so on.

The behavior of (—fal(t) will be examined by solving Eq. (34) with a given law for the change
in temperature 71(t), which enters into Eq. (34) via x (7(t)) and D,(T(t)) and Dp(7(t)). The resulting
C,1(t) must be compared with the solution found by using the kinetic coefficients in (10) and (11).

We examined Fe2* -Mg exchange in the garnet-clinopyroxene pair:
1/sMg;Al,Siy 0+ FeSiOs=! /aFeaAl,Si,O,.+MgSiO,. (36)
A study has been made [7] on how the exchange here is affected by the ratio of the D, by AH,
the crystal size, and the cooling rates as regards the concentration distributions and the shapes of
the zoned profiles. We have used those results to test our method and model. Figure 4a shows the
frozen Fe?* profiles for clinopyroxene derived by solving Eq. (34). The main parameters were
taken from [7]. The cooling law was T1(t) = T - St, with T = 1473 K and S = 10 K/My. As C,1(¢) we

took the Fe2* concentration in the clinopyroxene.

Figure 4b shows Eal(t) for that cooling and also the quenching time and the frozen values of
the mean concentration corresponding to the Fig. 4a diffusion profile.

The dimensionless isothermal treatment has shown that the relaxation rate near equilibrium
is dependent only on &, D,/Dp, and % and is independent of the initial conditions (Fig. 2). We
performed calculations for isothermal conditions T = const (1400, 1300, 1200, 1100, and 1000 K)
with various 7, and Fig. 5a shows the rate of change in the mean concentration as a function of

the deviation from equilibrium with x = dC,Y/dt and y = Ca'~Ca®? as axes; the solid lines are for
1000 K and the dashed ones for 1100 K. Figure 5b illustrates the independence of the conversion
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Fig. 4. Concentration profiles for exchanging component and variations i me

concentration during cation exchange (7= To - St, To = 1473 K/My): a) 1) initia) Fe?z

distribution in clinopyroxene; 2) frozen profiles; b) 3) change in mean concentratiop.
4) equilibrium curve. ’

rate from the initial temperature (7p = 1500 - 1350 K) near equilibrium at 1300 K,

The slope of the linear part of Fig. 5c for small C,1(¢) - C,%9 defines K

For T = constant, Eq. (11) can be integrated:
C(t)=Cr(T)+(C(0)—C"(T))exp(—kt), @
in which

k= KRT—;—F(& Co', C‘9) = const for §, T ==const

(k has the dimensions of reciprocal time, K=XP/Dy).

The X derived from the calculations (Fig. 5) serve to define how well Eq. (37) describes the
solution to Eq. (34). Figure 6 shows lines corresponding to the Eq. (37) solution (line 1) and the
Eq. (34) one, line 2 (T = 1300 K, Ty, = 1400, and 1500 K), which almost coincide after a certain

time.

The temperature dependence of K = EK/RTF can be derived by constructing a fitting line: I
K =1n K, - AH/RT, where K = 5-188 sec’! and AH, 83 448 cal/mol (Fig. 7).

ers of ifs

The isothermal kinetic equation is (10), which is of first order, and the paramet .

temperature dependence have been derived for it. This enables us to examine the behavior
transformation of varying temperatures.

The solution to Eq. (11) for T = T(t) is represented in quadratures:

" 9
cw=[eo+ fopcamcnwr@ar aw,  °
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in which
A =] k()dr.

Here k(t) and C*4(t) are determined by the cooling law T(t) = T - St. For the nonlinear equa-
tion (10), the solution can be obtained numerically. Figure 8 illustrates the results for 7 = 1473 K,
§= 10 K/My. Line 1 is the solution to Eq. (34), while line 2 is the solution to Eq. (38), and line 3
shows the C¥4(f) along the 7(t) cooling curve.

The following are the frozen values of the mean concentration, the quenching temperatures,
and the times to attain C, for Eqs. (34) and (38) with cooling rate S = 10 K/My:

C—Vq, mol% Tq’ (K) tq’ My
Diffusion 0.5006 327 114.2
Kinetics 0.5005 974 50.7

Curves 1-3 in Fig. 8 coincide for small t (high T), since the process is almost in equilibrium.
The length of that stage, where equilibration occurs, is dependent on the cooling rate and is the
longer the slower the cooling. As T falls further, the conversion slows, and the deviation from
equilibrium increases up to the time of quenching. Kinetic curve 2 deviates somewhat from

21
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Fig. 6. Mean concentrations of exchangeable component in two models; )
kinetic equation; 2) diffusion model for isothermal conditions 7= 1300 g
To = 1500 K and 1400 K. ’

diffusion curve 1 as the deviation from equilibrium accumulates, but the quenched concentratiopg
are almost identical.

The following are results for various cooling modes:

S, KMy
CA mol% 1749 4126 4558 5006 5481
C/m, mol% 1502 4007 4518 5005 5515
T4 ) 392 392 345 327 298
T (K) 860 872 922 974 993
T4, (K) 459 1067 1128 1195 1270

These show that the kinetic equation is suitable for. recovering cooling rates, since the
maximum difference between the frozen mean concentrations for the two solutions is ~0.04
mol.%. The frozen values can be used as cooling rate indicators.

Figure 9 shows the frozen C, for Eq. (34) (curve 1) and for the kinetic treatment with various
S. Figure 10 shows cooling curves and C{(t) ones for contrasty cooling conditions with S = 100, 10,
1, and 10-3 K/My, together with the C®9(t) corresponding to the 7(t). The quenching-temperatre
estimates in this model are completely determined by the reliability of the measurements 01 the
temperature dependence of the diffusion rates and the equilibrium parameters. Therefore, We o
reasonably estimate the temperature ranges within which the reaction occurs in a nonequilibrum
fashion, i.e., the extent of reaction is governed by the relation between the kinetics and m:
temperature conditions. The upper bound is the closure temperature T, and the lower one

quenching temperature 7. ‘
CONCLUSIONS

: ons Of
1. A new approach is proposed to exchange kinetics, which can be described by eq“mggs/ag
Onsager type on the assumption of linearity in the generalized thermodynamic driving forces

and fluxes d{/ot.
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approximation In K = In K, - AH/RT.

Fig. 8. Comparison of two models for nonisothermal conditions (T = T - St, T
= 1473 K, § = 10 K/My): 1) solution for diffusion; 2) solution to kinetic equat-
ion; 3) equilibrium curve. Quenching time t,, closure time t,.
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Fig. 9. Frozen values of mean concentration in relation to cooling
rate: 1) diffusion model; 2) kinetic model (7 = 1473 K).

Fig. 10. Cooling curves, mean-concentration evolution, and equilib-
rium curves for various cooling rates.
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diffusion has been used in constructiy

2. Solid-state ion exchange by bulk n.
the deviation from equilibrium. 8a ﬁrst‘Orq
&

kinetic equation relating the reaction rate to

3. The kinetic coefficient as a function of model parameters has been eXamige
tual diffusion coefficients for the components in the phageg N :d in di’nen
b e 19, i

sionless form: the mu ) .
constant, and the grain sizes. The parameters have been derived in an Arrheniyg e,
¢ coefficient. uatj

brj
temperature dependence of the kineti on fOYEZ
ith varying temperature has been simulated on the basis of

4. Cation exchange w ‘
of diffusion profiles. dxﬁeusioIl

concentrations averaged over grains instead

over earlier ones, as it reduces the uncertainty ip 4

cooling rates associated with the lack of reliable evidence on diffusion rates at low tep, pzten“i“ing
also enables one to estimate the temperature range in which the reaction occurs in g S r;gnes; it
fashion and thus to determine the bounds of that range in relation to the cooling rgt‘:_h_brimn
absence of data on the zoning profiles within the grains, one can use mean °°ncentrati0ns’. alzdﬂ?e

solving complicated geochemical cases, one can avoid complicated calculations asS0Ciateq I
solving diffusion equations. With

5. This model has advantages

6. The model is applicable to any pair of minerals and enables one to formulate how
measure exchange reactions, particularly in cases where there are considerable difﬁcu]ties:g

determining diffusion parameters. . :

7. The equations have been used to recover cooling rates in metamorphic rocks ang y,

correct and interpret the readings of jon-exchange geothermometers. Criteria have been foung for

a geothermometer showing either the initial temperature or the closure temperature in a transfor.

mation.
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