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THE RELIABILITY OF THERMODYNAMIC CALCULATIONS ON CHEMICAL
AND PHASE EQUILIBRIA AT ULTRAHIGH PRESSURES*

0.L. Kuskov, R.F. Galimzyanov, L.M. Truskinovskiy and V.A. Pil'chenko

Vernadskiy Institute of Geochemistry and Analytical Chemistry,
Academy of Sciences of the USSR, Moscow

A comparison is made of semiempirical methods of con-
structing thermal equations of state for solids. It is

P

found that isothermal P-V curves and |vir are sensitive
0

to the method used in the construction, and estimates are
made of the random errors. It is shown that isotherms
agree with one another to within 77 in pressure in the
megabar region as calculated by the potential method and
from the theory of elasticity, which corresponds with the
errors of current methods of static and shock compression.

P
The calculations show that the numerical values of gww
0

are determined with high accuracy (never less than 1-27)
and can be tabulated in thermodynamic handbooks along with
the standard thermodynamic functions. Because monovariant
curves for chemical and phase equilibria at ultrahigh P

P
and T are based on the determination of | vir, the relia-
0
bility of such calculations has a rigorous basis. Basic
thermodynamic specifications are formulated for calcula-
tions of chemical and phase equlibria over wide ranges in
pressure and temperature.

*Translated from Geokhimiya, No. 6, pp. 849-871, 1983.
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Research on the internal structure and chemical evolution of the planet
is a central task in Earth sciences. Many aspects of this fundamental problem
do not allow of direct solution by means of observation or model experiments.
Theoretical and experimental geophysics are concerned with the composition of
the mantle, the Earth's thermal history, the processes resulting in the core,

The advances made in this area are well known [1-3].

and so on.
At the same time, study of the physicochemical and geochemical features

of the processes that have occurred and are occurring deep within the Earth
It is clear that further research on the structure and

has not been common.

composition of deep parts of the Earth should be based on geochemical methods
and the use of rigorous techniques from chemical thermodynamics along with ex-
perimental information on the physicochemical properties of the Earth's material,
which enable us to examine the directions taken by chemical reactions and to
construct phase diagrams for mineral systems at the temperatures and pressures

found deep within the Earth [4].

A basic problem here is the reliable determination of the free energy of
reaction AG(P, T). One of the major conditions is correct determination of
P
J'VdP for minerals. This also will be considered here.
o

BASIC SPECIFICATIONS FOR INFORMATION ON EQUATIONS OF STATE REQUIRED IN
THERMODYNAMIC CALCULATIONS ON CHEMICAL AND PHASE EQUILIBRIA OVER
WIDE RANGES IN PRESSURE AND TEMPERATURE

The free energy AG? of a chemical transformation at arbitrary P and T can
be calculated by means of a thermodynamic equation:
P ¢ ‘
AGr = AGT + [AVd P, (1)
0

where AGT is the change in the standard free energy and AV is the volume

change at given P and T.
Clearly, to study reactions deep within the Earth at pressures of hundreds

and thousands of kilobars it is necessary to know the relationship between
Such equations

volume, temperature, and pressure, i.e., the equation of state.
can be used with experimental data on the standard thermodynamic functions to

calculate the P-T parameters of equilibria in a mineral system throughout the

relevant temperature and pressure ranges, while experimental P-T curves for
monovariant equilibria give a thermodynamically rigorous derivation of standard
free energies inaccessible to direct calorimetric determination, as well as
other characteristics of chemical reactions involving high-pressure and low-

pressure phases [5].
Therefore, equations of state are a major link in constructing a system

of mutually consistent thermodynamic parameters for minerals.

Measurements and calculations of standard thermodynamic functions involve

certain specifications for the experimental methods, and also for consistency

in the constants, accuracy in the calculations, and evaluation of the corre-
This enables us to tabulate thermodynamic constants.

sponding errors [6, 7].
Thermodynamic functions such as enthalpy, entropy, and free energy constitute

a system of related quantities: AG = AH - TAS.

Clearly, the choice of key quantities acquires particular significance in
preparing fundamental reference works that survey the accumulated experimental
data; a very important requirement here is internal consistency in the tabu-

lated values [6].
During the last decade, there have been advances in experimental and theore-

tical researches on the chemistry, physics, and geophysics of high pressures
A unique apparatus has been built in which static pressures
It

[1, 3, 4, 8"10].
of over 1 mbar and dynamic ones up to 10 mbar or above can be attained.
has become possible to perform direct synthesis and decomposition of minerals
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in the transition zone and lower mantle, with measurements of the compressi-
bilities and construction of equations of state. There have also been rapid

abundances in the thermodynamics of reactions at high pressures and tempera-
tures [4, 8].

Therefore, we now have extensive experimental evidence on simple systems,
which can be used in physicochemical simulation. In that approach there are
additional difficulties (as compared to thermodynamic calculations at atmo-
spheric pressure) that are related to construction of equations of state, cal-

P

culation of the integrals SLHP, and selection and matching of the experimental
0

data, which ultimately all influence the accuracy in calculating the free en-

. P . b e
rgy of reaction AG, and the P-I curves for monovariant equilibria.

However, so far no criteria have been laid down for such calculations that
enable us to evaluate the reliability and accuracy of the thermodynamic inform-

P
ation at high pressures S\MP,AG?, etc.). The following basic specifications for

information on equations of state can be drawn up from the existing experience

with thermodynamic calculations on chemical and phase equilibria at high pres-
sures and temperatures [4, 5, 11]:

1. To calculate the P-T curves for chemical and phase equilibria at high
pressures and temperatures we need information on the equations of state for
P
the substances in the form of SVdP.
0
p
practical form. The values of YL@P characterize the isothermal dependence of
0
the chemical potential on pressure, and these values are of reference character,

and should be tabulated in thermodynamic handbooks along with the standard
thermodynamic functions.

This must be available in a convenient

})
2. The numerical values of SlﬂP for simple substances and compounds
0
should be reliable. Within the limits of error they should be independent of
the model and the method of constructing the equation of state.

3. Experiment provides the factual basis for constructing an equation of -
state. The experimental data on compressibility can be represented as compres-
sion curves (isotherms or shock adiabatics) or as elastic constants (adiabatic
and isothermal compression moduli of various orders) under standard conditions.
The latter in essence are differential characteristics of the compression curves
and contain in concentrated form all the necessary information on the compres-
sibility. For this reason the processing and matching of experimental compres-
sibility data is best done at the level of elastic constants, in accordance
with the specifications laid down for reference thermodynamic data. It is

necessary to set up a data bank on the elastic, thermal, and caloric character-
istics of substances.

4. Special consideration is needed of the sensitivity of the results to
errors in the initial data. Reliability evaluation of thermodynamic calcula-
tions for high temperatures and pressures is very closely related to consistency

in the primary experimental data and to comprehensive analysis of the random
and systematic errors for all types of data.

5. Experiments to determine the elastic constants of various substances
have not managed to satisfy the increasing demand for new data on low-pressure
and high-pressure phases. For this reason, extensive use should be made of
various methods of comparative calculation for elastic constants on the basis
of the correlations in a series of compounds similar in composition and struc-

ture. The limits to the applicability of the methods and the accuracy of the
results must be strictly defined.
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Detailed information is required on the P-V-T properties and on the therma],
elastic, and caloric characteristics of substances over wide ranges in tempera-
ture and pressure in order to solve various problems in physicochemical simula-
tion for endogenous processes (compression moduli of various orders, specific

heat, entropy, thermal expansion coefficient, etc.).

In such calculations, particular attention must be given to the reliability

ll
and accuracy of the values of deP, so here we shall analyze the reliability
0

in determining these and the sensitivity of the values to ways of constructin
the equations of state, and we also shall give a quantitative evaluation of the

calculation errors.

SEMIEMPIRICAL MODELS FOR THERMAL EQUATIONS OF STATE FOR SOLIDS

It is impossible at present to construct an equation of state theoretically
by analyzing the microscopic structure of the material and the character of
the atomic interactions for any complicated compound. For this reason, various
semiempirical approaches are widely used [1, 5, 9, 12-19].

There have been numerous special studies [1, 12, 14-16, 20] on the accuracy
of semiempirical equations of state, but we are still far from.a final decision,
The criterion here is agreement with the experimental compressibility data.
However, information on the compressibility is extremely restricted or entirely
lacking for many geochemically important substances. Under these conditions,
the prediction reliability criterion may be agreement between the equations of

state derived from independent approximations.

Within the framework of semiempirical methods there are approaches based
on concepts from the theory of elasticity and statistical solid-state physics.
Let us consider the essentials of the commonest methods.

CONSTRUCTION OF AN EQUATION OF STATE FOR A SOLID BY ELASTIC-THEORY METHODS

Approaches in the theory of elasticity [20-23] to the construction of
equations of state for solids are usually based on expanding the Helmholtz
free energy F(V, T') at constant temperature 7, as a Taylor series in powers of
the deformations with respect to some reference state* with voluem V,:

*F 1 @%F
9 £2+—-—a——- eS+..., (2)

oF !
T,) = e Py
F(V,T)) =F(V,y, Ty + 38 V,.To8+ 2 0y, 1, 6 0e |y, r,

where e=¢(V/V,) is a measure of the deformation, with e(l1)=0. One usually
restricts oneself to the first few terms. Such finite expansions have an exact
asymptotic meaning for small deformations. The exponent in the last term in-
corporated defines the order of the corresponding equation of state, which is
readily derived by differentiating (2) with respect to the volume, since

oF oF de
P T = [ —— = e———— —_—
V.7 (av )T (68)7. 14 )

We also use a definition of the isothermal bulk modulus and the derivative of

this with respect to pressure

__yfer =(&)
K V(dV)r' Kr oP It (4

and express the derivatives with respect to deformation in terms of the deriva-

tives with respect to volume, which gives us the following relations for the
first three coefficients in (2):

*Here and subsequently the quantities with subscript O relate to the reference state.
Usually, the reference state is chosen such that P(VO, TO) = 0.
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k| __pd¥| | (5)
a V.’T. ae ‘I..T.
] K 2 2
2 = (L) -2y (6)
de? VoTe V \ ode de? VoTs

2F
ded

(7)

| KD oy Hrov v oV
V,.T.— V2 (ae) V de oer e

V00T0

In the theory of elasticity, which operates with macroscopic concepts and
does not contain concepts such as "atom,' '"lattice," and so on, the question
of what is meant by the deformation measure is important. It is familiar that
the choice of deformation measure is ambiguous in the nonhydrostatic deformation
of a solid [21-23]. The corresponding difficulties persist also in the hydro-
static theory of isotropic and cubic bodies if we use finite expansions of the
type of (2) in constructing the equation of state.

Proper choice of the deformation measure enables us to accelerate the con-
vergence of the series of (2). Equations of state constructed from different
deformation measures containing infinite numbers of terms are equivalent, but
finite expansions with identical numbers of terms give different results.

Therefore, the accuracy of an equation of state is dependent on the number
of terms in (2) and on the choice of deformation measure, and it is determined
from the agreement between the theoretical curves and experimental data.

We may illustrate the difficulties arising here on the following example.
Let the reference state be unstressed, i.e., 0F/0V|y,r,=0. We take the very

simple deformation measure e=(V—V,)/V, and retain terms up to the third order
in (2) to get

F(V, To)_F(Vo, To)=a282+a383, (8)
where
4 L OF . _ 1 &F
= — y Q3 = — —— .
T2 e |y, g, 6 0 |y, 1,

We substitute (8) into (3) to get

oF \ oe I
—p (%) % _ 34.€2).
P ( P )T T (2a,e + 3a,e?) (9)

It is readily seen that the body obeying equation of state (9) can be compressed
to a point by performing a finite amount of work. Therefore, equation (9)
gives unsatisfactory results at large deformations.

Let us now consider some approaches to constructing the equation of state
for a solid based on particular methods of choosing the deformation measure¥*.

The Lagrange approach through the description of deformations in an elastic
body has a certain universality in the nonhydrostatic case [21] and gives the
following expression for the deformation measure [17, 18]:

3
L[/ VY°®
= —|[—] —1].
°L 2[(%) ] (10)

In that case, formulas (5)-(7) for the coefficients in (2) can be transformed
to

*Particular interest attaches to deformation measures that can be extended directly to
the nonhydrostatic case, since for most crystals we cannot apply the model of isotropic re-

sponse to a hydrostatic stress. On the other hand, much attention is now being given to nonhy-
drostatically stressed systems [24, 25].
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oF

L = e T

%y, |y,r, e el "
O*F = —3V(—3Kr + P)|y, 1, (12)
&%var.

F ,

.a_:._ = — 3V (9K:Kr — Py, 1,- (13)
aeL VoTe

The corresponding third-order equation of state is written as follows [18].

Nl—l

(14 2e;)
Pler, Ty) =— —3701“—— (bo + bse 1, + b2el), (14)
where
2 F
L lv,.Te o€, Vo.To oy, Vo,To

Equation of state (14) has the same disadvantages as (9). A check on the
applicability to real substances has shown that it is unsatisfactory at high

pressures (P22200 kbar).
The Euler approach to describing deformations in an elastic body gives

the following expression for the deformation measures [17, 18]:
-3
1 vy ?®
w= 5= () ] &
Then (5)-(7) can [18] be put as
F
ST ——3V,P(V, Ty, (16)
deg Vol
2F
Z| =—8V(—=3Kr +5P),, ., )
de}; e
VoiTo
?F ‘
— = — 3V [9Kr (Kr — 4) + 35P]|, . (18)
dey, VT ne

Then the third-order equation of state takes the form [18]

b
(l b 28E)’ R
P(eg, Ty) = — T (Co + C1€E + C28}), (19)
0
where
oF oF 1 ®F
=l T T T
Elv,T, deg VouTo Oeg VorTo

The difference between the Euler and Lagrange approaches to deformation
Consider an isotropic specimen in

description can be explained as follows.
in the undeformed state, which undergoes hydro-

the form of a cube of side
static compression. In the deformed state, the side of the cube is [, with

I=Etl,. The Lagrange and Euler measures expressed in terms of { can be repre-
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sented as follows:

(82— 1), (20)

eE=—21v-(l——§'2), (21)

where

E=Ul, = (VIV,) .

Figure 1 shows graphs for these. At small deformations (¢ = 1), the two
measures are virtually the same, while the Euler measure is unsatisfactory for
large degrees of stretching (i.e., it is necessary to retain a large number of
terms in the expansion of (2) for the free energy), whereas the Lagrange measure
is unsuitable for describing finite compression deformations.

Both approaches are used in constructing equations of state [14, 15, 17,
18, 20], but with a given number of terms in (2) the Euler approach gives better
agreement with measurements on the compressibility (see below). This approach
has been widely used in describing isothermal P-V compression curves. The

equation of state (19) is called the Birch-Murnaghan equation and is usually
written as

Peil) ) -t ) e

In a series of papers, Ullman and Pan'kov [1l4, 15] considered the defini-
tion of a deformation measure that is parametrically dependent on the bulk
modulus and its derivatives with respect to pressure in the reference state
and which enables us to reduce the number of terms in (2) without loss of accu-
racy. Several deformation measures were proposed depending on which derivatives
of the bulk modulus were used, of which the simplest is

7
3

GAIN

L[V |t
Eiip=—|(— S
U-p u[(vo) 1], (23)
where u=(2—K’yr)/3, K'er>2. The corresponding three-parameter equation of state
takes the form
K Y \2%-1 v \¢-1
P=—Hw) -G ]
u Vo Vo (24)

It was shown [14, 15] for numerous compounds that the theoretical isotherms of
(24) for T = 298 K agree very well with experimental data down to V/V, = 0.6.

Some simple hypotheses on the pressure dependence of the bulk modulus

enable us to obtain equations of state by direct integration. For example,
Murnaghan's equation [21]

KOT VvV "K(;T _
==l — 1 2
ol (AR 25)

was derived on the assumption of linear pressure dependence of the bulk modulus,
i.e.,

Kz (P) = Kor + KorP.

Tait's equation is often used to describe the P-V-T properties of dense gases
at elevated pressures, but virtually no study has been made of its applicability
to solids over wide temperature and pressure ranges. In the terms used here,
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Tait's equation may be put [20] in the form

’ v
Kor [ Kor+1)( 1= = ]
P=—""]e¢ ( °).—-1 . (26)
K+ 1
Numerous examples of empirical equations of state are discussed in reviey
[14, 20].

To construct an isothermal equation of state by the above methods it is
necessary to specify at least three parameters: the molar volume, the isotherpy
bulk modulus, and the derivative of this with respect to pressure. All these
methods define the P-V relationship at a certain fixed temperature (usually
298 K) and do not allow us to pass directly from one isotherm to another. To
derive the high-temperature isotherms requires additional information on the
temperature dependence of the parameters in the equation of state. As the
derivatives of the bulk modulus with respect to pressure are at present knom
with low accuracy, we usually neglect the temperature dependence of these.

Let us consider in more detail one of the methods of calculating the ten-
perature dependence of Kr at atmospheric pressure [26]. This is based on a
fact derived from ultrasonic experiments, namely that

aKgV

, (27)

¢ lp=o

1 0Kg
aKg oT

(28)

bs = —

P&=o

are virtually independent of temperature. Here a=1/V(0V/OT), is the thermal-
expansion coefficient and Ks=—V(JP/0V)s is the adiabatic bulk modulus, with
¢y the molar specific heat at constant pressure, Yy the Grlneisen parameter,
and 0s the Anderson-Griineisen parameter.

p Tt(;e following applies for the temperature dependence of the bulk modulus
at £=20:

h oK
Ks(T) = Ks(298) + j —3dT. (29)
208
From (27) and (28) we have
K¢ . ¥6s5¢, (T)
(ar),,— vy (30)

0f the four quantities on the right in (30), only ¢, and V are dependent on
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temperature. Then from (29) and (30) we get

T
Ks(T) = Ks (298) — y6s

20

¢, (T)
V(T)

dT. (31)

As aT is small, the integral in (31) can be transformed to the following with-
out substantial loss of accuracy:

T T T
24T = 2T~y (o1 —aT)dr.
T = voe Virr T = v )=o) (32)

2908 298 290

Using the definition of enthalpy dH=c,dT and with the aid of (32), we can
transform (31) to

T
6
Ks(T) = Ks (298) — VY(;;S) [(HT— Hygs)— ScpaTd T] . (33)

The integral on the right in (33) may be determined numerically, but in most
practical cases it can be put equal to al (Hr—H;,)/2. Then finally we have

o
Ks(T)=Ks(298)—V‘(YL):S)(HT_Hz»e) (1—"%7:)° (34)

The values of the isothermal bulk modulus and volume can now be determined
by means of thermodynamic relations:

K:(T)=Ks(T)/(1+axT), (35)

V(T)=V(298)eXp(5T'adT). (36)

Thus, this method of calculating Kr(7T) and V(T) at 1 atm and high tempera-
tures enables us to incorporate the temperature dependence of the parameters
in semiempirical equations of state for solids in a simple fashion, but it re-
quires information on the derivative of the bulk modulus Ks with respect to
temperature, which at present is known only for a restricted number of compounds.

CONSTRUCTION OF AN EQUATION OF STATE FOR A SOLID FROM THE
QUASIHARMONIC APPROXIMATION

A second group of methods is based on concepts from statistical physics,
according to which the free energy of a solid F(V, T) can be represented as the
sum of two terms: a potential one Ep(V) dependent only on the volume and a
thermal one Fr(V,T), which characterizes the zero-point and thermally excited
vibrations of the lattice atoms [27, 28], with anharmonic effects neglected:

FWV,T)=E,(V)+Fr(V,T)=E,(V)+ Er(V,T)—TS(V,T), (37)'

where S(V, T) is entropy. The form of Ep(V) is established from a particular
model for the atomic interaction. The thermal component Fr(V, T) is generally
described by means of the quasiharmonic approximation [1, 18, 27, 28], in which
the solid is considered as a set of independent harmonic oscillators. Then the
free energy of (37) can be put as

ho

F(V,T)=Ep(V)+%2hma+kT§'J]n(I——e—'ET—), (38)

hwere A and k are Planck's and Boltzmann's constants, while w«(V) are the oscil-
lator frequencies, which are dependent on volume. In the quasiharmonic approxi-
mation it is assumed that deformation alters the average positions of the atoms,
which affects the frequencies ®w«, while the oscillations themselves remain
essentially harmonic. The ratio of the relative frequency change Aw./®a to the
relative volume change AV/V 1is called the partial Griineisen parameter ¥q:

dlno,

Ya = diny (39)
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v

Differentiation of (38) with respect to volume gives ap equ
aty,
n

of the form
of "
at&

P(V.T) =P, (V) + 5 YaEa,

where PﬂV):-—% is the potential pressure and

hog hoyg
Ea = 2 + (ﬁma)
— ) —1
XP\ % (41)

is the energy of oscillator a [27, 28], Ea=Fa—T(0Fa/0T),. 7y, assy
mptiOn

all the partial Ya are equal leads to the Mie-Griineisen equation [f b "
» 17 at

> 18)

PV T)=P,(V) + -’";Er v,7),
(42)

where

Er(V,T) = D Ea
a (43

is the thermal component of the internal energy.
In the limiting case of high temperatures |(Aw.<kT), from (41) e hay
e

E.~FkT,
(44)

i.e., the energy of each of the harmonic oscillators is linear with Tespect ;
0

temperature and independent of volume. This will also apply to the therma]
Then on differentiating the fre,

component of the internal energy of (43).
energy of (37) with respect to volume, the term (GEr/dV)r can be neglected.
oF as
Ty=— (%) =p, (v T(— .
P(V,T) (av )T Py (V)+ av), (45)

As

as oP

—_— =|l—] =

(av), (ar )y Kz, (6)

we arrive at an equation of state in the Hildebrandt form [29]:

PV, T)=P, (V) +aK,T. (47)
Anderson's review [29] deals with the basis for using Hildebrandt's ap:
proximation in constructing equations of states for solids. According to (2911
at temperatures close to the Debye value and above, the product aKr is approX
mately constant and is independent of pressure and temperature.
zations

In the practical use of (42) and (47), there can be various realizatt’i .
dependent on the form used for the potential E,(V) and the method of Cal{zuo
the parameters. The potential method is widely used within the f?amewgrsis
the Mie-Griineisen approximation. See [l] for details of the PhYSJ-Cal.da hases
for this and the use of it in constructing equations of state for solid P

from experimental compression curves. i
escl’ibe

The potential components of the internal energy and pressure are d
by the following expressions* in the potential method [1]:
2 1
Ep(x) =34 pa-x®) 3K ;=
bpe Po

(48)

*Other forms of the potentials are discussed in [1, 14, 20, 30].
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1 K3 L
Pp(x)=Ax"’_e”("-x°)._Kx-' . (49)

where x=p,/p=V/V, is the dimensionless volume, p, is the density of the sub-
stance under normal conditions (T = 298 K, P=0, x=1), p is the density under
P—T conditions, and A, b, and K are parameters of the potential, which are
determined indirectly from experimental compressibility data.

The thermal component of the internal energy is calculated in the Debye
approximation [1, 28]:

Er(x.T)=5[3e+3TD(i)]. (50)
nL8 T
where R is the universal gas constant, M is the mean molecular mass, D(0/T) is

the Debye function, and 6 is the Debye temperature, which is related to the
OrUineisen parameter as follows:

1
e(x).—_eoexp(j—lidx). (51)
X

A generalized formula is used [9] for the Grilineisen parameter:

d? (Pyx™)/dx? —
O S +m=t
2 d (P, x™)/dx 6

, (52)

where m is the parameter whose value may be found from the condition that the

y of (52) under normal conditions coincides with the thermodynamic value from
(27) [5].

In the potential method devised by Zharkov and Kalinin [1, 12, 13], the
parameters A, b and K are determined by means of an optimization procedure from
the condition for best fit to the experimental compression curves: the isotherm
at 298 K, the shock adiabatics, and curves relating the seismic parameter to
volume. However, as we have pointed out above, it is best to operate at the
level of elastic constants at normal pressure in thermodynamic calculations
and in the analysis and matching of experimental compressibility data.

A modified form of the potential method has been devised [5, 11] for use
in physicochemical and geochemical applications, in which the parameters in
the equation of state are derived from measurements on the elastic and caloric
constants KS’ Ké, cp’ o, p, and 6 at normal pressure. Details of the procedure

for calculating the parameters can be found in [5].

The Mie-Griineisen equation of (42) realized in the potential method is
thermal, which is a difference from the equations of state derived by methods
from the theory of elasticity, i.e., it contains thermal terms in explicit form
and enables us to calculate the entire P-V-T surface for the solid.

CONSTRUCTION OF AN EQUATION OF STATE FOR A SOLID BY METHODS FROM THE
THEORY OF ELASTICITY IN THE QUASIHARMONIC APPROXIMATION

A theory has been devised [17, 18] for the thermal equation of state of a
solid that combines the principles of the phenomenological and atomistic ap-
proaches. A distinctive feature of this approach is that the temperature de-
pendence of the coefficients in (2) is found by comparing (5)-(7) with analogous
formulas in the quasiharmonic approximation.

We see from (5) that the first coefficient in the free-energy expansion
is equal to the pressure in the reference state Vo» Tp» apart from a constant
factor. The change when the temperature increases from Ty to T will be deter-

mined by the difference of the pressures in the states V,, T and Tor Too which

according to (42) is 0

PV, T)—P(V,,Ty) = ‘VVOO [Er (Vo, T)—Er (V,, Ty)l. (53)
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Then (5) becomes
9F | _oF —le%ﬂ—&Mﬂmﬂ.
ode VoT de Vo.To Vo de
- (
The temperature dependence of the second coefficient in ) X
as follows on the basis of (6): Cap e
tte
0
1
ﬂ -_—.2}—: +'—'[KT (Vo’ T)—KT (Vou To)]x
ot ly,r O ly,r, Vo g
ov\2 —p( —
4ﬁ—mmnpmmgv Sty
The temperature dependence of the isothermal bulk modulus K, can pe
by substituting (42) into (4). Then eterminEd

—nNy gy
Kr =Kot (14+7— 200 2 p, = Te,

Gﬂ
dp, | . £
where Kp(v)=_VEV_ is the potential component o t

he bulk modulyg and ,

U(V, T)
is the specific heat at constant volume.

To calculate E; and €., the Debye approximati

quantity dIny/dInV can be calculated by means of & standard thermoéyngic
relation [29].

Oy, —Ks+1

Ay S+Y S+ ’

where &8s is the Anderson-Griineisen Parameter
= (aKS/aP)T. The coefficients in (2) beginnin

the bulk modulus with respect to Pressure. There ig at present no experimenty]
information on the temperature dependence of such quantities, ang also the
quasiharmonic approximation ig based on €xpanding the potential energy only
Up to the second order, and therefore

the contribution from the quasiharmonic
terms to the higher-order coefficientg may be neglected [18].

normal conditiong may be taken ag the reference state (TO = 298 K, P =0
which case we obtain the following third-order thermal equations of state in
the Lagrange angd Euler approaches,
Lagrange approach:
a
3
=) ),
v 2 |\,
1
)
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P (EL. T) = —(“i:;;L (bO + ber + bzei),
1]
bo(T) =

i _3'\’0 [Er (VO,T)—-ET (Vo, To)]’
D =9V (3 ZlN:L}; — 3y, — 2) b0 (T) — 9§ [Teu(Vy, T)—T v (Vo Toll»

(57)
27
b, = *3 VoKor Kor.

142

y



Euler approach:

(l—-&m)
T(co + ¢85+ coep),

P (eE, T) = —
co(T) = — o lEr (Vo. TY—Er (Vy, Tyl

& (T) = VeKer + (3 T8 — By -+ 2) o (T)— 9 1TeulV, T)—TugnVa Tl

27 :
€ =—% Voor (Kor — 4). (58)

COMPARISON OF THE THERMAL EQUATIONS OF STATE AND THE INTEGRALS gww
FOR PERICLASE, FORSTERITE AND PYROPE
Calculations of P-T curves for chemical and phase equilibria require in-
formation on deP; but inadequate attention has been given to the reliability
°

of these quantities up to now in thermodynamic calculations. It is therefore
P
necessary to examine the sensitivity of the isothermal P-V curves and SbﬂP
0

to the method of constructing the thermal equation of state, and it is also
necessary to estimate the random errors.

To compare the results based on equations of state obtained by different
methods let us consider three compounds differing in composition and structure:

periclase Mg0O, forsterite a-MgZSiOQ, and pyrope MgSAlZSi3012. Surveys have

been made of the experimental data on the elastic constants, specific heats,
and thermal expansion of these substances [4, 5, 11, 31]. Table 1 gives the
initial experimental data on the elastic and caloric characteristics of the
compounds at 1 atm and 298 K as required to construct the thermal equations of

state. The values of Kg» Ké, 0, a, cp’ p, and y for normal conditions and the

potential parameters for these phases have been calculated previously [5, 11,
31]. The values of Kn have been derived from (35) using the known Key @, and vy.

The 63 were calculated via (28) from the acoustic data.

Universal FORTRAN programs were written to construct the equations of
state.

Isotherms at 298 and 2000 K. The accuracy of the semiempirical equations
derived by elastic-theory methods is dependent on the number of terms used in
the series of (2). In the construction, we use mainly expansions up to the

third order (i.e., up to terms containing K% = aKT/aP), since the derivatives

of higher orders cannot at present be determined with acceptable accuracy.
Then the equations of state contain the three parameters VO’ Kopo and KOT"

Figure 2 shows the behavior of the three-parameter equations of state
(14), (22), (24), and (25) for periclase at 298 K, together with the experi-
mental data on static compression [32-34] and the theoretical isotherm calculated
by the potential method from (42) and (49)-(52). The curves calculated from
the Birch-Murnaghan (22), Ullman-Pan'kov (24), and Murnaghan (25) equations,
and by the potential method agree with the experiment within the errors of the
measurements (67 in pressure [32]). The isotherms derived from (22) with (24)
and from (42) with (49)-(52) at 298 K are practically indistinguishable up to
a pressure of 1 Mbar. On the other hand, the third-order Lagrange isotherm of
(14) systematically underestimates the pressure at P above 200 kbar. The
errors in the experimental data and the calculations make it difficult to give

143



Table 1

Thermodynamic Constants and Parameters in the Equations of State for
Periclase, Forsterite, and Pyrope under Normal Conditions

Constants and parameters

MgO

a-Mg,SI0,

—

Mg,Al,51,0,,

3
p, g/cm
KS' kbar
Ks
Kz, kbar
Ky
0, K
a-108, K™
¢, cal/mol-deg

3,583 (0,001)
1630 (10)
4,5(0,25)
1607
4,5
936 (5)
31,2(0,5)
9,03(0,03)
3,9
1,52 (0,03)
714,187 (92, 3)
8,7613 (0,873)
743,097 (92, 3)

3,213 (0,001)
1288 (10)

5,1 (0,2)
1276

5,1
763 (5)

26,0 (0,5)
28,18 (0,07)

4,2

1,24 (0,03)
446,801 (31, 3)

10.5202 (0,593)

466,056 (31, 3)

3,559 (0,001)
1770 (10)

4 15 (0y25)
1758

4,5
788 (5)
19,0(0,5)
77,75 (0,20)
5,9
1,17(0,03)
776,753 (83,1)
8,7827 (0,724)
797, 059 (83,1)

Table 2

Temperature Dependence of the Molar Volumes and Bulk Moduli at
Atmospheric Pressure

Compound T, K a.10%, K1 Vo. cm3/mol Kg. kbar Ky, kbar
MgO 298 31,2 11,25 1630 1607
1000 45 11,55 1485 1335
2000 o4 12,15 1289 1100
a-MgsSiO, 298 26 43,79 1288 1276
1000 38 44,76 1160 1110
2000 47 46,59 950 850
Mg,Al,Si50, 298 19 113,29 1770 1758
1000 29 115,20 1576 1524
2000 33 118,40 1230 1200

preference to any of these equations, but we note that the third-order Lagrang
equation (14) is evidently not applicable to describing the compressibility

above 200 kbar.

The temperature dependence in the three-parameter equations of state (14),
(22), (24), and (25) may be incorporated directly by means of the parameters
VO(T), KOT(T), and KdT(T) without involving quantum-statistical concepts.

According to (35), the derivative of the isothermal bulk modulus with respect

to pressure KZ’, for periclase at P = 0 is virtually independent of temperature,

so it can be taken as constant in the calculations. Table gives the high-
temperature values of KO"(T)’KOT(T)’ and VO(T) for periclase, forsterite, and

pyrope calculated from (34)-(36). The temperature dependence of the thermal-
expansion coefficients was taken from [34, 37]. There are no data for o for
pyrope at T > 1073 K, so the value of o at 2000 K is to be considered as an

estimate.
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Fig. 2. 1Isotherms for periclase at 298 K (solid lines) and 2000 K

(broken lines). Methods: 1) third-order Lagrange (14), 2) poten-

tial (42) and (49)-(52), 3) third-order Euler (19), 4) Ullman-

Pan'kov (24), 5) Murnaghan (25), 6) experiment [32], 7) experiment
[33], 8) experiment [34].

The isotherms of (14), (22), (24), and (25) for periclase calculated for
2000 K from the data of Table 2 are shown by broken lines in Fig. 2. The
curves agree well with one another up to 200 kbar, but at higher pressures
the 2000 K isotherm given by the Lagrange approach of (14) deviates substan-
tially from the other curves towards lower pressures, and at P =~ 500 kbar it
intersects the 298 K isotherm, which is physically meaningless. Tait's equation
(26) describes the 298 K isotherm very well: the P-V points virtually coincide
with those calculated by the potential method. On the other hand, the compres-
sion curve at 2000 K deviates substantially from that constructed by the poten-
tial method, and at P = 600 kbar it intersects the 298 K isotherm. At pressures
of ~1 Mbar, this occurs also for the Birch-Murnaghan equation of (22). The
reason for this is that the volume of the body increases with temperature at
P = 0, and the isothermal bulk modulus kK7 decreases. Then the point on the
isotherm V(P = 0) is displaced towards larger volumes, and the inclination of
the isotherm to the abscissa (which by definition is proportional to KT) de-
creases. If the value of K% is fixed, the isotherms intersect at a certain
pressure. There are no experimental data on static compression at high tem-
peratures, so it is not possible to perform a rigorous check on the adequacy
of the calculated isotherms, and the only criterion here is the correspondence

between the results from different methods of constructing the equations of
state.

Figure 3 gives 298 and 2000 K isotherms for periclase calculated in the
quasiharmonic approximation by the potential method of (42) and (49)-(52) and
by Davies's method of (57) and (58).
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Fig. 3. 298 and 2000 K isotherms for periclase calculated

in the quasiharmonic approximation. Methods: 1) third-order

Lagrange (57), 2) third-order Euler (58), 3) potential (42)
and (49)-(52).
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Fig. 4. Dependence on degree of
compression for the increment in
the thermal pressure APp = P(V,
2000) - P(V, 298) for periclase.
Methods: 1) potential (42) and
(49)-(52), 2) Hildebrandt (47),
3) third-order Lagrange (57), 4)
third-order Euler (58).

100

a0

60

08 89 v/,

P
(VAP =(VP(V,T)+F(V, T yomy (59)

where F(V,T) is the Helmholtz free energy.

F(V, T) is known in analytic form for all these methods of constructing
the thermal equation of state, namely (2) and (37), while the corresponding
working formulas for Murnaghan's and Tait's equations may be obtained by ana-
lytic integration of (25) and (26). The lower limit of integration V(0, T)
is found by numerical solution of equation P(V, T) = 0. Then with a fixed step

P
in V calculate the pressure and SVdP. Table 3 gives values of the integrals
0

obtained by various methods as interpolated with respect to pressure. The
P

values of 5'VdP calculated from the various equations of state are seen to
[

agree well. For example, for periclase at 298 K the discrepancy between the
P

values of j‘kﬂ’ even at 400 kbar lies only in the second decimal place and is
0 P
on the order of 0.01%. The values of SVHP calculated from the equations of
0

state with Lagrange deformation measure are low, which is explained by the be-
havior of the corresponding compression curves (Fig. 2). The same applies for
forsterite and pyrope. The quasiharmonic approximation of (57) leads to a more
reasonable description of the thermal corrections than does (1l4) with the tem-
perature dependence for the bulk modulus of (31)-(34) and the volume variation
of (36). The discrepancies between the values of the integrals calculated from

all the equations of state at 298 K and 400 kbar are only 0.27 for forsterite
and pyrope.

The empirical equations of Murnaghan (25) and Tait (26) agree well with
P
other methods in the calculation of SVdP at 298 K, but they result in low
0

values at high temperatures and at pressures exceeding ~KT/4.

On the whole, the discrepancies in the values of the integrals for the
high-temperature isotherms are somewhat higher than those at 298 K, but even
in the megabar range they do not exceed the errors of current thermodynamic
data at 1 atm. For example, the maximum discrepancies in the values of the
integrals at 400 kbar and 2000 K (Table 3) are not more than 17 for periclase,

P
1.3% for forsterite, and 27 for pyrope. This occurs because .YVdP is an inte-

[}
gral characteristic of the equation of state which is equal to the area bounded
by the isotherm and the pressure axis; minor perturbations in the slope of the
isotherms have virtually no effect on the area.

147



300

200

700

08 a9 L0 v/ %,

»

Fig. 5. 298 and 2000 K isotherms for forsterJ:_te.

Methods: 1) third-order Lagrange (57), 2) third-

order Euler (58), 3) potential (42) and (49)-(52),
4) Murnaghan (25).

P
In fact, we can estimate the sensitivity of J‘VdP to variations in the
V(P) curve for given T. :

Let us represent the equation of state in the form
V(P,T)=V(P, T)+68V(P, T), (60)

where V(P, T) is the true value of the molar volume and 8V (P, T) is the devia-
tion from the true value. Then the error in the integral will be

6deP=deP—jvdP-_—javdp, (61)

From known values of 8V (P) we estimate 65‘ VAP on the basis that 6V(0)=0

Without loss of accura

. Cy we can
P) is characterized y assume that the u

by the relationship

6V (P)=qP. .
We substitute (62) into (61) to get

GdeP=’£', (63)

P
5 j‘VdP~ we have §V/V,~ 1%, and then n=V,-10~° and

. t
elative error of <17. Note tha
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Fig. 6. 298 and 2000 K isotherms for pyrope.

Methods: 1) third-order Lagrange (57), 2) third-

order Euler (58), 3) potential (42) and (49)-(52),
4) Murnaghan (25).

the function P(V) is recovered with more uncertainty than is V(P). For example,

inzlﬁ,fi_.QZ.::loeé.
P P vV

P
Therefore, the calculations show that Sl’dP is determined with high accu-

]
racy, which substantially exceeds the accuracy of the P-V-T data, and within
the errors of the calculations it is independent of the model and the method of
constructing the equation of state. This results in the important conclusion
that one obtains reliable results from thermodynamic calculations on chemical
and phase transformations for the P and T conditions of the mantle and for the

planets of the terrestrial group-.

ESTIMATING THE ERRORS OF THE THERMAL EQUATION OF STATE DERIVED
FROM THE POTENTIAL METHOD

We examined the sensitivity of the equation of state and of the integrals

to errors in the initial experimental data by reference to the modi?ied potegtial
method [5]. The standard formula from the theory of error propagation [38] is

used:
L3 (2) (L)
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Table 3

Values of XVdP for Periclase, Forsterite and Pyrope at High Pressure

0

and Temperatures

P, From te;:p(erxiataulfde E:ﬁﬁ;;ience of Davies's method [18] Potential method
kbar [5]
Euler ILagrange lMurnaghanl Tait Euler | Lagrange
Periclase, MgO, 298 K
100 |26,13| 26,13 | 26,14 | 26,13 26,12 26,12 26,13 0,1;
200 |54,01| 50,97 | 51,02 | 51,01 50,98 50,95 51,00(0,1
300 |74,89( 74,76 | 74,92 | 74,88 74,90 74,75 74,87 0,3;
400 [97,95| 97,63 | 98,03 | 97,92 97,92 97,62 97,93 (0,6
Periclase, MgO, 2000 K
100 | 27,88 27,87 27,88 27,90 27,97 28,00 27,94 (0,2)
200 | 53,97| 53,89 | 54,20 | 54,00 54,18 54,21 54,18(0,2)
300 | 78,75| 78,44 78,83 78,77 79,05 79.08 79,16 (0,33
400 [102,48| 102,78 | 102,65 | 102,47 102,95 102,91 103,13 (0,6
Forsterite, a-Mg,SiO‘. 298K
100 |101,09] 101,07 | 101,10 | 101,09 101,11 101,07 101,05 (0,1)
200 |196,5 | 196,3 196,6 196,5 196,5 196, 3 196,4 (0,1)
300 |287,8 | 286,9 288,0 | 287,7 287,6 286,8 287,6(0,3)
400 |375,6 | 373,5 | 376,2 | 375,6 375,7 373,3 375,4(0,5)
Forsterite, a-Mg,SiO,, 2000 K
100 |106,5| 106,4 106,5 106,0 107,7 107,8 107,3(0,3;
200 [205,2| 204,6 | 205,4 | 204,1 207,3 207,4 207,3(0,5
300 |298,6| 296,6 | 299,1 296,7 301,1 301,4 302,2 éo,ﬁ)
400 |387,9| 383,6 389,0 385,2 391,5 390,9 393,0(0,8)
Pyrope, MgaAlzsiaou, 298K
100 |263,77| 263,74 | 263,77 | 263,77 263,62 263,59 263,63 (0,1)
200 |[515,7 | 515,4 515,8 | 515,7 515,4 515,1 515,4 (0,1)
300 |758,2 | 757,14 758,4 | 758,1 757,8 756,7 757,6 (0,2)
400 1992,7 | 990,0 | 993,4 | 992,5 992,2 989,5 991,9 (0,4)
Pyrope, Mg;;AlzsisOu, 2000 K
100 | 273,7| 273,7 | 273,7 272,7 277,2 277,5 276,1 (0,1)
200 | 531,0] 530,3 | 531,2 528,9 537,5 537,8 537,8(0,2)
300 | 775,9] 773,4 776,5 772,7 785,1 785,5 788,4 (0,3)
400 |1010,9| 1005,1 | 1012,4 | 1006,5 1022,7 1022,9 1029,8(0,6)

where 0, is the standard deviation of the function y, which is dependent on the

random parameters a;(i=1, n), while o%j is element i, j of the covariance matrix

for the parameters a;(i=1, n).

In the modified potential method, the initial parameters are Ks, Ks', @ C»
Each of the quantities is evaluated inde-
pendently in systematizing and selecting the initial data, so the parameters
can be taken as independent in the statistical sense.

6, and p

under normal conditions.

the pressure error formula (64) becomes

a 3
= (am,) %o (e

i‘02,,-%(

9P\

)a,
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P
Similarly we can calculate the errors in 'ngP. All the partial deriva-
]

tives have been obtained in analytic form (the formulas are not given to save
space). In the tables, the estimators for the standard deviations are given

in parentheses. The meaning of these is the error associated with the errors
in the experimental data, and they are specific for each of the methods of con-
structing the equation of state. The systematic error associated with a par-
ticular equation of state is determined by comparison with experiment.

Error calculations [5, 11, 31] for various compounds (MgO, o-, B-, y-
MgZSiOA’ A1203, CaO, diopside, spinel, pyrope, grossular, etc.) show that the

P
standard deviation.i11'SVdP does not usually exceed 0.5-17 at the temperatures
0

and pressures of the upper and lower mantle. Similar errors are characteristic

of the most reliable values for the standard thermodynamic functions tabulated
in works of reference.

CONCLUSIONS

1. Basic thermodynamic specifications have been formulated for information
on the equations of state for minerals as required in calculating chemical and
phase equilibria over wide ranges in temperature and pressure.

2. The commoner methods of constructing the thermal equation of state for
a solid have been compared and isothermal P-V curves have been calculated for
periclase, forsterite, and pyrope in the megabar pressure range. It is found
that these methods and models give results in good agreement with one another
(an exception is represented by the third-order Lagrange equation). The maxi-
mum discrepancy in pressure between the equations at 298 K and 1 Mbar is 77,

which corresponds to the errors of current methods of static and shock compres-
sion.

3. Comparison has been made on the basis of the temperature dependence of
the various equations of state, and the sensitivity to the construction method
has been established. The Murnaghan and Tait empirical equation are not applic-
able to describing high-temperature compression curves at pressures of P ;:Ko/h.

In certain cases (pyrope) the applicability may be restricted to much lower
pressures. The compression curves for high temperatures defined in the quasi-
harmonic approximation by potential methods in (42) and (49)-(52) and from the
theory of elasticity with the Euler deformation measure of (58) are in good
agreement with one another. At present, as experimental data are lacking, it
is not possible to give preference to any one of these. The criterion here

should be agreement with experimental data on the compressibility at high tem-
peratures and pressures.

4, Various semiempirical equations of state have been used for periclase,
P
forsterite, and pyrope in calculating gwa, which characterizes the isothermal
0

dependence of the chemical potential on pressure. It is found that the numer-
ical values of the integrals are virtually independent of the model and the
method of constructing the equation of state. The calculations and the error

P

estimates indicate that sVdP is determined with high accuracy, which consid-
0
erably exceeds the accuracy of the P-V-7T data, and the values can now be tabu-
lated in thermodynamic works of reference along with the standard thermodynamic
functions. The monovariant curves for chemical and phase equilibria at very
P

high P and T are constructed from the values of SbﬂP, so we have a rigorous

basis for reliability in such calculations. 0

5. Equations of state provide a basis for handling three major tasks in
physicochemical simulation of mantle processes: 1) the construction of phase
diagrams for multicomponent mineral systems, 2) the calculation of heat and
volume effects from chemical and phase transformations at the P and T of the
mantle, and 3) determination of standard thermodynamic functions from experimental
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