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Steadily moving transition (switching) fronts, associated with local transformation, symmetry breaking, or
collapse, are among the most important dynamic coherent structures. The nonlinear mechanical waves of this
type play a major role in many modern applications involving the transmission of mechanical information in
systems ranging from crystal lattices and metamaterials to macroscopic civil engineering structures. While many
different classes of such dynamic fronts are known, the interrelation between them remains obscure. Here we
consider a minimal prototypical mechanical system, the Fermi-Pasta-Ulam (FPU) chain with piecewise linear
nonlinearity, and show that there are exactly three distinct classes of switching fronts, which differ fundamentally
in how (and whether) they produce and transport oscillations. The fact that all three types of fronts could be
obtained as explicit Wiener-Hopf solutions of the same discrete FPU problem allows one to identify the exact
mathematical origin of the particular features of each class. To make the underlying Hamiltonian dynamics
analytically transparent, we construct a minimal quasicontinuum approximation of the FPU model that captures
all three classes of the fronts and reveals interrelation between them. This approximation is of higher order
than conventional ones (KdV, Boussinesq) and involves mixed space-time derivatives. The proposed framework
unifies previous attempts to classify the mechanical transition fronts as radiative, dispersive, topological, or
compressive and categorizes them instead as irreducible types of dynamic lattice defects.
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I. INTRODUCTION

Transition fronts in discrete systems continue to attract
a lot of attention because they represent examples of far-
from-equilibrium collective phenomena that emerge from
the underlying many-body interactions. Interpreted as highly
nonlinear coherent dynamic structures, such fronts play an
important role in the energy transmission from macro to
microscales. They are observed in both integrable and non-
integrable Hamiltonian systems [1,2], can be topological or
nontopological [3–5], spreading or compact [6], compressive
or undercompressive (non-Lax) [7], stable or unstable [8].
Together with solitons and breathers, they play a crucial role
as building blocks in complex nonlinear wave patterns that
emerge generically in mechanical systems ranging from crys-
tals [9–11] to nanomechanical structures [12–15].

The concept of transition fronts is equally relevant for
the description of pattern formation [16] and transport
properties in nonmechanical dynamical systems, including
coupled waveguide arrays [17,18], quantum systems [19,20],
Bose-Einstein condensates [21–24], electronic liquids [25],
ultracold quantum gases [26,27], rarefied plasma [28], in-
tense electron beams [29], liquid helium [30], and exciton
polaritons [31]. In this paper, we focus on mechanical switch-
ing fronts due to the importance of their dynamics for the
design of modern metamaterials [13,32–34]. The term “me-
chanical metamaterials” is used here to describe high-contrast
(soft-hard) composite structures with complex architecture
at mesoscale. Characteristically, the macroscopic properties
of such structures are controlled more by the structural
stability of the subelements than by their material properties

[33,35–41]. The use of additive manufacturing techniques
opened a way to exploit various elastic instabilities embedded
in the metamaterial response and to creatively guide them us-
ing applied deformation [13,42,43]. Dynamic effects targeted
by various metamaterial architectures include mitigation of
impact loadings, nondestructive detection of inhomogeneities,
suppression or amplification of internal instabilities, trans-
mission, guiding, and encryption of mechanical information,
including the enabling of logic operations, dynamic unfolding
of deployable structures, energy harvesting, and even activat-
ing soft robotics [34,44–54].

One of the most interesting nonlinear dynamic effects
that qualifies metamaterials as mesoscopic analogs of ordered
solid-state materials, such as ferroelectrics, ferromagnets, and
ferroelastics, is their ability to support moving transition
fronts (analogs of domain boundaries), which enable the
system to perform dynamic switching between different equi-
librium states [32,55–61]. There is already a rich body of
theoretical and experimental literature devoted to the study
of such dynamic snapping/switching waves in mesoscopic
mechanical systems [15,57,62–64]. The ability to propagate
transition fronts in metamaterials opens new ways towards
potential applications in shape morphing, reconfigurable de-
vices, mechanical logic, and controlled energy absorption
[43,65–69]. Analysis of low-dimensional model systems can
serve as a guide for the structural design and optimization of
the actual three-dimensional (3D) mechanical systems.

Despite the ubiquity of transition fronts in metamateri-
als, the relation between different classes of such mobile
nonlinear dynamic structures remains obscure. In this paper,
we consider a well-known prototypical system, namely the
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FIG. 1. Piecewise linear stress-strain relation σ (ε) defined in Eq. (3) and the corresponding energy density φ(ε) for different values of �σ .
Here E1 = 1, E2 = 4, εc = 1, σ0 = 1 (solid), σ0 = 3 (dotted), and σ0 = 5 (dashed).

Fermi-Pasta-Ulam (FPU) model [70–73], and present a uni-
fied description of the three main types of steady transition
fronts in this one-dimensional lattice, which we identify as
subkinks, shocks, and superkinks. Various realizations of these
archetypes have been previously encountered in applications
and treated as unrelated: subkinks as subsonic phase bound-
aries [74–76], shocks as classical supersonic shock waves
[77,78], and superkinks as supersonic activity waves [54,79].
They were first treated as disconnected solutions of the FPU
model in [62,80]. Some conceptual links between subkinks
and shocks have been previously established in [77,78], while
superkinks remain a disconnected class of transition fronts
[79,81–83].

A unified description of all these transition fronts can be
obtained if we use the simplest choice of nonlinearity and
assume that the FPU interactions are piecewise linear. In
fact, such interactions were already considered in Ref. [70]
and have since been employed for the description of various
dynamic nonlinear phenomena, e.g., [80,84–88].

More specifically, we consider the Hamiltonian dynamics
of a mass-spring chain with mass displacements un(t ) satisfy-
ing the infinite system of equations

ρh
d2un(t )

dt2
= σ

(
un+1 − un

h

)
− σ

(
un − un−1

h

)
. (1)

Here h is the equilibrium distance between the masses m =
ρh, where ρ is the mass density. In terms of the strain variables

εn(t ) = un+1(t ) − un(t )

h
,

the equations become

ρh2 d2εn(t )

dt2
= σ (εn+1) − 2σ (εn) + σ (εn−1). (2)

The assumed piecewise linear macroscopic stress-strain rela-
tion can be written as

σ (ε) =
{

E1ε, ε < εc,

E2ε − σ0, ε > εc,
(3)

where εc is the critical (switching) strain, and E1, E2 are the
elastic moduli in the two linear regimes. We assume that
E2 > E1, so that the two characteristic speeds c1,2 = √

E1,2/ρ

satisfy c2 > c1. The corresponding piecewise quadratic elastic

energy density φ(ε) = ∫
σ (ε)dε is continuous:

φ(ε) =
{

E1
2 ε2, ε < εc,

E2
2

(
ε2 − ε2

c

) − σ0(ε − εc) + E1
2 ε2

c , ε > εc.

Examples of stress and energy density functions are
shown in Fig. 1.

Note that as the stress jump at the critical strain

�σ = σ (εc − 0) − σ (εc + 0) = σ0 − (E2 − E1)εc

varies from positive to negative values, we obtain two fun-
damentally different types of constitutive behavior. Thus, the
elastic energy density φ(ε) is nonconvex when �σ > 0 and
convex for �σ � 0. When �σ > 0, the different branches of
the stress-strain curve can be considered as different “phases”
of the material, with the spinodal region [where φ(ε) is con-
cave in a smoother setting] represented by the single point
ε = εc. When �σ < 0, the stress jump at ε = εc is just a
representation of the hardening-type nonlinearity, which is
again concentrated at a single point.

The advantage of the piecewise linear choice for the stress-
strain relation is the possibility to construct the corresponding
traveling wave solutions of the FPU problem explicitly using
the Wiener-Hopf transform technique [80]. While smoothen-
ing the constitutive response around the singular point εc

could make the model more realistic, sometimes even without
sacrificing much of analytical transparency [89–91], stronger
nonlinearity is needed to capture such important physical
effects as thermalization of the radiated phonons [92–94].
However, such a generalization of the model, which will make
its analytical treatment almost impossible without contribut-
ing much to the classification of the transition fronts, is outside
the scope of this paper.

To make the structure of the underlying Hamiltonian dy-
namics clearly visible, we pose the problem of constructing
the minimal quasicontinuum (QC) approximation of the FPU
model capturing all three classes of the fronts. The term
“quasicontinuum” is used here in the sense that it is a
continuum approximation of the discrete system, which is,
however, not scale-free and carries a memory about the lat-
tice discreteness [95]. Our analysis shows that the desired
approximation must be necessarily of higher order than the
conventional ones (KdV, classical “good” or “bad” Boussi-
nesq) and should involve mixed space-time derivatives. The
obtained minimal QC model with desired properties can be
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viewed as a higher-order mixed derivatives (temporal) analog
of the “good” Boussinesq approximation [96]. In contrast to
the more conventional approach of adding spatially nonlocal
terms to the elastic energy [97,98], it introduces the higher-
order derivatives into the inertial part of the model (into the
kinetic energy), as advocated earlier in [99].

The proposed QC framework not only provides a trans-
parent interpretation of the three types of transition fronts as
heteroclinic trajectories of different kinds in the phase space,
but it also helps to explain in physical terms why some kinks
are radiative (dissipative) while others are not, why some
shocks are dispersive while others are not, and why kinks
are topological while shocks are not. The comparison with
the exact solutions of the discrete problem shows that, on
both qualitative and quantitative levels, the relation between
different classes of transition fronts is captured adequately by
the proposed minimal QC approximation.

It is important to mention that while the nonstationary
(spreading) dispersive shock waves (DSWs) [100–102] are
not the focus of our study, which aims to classify steadily
moving transition fronts, we show numerically that the DSWs
replace the steady transition fronts in a subdomain of the
parameter space. The adequacy of the QC approximation is
corroborated by the fact that the DSW stability subdomains in
discrete and QC models nearly overlap.

On a theoretical side, our approach unifies the previous at-
tempts to classify the mechanical transition fronts as radiative,
dispersive, topological, or compressive and categorizes them
instead in a unified framework as fundamentally distinct types
of dynamic lattice defects. The obtained analytical solutions
can also be used in applications as a guidance in the design
of new metamaterials exploiting structural nonlinearity at the
scale of the periodicity cell. For instance, our analysis points
to a particular type of nonlinearity which should be used if
the goal is the suppression of shock loading by channeling
the largest amount of energy from macro to microscales. It
also makes clear that a different type of nonlinearity must be
engineered if the task is to transmit mechanical information
with minimal losses. There is of course still a long way from
our prototypical 1D designs to the construction of the corre-
sponding 3D mesoscopic composite structures.

The rest of the paper is organized as follows. In Sec. II
we formulate the classical continuum approximation of the
discrete problem and identify irreducible classes of transition
fronts. Then in Sec. III we introduce a nonclassical quasi-
continuum approximation of the same discrete problem and
construct explicit solutions of the corresponding dispersive
traveling-wave problem describing all three distinct types of
transition fronts. In particular, we discuss the issues of so-
lution admissibility in the piecewise linear model and the
effective energy dissipation in this Hamiltonian framework.
We then we present the results of direct numerical simula-
tions that suggest stability of the obtained traveling waves. In
Sec. IV we construct an explicit traveling wave solution of the
original discrete problem providing a unified description of all
three types of fronts. We then present numerical simulations
illustrating stability of the different types of transition fronts in
various domains of the parameter space. In Sec. V we briefly
mention potential applications of our results for the design
of metamaterials. A summary of the results and concluding

remarks can be found in Sec. VI. Some asymptotic results are
presented in Appendix.

II. CONTINUUM MODEL

In our search of a unified description for the different types
of transition fronts, it is natural to start with the classical
continuum approximation of the original discrete model (1). It
can be obtained by taking a formal limit h → 0 and replacing
finite differences by the lowest-order derivatives. Following
[103], we obtain the standard nonlinear wave equation, which
can be represented as the first-order system

∂ε

∂t
= ∂v

∂x
, ρ

∂v

∂t
= ∂

∂x
σ (ε). (4)

Here ε(x, t ) = ux and v(x, t ) = ut are the strain and particle
velocity, respectively. The system (4) has discontinuous so-
lutions, which must satisfy the classical Rankine-Hugoniot
(RH) conditions

�v� + V �ε� = 0, ρV �v� + �σ (ε)� = 0, (5)

where V is the velocity of the jump discontinuity. The notation
� f � ≡ f+ − f− will be used throughout the paper to describe
the jump between the limiting values to the right and to the
left of a discontinuity.

By changing the parameter �σ and varying independently
the velocity of the jump discontinuity, we can obtain three
fundamentally different types of steadily moving transition
fronts shown schematically in Fig. 2. Each transition front
connects a state ε = ε+ in front with a state ε = ε− behind.
Both of these states ε± belong to the stress-strain curve which
is piecewise linear, and to be nontrivial the transition front
must connect the states on two sides of the singular point
ε = εc. The RH conditions state that the slope of the Rayleigh
line connecting (ε+, σ (ε+)) and (ε−, σ (ε−)) is proportional
to the square of the velocity V of the front:

σ (ε+) − σ (ε−) = ρV 2(ε+ − ε−). (6)

The three different types of transition fronts are defined by
the relation between their velocity V and the characteristic
velocities c1 and c2, which can be determined by comparing
the slopes of the Rayleigh line and the corresponding lin-
ear regimes of the stress-strain curve. In what follows, we
will refer to them as subkinks [subsonic kinks, V < c1 < c2,
panel (a) of Fig. 2], shocks [intersonic fronts, c1 < V < c2,
panel (b)], and superkinks [supersonic kinks, c1 < c2 < V ,
panel (c)].

A. Well-posedness

Note that there are five variables to be determined for each
discontinuity: v±, ε±, and V . Two relations between these five
unknowns are furnished by the RH conditions (5). Figure 2
shows qualitatively the fundamentally different relations of
this type. Additional information can be obtained by solving
the problem (4) using the method of characteristics. Due to
the piecewise linear nature of the problem, two families of
characteristics with velocities ±c1,2 can be defined on both
sides of the moving front.

Figure 3 shows the arrangement of such characteristics in
space-time for all three types of transition fronts. When V <
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FIG. 2. Rayleigh lines connecting (ε+, σ (ε+)) and (ε−, σ (ε−)) with the slope ρV 2 satisfying Eq. (6) for three distinct types of traveling
wave solutions: (a) subsonic kinks, V < c1 < c2; (b) shocks, c1 < V < c2; (c) supersonic kinks, c1 < c2 < V . The driving force is G = S2 − S1,
where S1 (blue) and S2 (pink) are the areas cut by the Rayleigh line from the stress-strain curve.

c1 (subkinks) or V > c2 (superkinks), there are two incoming
characteristics at the front, which reduces the number of un-
knowns to one, and therefore an additional condition is needed
to find the remaining parameter, for instance V . If c1 < V <

c2 (shocks), there are three incoming characteristics, which
means that all five parameters can be determined without
any additional conditions. In this sense, kinks are undercom-
pressive (non-Lax) while shocks are compressive [104]. The
necessity of an additional “kinetic relation” on discontinu-
ous transition fronts was first pointed out in [74,78,105]; see
also [106]. The difference between subkinks and superkinks,
which both require an additional condition closing the prob-
lem, is not apparent in this purely continuum setting.

B. Dissipation rate

While the system of continuum equations (4) is conserva-
tive, it known that the corresponding discontinuous solutions
may be dissipative. One way to supply the missing closure
relations for subkinks and superkinks is to specify the dissipa-
tion rate at the moving transformation front.

For all three classes of fronts, the energy dissipation on the
discontinuity can be written as the product [105]

R = GV � 0, (7)

FIG. 3. Characteristics η ± (c1,2 ± V )t = const of the contin-
uum problem in the moving frame with η = x − V t in phase 1 (blue)
and phase 2 (red): (a) subkinks, V < c1; (b) shocks, c1 < V < c2;
(c) superkinks, V > c2. Here η = x − V t .

where V is the velocity of the front, and G is the conjugate
generalized (or driving) force, which is also known as the
energy release rate. After appropriate symmetrization [74], it
takes the form

G = �φ(ε)� − {σ (ε)}�ε�, (8)

where we introduced a notation for the averaging over the
jump { f } = ( f+ + f−)/2. The quasistatic notion of a driv-
ing force on a moving discontinuity dates back to Eshelby
[107–109]. A recent application of this notion in inertial dy-
namics can be found, e.g., in [75].

In our piecewise linear continuum model, the driving force
G can be computed explicitly. We obtain

G = E2 − E1

2

(
ε2

c − ε+ε−
) + σ0

2
(ε+ + ε− − 2εc). (9)

In terms of the diagrams in Fig. 2, one can show that G
can be represented as the difference between the two colored
areas between the Raleigh line and the stress-strain curve:
G = S2 − S1. Given that V > 0, the area S1 (blue) corresponds
to the energy rate received on the jump while the area S2

(red) describes the rate of energy loss. To ensure the overall
dissipative nature of the jump encapsulated by the inequality
(7), it is necessary that S2 � S1.

Note that according to Fig. 2, in the case of subkinks
the energy is received at the frontal part and released at the
back part of the transition front. Inside shocks the energy can
only be released. For superkinks the energy is released in the
frontal part and received in the back part.

C. Inner structure of the fronts

As we have seen, in the continuum model the transition
region is infinitely localized in space (jump discontinuity).
However, the different arrangements shown in Fig. 2 suggest
that it may be of interest to reconstruct the energetic structure
of each of the archetypal front in the configurational space
of strains varying from ε+ to ε−. The idea is that the energy
transfers implied by the relative size of the areas S1 and
S2 shown in Fig. 2 are accomplished by some microscopic
dispersive mechanisms that are overlooked by the continuum
approximation.
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FIG. 4. Different behavior of the dissipation function G(ε, ε+): (a) subkinks, V < c1; (b) shocks, c1 < V < c2; (c) superkinks, V > c2.

For instance, in the case of subkinks, the continuously
emerging energy in the frontal part of the transition region
must be somehow transported from the back of the front where
it is released. Such transport can be accomplished by the
emitted subcontinuum (lattice) waves whose group velocity
is larger than their phase velocity (which is equal to V ). In
the case of superkinks, the energy released in the frontal part
is at least partially reacquired in the back part, and for this
the system can use lattice waves whose group velocity is
smaller than the phase velocity. To support all three types of
the fronts, the dispersion must be sufficiently complex, which
is of course the case for the original discrete model.

To support this intuitive picture, it is instructive to intro-
duce the notion of the local energy variation inside the strain
interval connecting the limiting states ε+ and ε−. Since the
actual trajectory in the stress-strain space is not yet known,
we can consider energy variation along the Rayleigh line,
which ensures the conservation of the macroscopic mass and
momentum. The corresponding auxiliary function was intro-
duced in [110], and in our notation it takes the form

G(ε, ε+) = φ(ε) − φ(ε+) − (ε − ε+)	(ε),

where

	(ε) = σ (ε+) + ρV 2

2
(ε − ε+)

is the average of σ (ε+) and the stress taken along the Rayleigh
line at ε. One can show that the limiting states ε+ and ε−
correspond to the extrema of the potential G with respect to
ε. Note also that the reference energy is chosen in such a way
that

G(ε+, ε+) = 0,

which means that the energy level assigned to the state ahead
of the jump ε = ε+ is zero. On the other hand, the overall
dissipative (or nondissipative) nature of each type of front is
reflected by the fact that at the final state ε = ε− we have

G(ε+, ε−) = −G � 0.

In this way, the implied energy landscape describes the energy
variation inside the moving front independently of its type.
However, it is important to remember that the function G
does not describe the actual variation of the energy inside
the moving front, as we still do not refer to any particular
dispersive mechanisms operating inside the transition zone.

The behavior of G as a function of ε for all three types
of transition fronts is shown schematically in Fig. 4. As
expected, the ensuing energy landscapes for different univer-
sality classes are qualitatively different. Thus, for subkinks,
in addition to dissipation, which is expressed by the fact that
the minimum at ε− is lower than the minimum at ε+, there
is also an energy barrier in between that needs to be over-
come. Crossing this barrier requires energy to be continuously
transmitted by dispersion from the downstream, where it is
continuously released. For shocks, there is no barrier, and
the continuously released energy must be fully removed, with
none of it being reabsorbed. Finally, for superkinks there is no
dissipation (as will be confirmed later). However, in this case
there is an antibarrier, and energy transmission by dispersion
is still necessary, but now from upstream to downstream. Note
also that since the barriers exist in the case of kinks and not
shocks, the former can be considered as topological “lattice
defects,” while the latter remain nontopological.

III. QUASICONTINUUM MODEL

The scale-free approximation we used to obtain the contin-
uum model does not reveal the fate of the energy dissipated
on the localized transition front and does not explain which
additional macroscopic jump condition must be chosen in the
case of subkinks and superkinks. To answer these questions,
we must solve the discrete problem. The qualitative infor-
mation can also be obtained from a quasicontinuum (QC)
approximation with sufficiently rich dispersion to adequately
mimic the subcontinuum energy transport [95,96].

In this section, we show that the minimal QC approxima-
tion of the FPU model capturing all of the dynamic regimes
of interest can be constructed following the general approach
proposed in [99]. The idea is to focus on temporal dispersion
and introduce internal scales into the expression of kinetic
energy while keeping the elastic energy as in the scale-free
theory. The focus on kinetic energy dates back to the theory
of rotational inertia of beams by Rayleigh [111], with subse-
quent generalizations for other dispersive problems [112,113].
While in the context of discrete lattices the QC theories of
this type have been considered before [114–118], we show
below that even the minimal QC approach, describing all three
universality classes, includes new elements.
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A. Main equations

To construct the QC approximation, we set x = nh, and we
introduce the variables ε(x, t ) = εn(t ) and σ (x, t ) = σ (εn(t )),
viewed as functions of continuous space and time. We can
then rewrite the infinite system (2) as a single advance-delay
partial differential equation, which after the spatial Fourier
transform takes the form

ρh2 ∂2ε̂

∂t2
= 4 sin2

(
kh

2

)
σ̂ , (10)

where f̂ (k, t ) = ∫ ∞
−∞ f (x, t ) exp (ikx) dx is the Fourier trans-

form of f (x, t ). To simplify the problem and develop the
corresponding long-wave asymptotic expansion, we assume
that kh � 1.

To adequately describe the temporal dispersion [99], we
use the (2,4) Padé approximation of sin2(kh/2) in kh, which
affects the kinetic energy, while preserving the classical con-
tinuum form of the elastic energy. This yields

4 sin2(kh/2) ≈ (kh)2

1 + a1(kh)2 + a2(kh)4
, (11)

where a1 = 1/12 and a2 = 1/240. The need to retain two
subcontinuum terms in this approximation is dictated by the
requirement that the resulting QC model is both comprehen-
sive and minimal, as will be explained below. We remark that
in addition to yielding bounded dispersion relations for the
two linear regimes, the expansion in Eq. (11) is accurate up to
O(k8) near k = 0, and thus provides a long-wave approxima-
tion of the discrete Laplacian operator. Other choices of Padé
approximations are discussed in [96,119–121].

Substituting the expansion in Eq. (11) into Eq. (10) and
mapping it back into physical space, we obtain, after integra-
tion,

ρ

(
1 − a1

∂2

∂x2
+ a2

∂

∂x4

)
∂2u

∂t2
= ∂σ

∂x
, (12)

where u(x, t ) is the displacement field defined by the relation
ux = ε; here we also used the scaling x̃ = x/h but dropped the
tildes to simplify the expressions. The single partial differen-
tial equation (12) represents the desired QC approximation of
the infinite FPU system (1) of ordinary differential equations.

To reveal the structure of the augmented kinetic energy
term, we now derive Eq. (12) from the Hamiltonian action
principle. We start with the sufficiently general action func-
tional of the form

A =
∫




L(u,i, u,i j, u,i jk ) dq1dq2, (13)

where L is a Lagrangian density, q1 = x is the spatial co-
ordinate, q2 = t denotes time, and the subscripts after the
comma indicate partial derivatives with respect to q1 and
q2. The integration in Eq. (13) is over the two-dimensional
space-time domain 
 representing the evolving body between
the time instants t = t0 and t = t1. The deformation history is
described by the function u(qa), a = 1, 2. Given the structure
of the action functional, we can write the Euler-Lagrange
equations in the form [122]

(∂L/∂u,i − (∂L/∂u,i j ), j + (∂L/∂u,i jk ), jk ),i = 0. (14)

Here and in what follows the summation over repeated indices
is implied. To obtain Eq. (12) from Eq. (14), we need to
specify the Lagrangian. It is not difficult to see that the desired
equation will be obtained if we consider the Lagrangian in the
form

L = (ρ/2)
(
u2

t + a1u2
tx + a2u2

txx

) − φ(ux ). (15)

Here the density of the elastic energy φ(ux ) is the same as in
the classical continuum theory, while two subcontinuum terms
with mixed derivatives appear in the expression of the kinetic
energy. While the “microkinetic” term a1u2

tx is now standard
(see, e.g., [116,123]), to our knowledge the next term in the
expansion, a2u2

txx, has not been used constructively before.
The advantage of using the variational principle is that

it allows one to derive not only the governing equation but
also the corresponding jump conditions. This is relevant be-
cause despite regularization provided by the high derivative
terms in the energy, our piecewise linear QC theory is still
nonsmooth at the transition point ux = εc. The corresponding
generalization of the RH jump conditions, compatible with
our higher-order QC theory, emerges as a natural consequence
of extremality of the action functional. Indeed, if the space-
time domain 
 contains a surface � of discontinuity, the
standard Euler-Lagrange equations must be supplemented by
the additional necessary conditions of extremality on �. In our
case, the surface � is characterized by the continuity condition
ux = εc, so we must also require that �u� = 0. While the
particle trajectories are differentiable on �, some higher-order
derivatives of the displacement field may be discontinuous.
We interpret the constraints on such singular surfaces imposed
by the action principle as the dispersive Rankine-Hugoniot
(DRH) jump conditions.

Using the standard manipulations detailed, for example, in
[122], we obtain

�∂L/∂u,i − (∂L/∂u,i j ), j + (∂L/∂u,i jk ), jk�ni = 0, (16)

�∂L/∂u,i j − (∂L/∂u,i jk ),k�nin j = 0. (17)

�∂L/∂u,i jk�nin jnk = 0. (18)

Here na is the unit vector normal to � facing the + direction;
the spatial (n1) and the temporal (n2) components of such nor-
mal are related through n2 = −n1V , where V is the velocity
of the discontinuity.

The necessary conditions (16), (17), and (18) of extremal-
ity must be supplemented by the kinematic compatibility
conditions

�u,i� = μni,

where μ is a scalar. Eliminating μ, we obtain an auxiliary
jump relation

�ut� + V �ux� = 0, (19)

which represents the balance of mass across the discontinuity.
In our special case, the three DRH conditions (16), (17), and
(18) reduce to

ρV �ut − a1utxx + a2utxxxx� + �σ (ux )� = 0, (20)

�a1utx − a2utxxx� = 0, (21)
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�a2utxx� = 0. (22)

To satisfy all these conditions, we assume that �ut� = 0 and
�utx� = 0. Then �ux� = 0, while the two conditions (21) and
(22) reduce to �utxxx� = 0 and �utxx� = 0, respectively. The
condition (20) reduces to

ρa2V �utxxxx� + �σ (ux )� = 0. (23)

The derived jump conditions guarantee that the physical phe-
nomena in the bulk and on the discontinuity surface are
exactly the same.

B. Dimensionless formulation

In what follows, we use dimensionless variables

Ṽ = V

c1
, σ̃ = σ

E1
, σ̃0 = σ0

E1
,

with tildes dropped to simplify notation. The system is con-
trolled by the dimensionless parameters εc and

γ =
√

E2

E1
> 1.

For the analysis presented below, it is convenient to work
with the following equation obtained by differentiating the
dimensionless version of Eq. (12) with respect to x:(

1 − a1
∂2

∂x2
+ a2

∂

∂x4

)
∂2ε

∂t2
= ∂2σ

∂x2
. (24)

C. Traveling waves

To find steadily moving transition fronts, we seek solutions
of Eq. (24) in the form of traveling waves:

ε(x, t ) = ε(η), η = x − V t . (25)

We place the front separating two linear regimes at η = 0
and thus require that the following consistency condition is
satisfied:

ε(0) = εc. (26)

Moreover, we consider the solutions admissible only if they
satisfy the inequalities

ε(η) > εc for η < 0, ε(η) < εc for η > 0. (27)

Since our solutions can be expected to contain phonon radia-
tion at ±∞, we formulate the boundary conditions in the form

〈ε(η)〉 → ε± as η → ±∞, (28)

with constant limits ε± constrained by the standard RH con-
dition (6) with stress-strain law given by Eq. (3), which in the
dimensionless formulation becomes

ε− = (V 2 − 1)ε+ − σ0

V 2 − γ 2
. (29)

The angular brackets in Eq. (28) denote the average over
the largest period of the short-wave oscillations representing

phonon radiation; more generally,

〈ε(η)〉 = lim
τ→∞

1

τ

∫ η+τ

η

ε(ζ )dζ .

The admissibility conditions in Eq. (27) require that ε+ < εc

and ε− > εc. Physically, this means that at ε = εc the moving
transition front performs the switching from one branch of the
piecewise linear stress-strain curve to another.

Substituting Eq. (25) into Eq. (24), integrating twice, and
taking into account the boundary conditions (28), we obtain
the ordinary differential equation

V 2

[
1 − a1

d2

dη2
+ a2

d4

dη4

]
ε(η) = σ (η) + (V 2 − 1)ε+, (30)

where

σ (η) = ε(η)H (η) + [γ 2ε(η) − σ0]H (−η), (31)

and H (η) is the Heaviside function. We also need to apply the
following jump conditions at η = 0:

�ε� = �dε/dη� = 0, (32)

�d3ε/dη3� = 0, �d2ε/dη2� = 0. (33)

It is straightforward to check that the condition (23), which
takes the form �σ (η)� − a2V 2�d4ε/dη4� = 0, is satisfied au-
tomatically.

D. Mechanical radiation

Since Eq. (30) is piecewise linear, it can be solved ex-
plicitly. The analytical solution in each of the two linear
regimes can be written as a combination of linear waves
whose frequencies and wave numbers satisfy the character-
istic equations

ω2
±(k) − V 2k2 = 0, (34)

where ω+(k) and ω−(k) are the dispersion relations defined
by

ω2
+(k)

k2
= ω2

−(k)

(γ k)2
= 1

1 + a1k2 + a2k4
(35)

and shown in the insets of Fig. 5. The double root of (34)
at k = 0 is responsible for a linear term in the solution, and
in view of the assumption of boundedness of the solution, it
contributes only constants in each domain of linearity. Due to
the even symmetry of the functions ω±(k), the four nonzero
roots of (34), which we denote by k±

j , j = 1, 2, 3, 4, must
satisfy k±

3 = −k±
1 and k±

4 = −k±
2 . Therefore, it suffices to

seek nonzero roots with Imk > 0 and Rek > 0, where Rek
and Imk are real and imaginary parts of k, respectively. The
structure of the roots for three different types of fronts is
shown in Fig. 5.

Of principal importance for the description of phonon ra-
diation produced by the moving front are the nonzero real
roots of (34). The corresponding points of intersection of
ω±(k) and V k are marked in the insets of Fig. 5. When V < 1
(subkinks), a symmetric pair of such roots ±k± exists for each
domain of linearity: when 1 < V < γ (shocks), only the roots
±k− remain, while in the case of superkinks V > γ , there
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FIG. 5. The characteristic roots in the quasicontinuum model when (a) V < 1, (b) 1 < V < γ , and (c) V > γ . Due to symmetry, only the
roots with Imk � 0 and Rek � 0 are shown. Insets show the dispersion relations and real roots as intersections with the line V k.

are no nonzero real roots at all. Since each nonzero real root
describes energy radiation to and from the moving front, the
superkinks can potentially receive but cannot dissipate energy
in the form of radiated waves.

To exclude the energy flux from infinity (antidissipation,
which can sometimes be interpreted as an AC-type driving
[124]), we must impose the radiation conditions disqualifying
some of the waves associated with the real roots. In our case
these conditions, comparing the velocity of the energy propa-
gation (group velocity) with the velocity of the front, take the
form [80,87]

ω′
+(k) > V, ω′

−(k) < V. (36)

Since the functions ω±(k) are known, these conditions are
explicit. They leave only one real root related component of
the solution in the case of subkinks and shocks.

E. General solution

We observe that the whole configuration of the roots of the
characteristic equations (real and complex) changes depend-
ing on the values of V . The nonzero roots are given by ±k±

1,2,
where

k+
1,2 =

√
2

√
−5 ∓

√
5(12 − 7V 2)

V
,

k−
1,2 =

√
2

√
−5 ∓

√
5(12γ 2 − 7V 2)

V
. (37)

More specifically, for the state ahead of the moving front, we
have the following three regimes:

k+
1 = ip, k+

2 = s, V < 1,

k+
1,2 = ip1,2, 1 < V < V∗,

k+
1,2 = ∓id + f , V > V∗. (38)

For the state behind the front, we have the same three regimes
but in different V ranges:

k−
1 = iq, k−

2 = r, V < γ ,

k−
1,2 = iq1,2, γ < V < V∗∗,

k−
1,2 = ∓ig + w, V > V∗∗. (39)

Explicit expressions for the real and positive functions p(V ),
s(V ), p1,2(V ), d (V ), f (V ), q(V ), r(V ), q1,2(V ), g(V ), and
w(V ) can be extracted from (37). The critical values

V∗ =
√

12/7, V∗∗ = γ
√

12/7 > V∗

are the artifacts of the QC approximation, and, as we show
below, do not have any fundamental meaning.

Applying the radiation conditions (36) and the boundary
conditions (28), we can write the general solutions corre-
sponding to all three types of transition fronts. In particular,
in the case of subkinks (V < 1), the solution takes the form

ε(η) =
{
ε− + B1eqη + B2 cos(rη) + B3 sin(rη), η < 0,

ε+ + A1e−pη, η > 0.

(40)

One can see that for subkinks there is one unknown coefficient
on the + side and three on the − side. All of them can be found
from the consistency, continuity, RH, and DRH conditions.
Indeed, the consistency condition (26) and the first of the
continuity conditions in Eq. (32) yield in this case the relations

ε+ + A1 = εc = ε− + B1 + B2. (41)

This allows us to eliminate ε±. Using the RH condition (29),
the second continuity condition in Eq. (32), and the DRH con-
ditions (33), we then obtain the system of linear equations for
the coefficients in Eq. (40):

−C0A1 + B1 + B2 = b,

pA1 + qB1 + rB3 = 0,

p2A1 − q2B1 + r2B2 = 0,

p3A1 + q3B1 − r3B3 = 0,

where

C0 = V 2 − 1

V 2 − γ 2
, b = (1 − C0)εc + σ0

V 2 − γ 2
.

The system yields explicit expressions for the four unknown
coefficients A1, B1, B2, and B3 as functions of V that are not
provided here to simplify the exposition. The expressions for
ε±(V ) are then found from Eq. (41).

For shocks and superkinks (V > 1), the structure of the
roots in Eqs. (38) and (39) changes depending on the value
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of V relative to the thresholds V∗ and V∗∗. To account for this,
it is convenient to introduce the shortcuts

λ1,2 =
{−p1,2, 1 < V < V∗,

−d ± i f , V > V∗

and

μ1,2 =
{

q1,2, γ < V < V∗∗,
g ± iw, V > V∗∗.

Then for shocks (1 < V < γ ) we have

ε(η) =
{
ε− + B1eqη + B2 cos(rη) + B3 sin(rη), η < 0,

ε+ + A1eλ1η + A2eλ2η, η > 0,

(42)

with two unknown coefficients on the + side and three on
the − side (for V > V∗ the two nonconstant terms at η >

0 are complex conjugate since λ2 = λ̄1 and A2 = Ā1). The
conditions (26), (29), (32), and (33) yield ε+ + A1 + A2 =
εc = ε− + B1 + B2 and the following linear system for the
coefficients in Eq. (42):

−C0(A1 + A2) + B1 + B2 = b

λ1A1 + λ2A2 − qB1 − rB3 = 0,

λ2
1A1 + λ2

2A2 − q2B1 + r2B2 = 0,

λ3
1A1 + λ3

2A2 − q3B1 + r3B3 = 0. (43)

This system of four equations does not allow one to find all
five unknown coefficients A1, A2, B1, B2, and B3 as functions
of V . In other words, the structure of shocks is not fully
determined internally, which in turn means that ε± cannot
be determined as functions of V . All parameters are fully
defined in this case only if we provide one additional external
condition, for example ε+ = 0, which implies A1 + A2 = εc.

In the range V > γ (superkinks), the solution reads

ε(η) =
{
ε− + B1eμ1η + B2eμ2η, η < 0,

ε+ + A1eλ1η + A2eλ2η, η > 0,
(44)

with λ2 = λ̄1, A2 = Ā1 for V > V∗ and μ2 = μ̄1, B2 = B̄1 for
V > V∗∗. In this case, there are two unknown coefficients on
each side of the front, so the solution is again fully specified
by conditions (26), (29), (32), and (33), which yield the linear
system

−C0(A1 + A2) + B1 + B2 = b,

λ1A1 + λ2A2 − μ1B1 − μ2B2 = 0,

λ2
1A1 + λ2

2A2 − μ2
1B1 − μ2

2B2 = 0,

λ3
1A1 + λ3

2A2 − μ3
1B1 − μ3

2B2 = 0

for the four unknown coefficients A1, A2, B1, B2 that can be
found as explicit functions of V , as well as the relations ε+ +
A1 + A2 = εc = ε− + B1 + B2, which allows one to find the
two remaining functions ε±(V ).

To summarize, after using the conditions (36), (28), (26)
and the first condition in Eq. (32), we are left in the range
V < 1 (subkinks) with one unknown coefficient on the + side
and three on the − side (a single exponential boundary layer
and a radiated wave). All of them can be found from the four
conditions: the second condition in Eqs. (32), (29), and (33).

When 1 < V < γ (shocks) we are left with two coefficients
on the + side and three on the − side (a radiated wave and
a single exponential boundary layer) and only four condi-
tions. This leaves one of the constants in the corresponding
linear system (43) undetermined. Finally, in the range V > γ

(superkinks) there are two coefficients on each side, so the
solution is again fully specified by the four conditions.

Once the strain field is determined in each regime, particle
velocity is found from v(η) = −V ε(η).

F. Discussion

Now that the mathematical structure of traveling wave
solutions is well understood, we provide a physical interpre-
tation of the results that furnishes a somewhat more intuitive
explanation of the fundamental differences between the three
types of transition fronts.

Observe first that in all three cases, the traveling wave
solutions describing the transition fronts can be written in the
same general form

ε(η) = ε± + �±(η) + �±(η), η ≷ 0. (45)

Here the functions �±(η) depend on the real roots of the
characteristic equation and describe the radiative part of the
solution. The functions �±(η) depend on the nonreal complex
roots and describe the exponentially localized boundary layers
on both sides of the moving fronts. The constant terms in
(45) are due to the double root at the origin; the strains ε±
correspond to the averaged states at η → ±∞ and satisfy the
classical RH condition (29).

We now consider in more detail the radiative component of
the solution �±(η). We have seen that to exclude the energy
flux from infinity (radiation condition), we need to set (in all
three cases) that radiation is absent ahead of the front, so that

�+(η) = 0.

Moreover, while all three solutions obtained above in
Eqs. (40), (42), and (44) have the form (45), the nontrivial
radiation component (behind the moving front) exists only for
subkinks and shocks and can be written as

�−(η) = 2α− cos (rη + β−), (46)

with α−, β− expressed in terms of B2 and B3 in Eqs. (40)
and (42). Thus, both subkinks and shocks radiate (dissi-
pate) energy. In contrast, the superkinks are completely free
from radiation (dissipation), since in this case we also have
�−(η) = 0.

We now turn to the boundary layer terms �±(η). For
subkinks they involve a single decaying exponential term on
each side of the front [�+(η) = A1e−pη, �−(η) = B1eqη]; see
Eq. (40). For shocks, there is a single exponential decay be-
hind the front [�−(η) = B1eqη], while ahead of it the decay is
double exponential [�+(η) = A1e−p1η + A2e−p2η] when 1 <

V < V∗ and oscillatory (�+(η) = 2e−dη[Re(A1) cos( f η) −
Im(A1) sin( f η)]) when V∗ < V < γ [see Eq. (42)]. For su-
perkinks, there is a similar transition from double exponential
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to oscillatory decay ahead of the front at V = V∗ if γ < V∗
and behind it at V = V∗∗ [see Eq. (44)]. As the analysis of the
discrete problem presented below shows, both double expo-
nential and oscillatory decays are artifacts of the chosen QC
approximation.

As we have seen, for both types of kinks all parameters
of the traveling wave, and in particular the limiting states
ε±, are fully determined by the front velocity V . This means
that the kinetic relations G = G(V ), whose absence in the
classical continuum description produced the fundamental
ill-posedness of the problem, are now fixed through the re-
covery of the internal structure of the kinks. In other words,
such fronts are autonomous in the sense that their kinetics
is controlled by the microscopic dispersion. For instance, if
the state in front of the moving kink ε+ is known, then both
the state behind, ε−, and the velocity of the front V are
determined.

In contrast, in the case of shocks, the knowledge of V is
not sufficient to determine both ε±, and one of the limiting
strains remains as a free parameter. As a result, no particu-
lar kinetic relation in the form G = G(V ) emerges from the
reconstruction of the internal structure of the transition front.
In other words, in the case of shocks, the knowledge of the
state ahead is not sufficient for complete specification of the
remaining parameters and for fixing the internal structure of
the transition. This means, for instance, that in addition to the
state ahead of the front ε+, another piece of information has
to be prescribed by the external (non-traveling-wave) solution
in order to make the front velocity V known.

G. Characteristics

The obtained QC picture is in full agreement with what
we have learned by studying the classical continuum approx-
imation in Sec. II. There we found that kinks are dissimilar
from shocks primarily due to the difference in the number of
incoming characteristics shown in Fig. 3.

In particular, Fig. 3 shows that for both types of kinks two
characteristics are bringing information to the front. Since in
our analysis of the internal structure of the transition fronts
we eliminated particle velocities v(η), we may always assume
that this information concerns the limiting values v±. There-
fore, we can conclude that in the case of kinks, no information
about one of the limiting strains ε± is arriving from outside.
Thus, to fix the unknown limiting strain and to ultimately
specify the front velocity V , the system must rely exclusively
on the internal dispersive machinery. The analysis of the QC
approximation shows that such machinery is indeed in place
delivering all of the unknown quantities.

In contrast, in the case of shocks, the classical continuum
model tells us that the three characteristics are coming from
outside. Therefore, the system can use one additional piece
of external information to fix the limiting strains ε± and to
specify the front velocity V . In this case, the internal disper-
sive structure of the front does not have an autonomy and
simply adjusts to the conditions imposed from the outside.
Consistently, this is exactly what our study of the dispersive
QC model has shown: for shocks the internal traveling wave
solution is (one-parameter) underdetermined, and to make
the global problem well-posed a single additional piece of

information is needed. Such information is then naturally
provided by the additional incoming characteristic that does
exist in the case of shocks.

H. Dynamical system

Since all three types of transition fronts represent travel-
ing wave solutions of the fourth-order ordinary differential
equation (30), it is of interest to examine them from the
point of view of the theory of dynamical systems. In this
perspective, they emerge as fundamentally different types of
heteroclinic trajectories connecting various types of attrac-
tors in the four-dimensional phase space. The nature of such
attractors depends on the structure of the roots of the char-
acteristic equations, which control the asymptotic behavior
of the heteroclinic trajectories as η → ±∞. The knowledge
of these asymptotics is sufficient to distinguish between the
different universality classes of the transition fronts.

For example, in the case V < 1 (subkinks) the tran-
sition fronts correspond to heteroclinic trajectories of the
type center-saddle to center-saddle. Such transitions are
nongeneric and are possible due to the sufficiently high di-
mensionality of our dynamical system. More specifically, they
are captured by our QC approximation because the latter
includes the minimal number of the higher-order dispersive
corrections to the classical continuum model, which makes the
corresponding phase space four-dimensional. At η = −∞,
the heteroclinic trajectory describing subkinks unwinds as the
center-related separatrix. The corresponding two-dimensional
center effectively describes the radiation behind the moving
subkink, while the saddle-related component of the asymp-
totics describes the exponential boundary layer. At η = +∞
this trajectory ends as a saddle-related separatrix, which
describes the exponential boundary layer ahead of the moving
front.

Similar considerations can be applied to shock and su-
perkink trajectories. For simplicity, we assume in what
follows that γ <

√
12/7 and V <

√
12/7. This eliminates

the oscillatory decay for shocks and superkinks, which, as
we have discussed, is an artifact of the QC approximation.
In the range 1 < V < γ (shocks), the corresponding hetero-
clinic orbits are of the type center-saddle to saddle-saddle.
Such transitions are generic. At η = −∞, the heteroclinic
trajectory unwinds as a center-related separatrix describing
radiation behind the front. The center-related part of the
asymptotics describes the exponential boundary layer. At η =
+∞ the trajectory ends as a saddle-related separatrix describ-
ing the exponential decay ahead of the front. Finally, for V >

γ (superkinks) the corresponding orbit is of saddle-saddle to
saddle-saddle type. Such transitions are nongeneric. In this
case, the heteroclinic trajectory starts as a saddle-related sep-
aratrix describing the exponential decay behind the front and
ends as a saddle-related separatrix describing the boundary
layer ahead of the front.

We have thus confirmed that the physical nature of all
three types of the transition fronts described by the general
Eq. (12) is fully consistent with the asymptotic behavior
of the heteroclinic trajectories at η → ±∞. The fact that
the latter is controlled by the structure of the roots of
the characteristic equations characterizing the corresponding
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attractors goes beyond the adopted piecewise linear approx-
imation of the stress-strain relation. Thus, even without
such an assumption, the subkinks can be expected to corre-
spond to nongeneric transition fronts that are described by
center-saddle to center-saddle trajectories and generate their
own kinetic relations. Such transitions, however, would be
possible only if sufficiently higher-order dispersion is in-
cluded into the model. Similarly, even in a smoother model
shocks correspond (under our assumptions) to the hetero-
clinic orbits that are generic saddle-saddle to center-saddle
trajectories, and therefore do not generate any specific kinetic
relations. Finally, under the same assumptions superkinks
are nongeneric transitions described by the saddle-saddle to
saddle-saddle heteroclinic orbits. The fact that all possible
types of sufficiently low-dimensional nondissipative attractors
are accounted for suggests that the proposed classification of
the transition fronts is exhaustive.

I. Dissipation rate

In the dispersively regularized setting, the jump disconti-
nuities of strain and velocity that are present in the classical
continuum theory are replaced by the extended transition
zones. In addition, the energy released on such jumps in
the continuum theory no longer disappears locally. Instead it
is channeled by nonlinearity from long to short waves and
radiated away from the moving front in the form of lattice
waves. In the piecewise linear theory, it is transported by
such waves to infinity. In other words, despite the absence of
explicit damping, the effective dissipation takes place due to
the energy escape through phonon radiation.

The developed QC model allows one to trace all these
processes in full detail. In particular, one can compute ex-
plicitly the thermodynamic driving force G for all three types
of transition fronts and determine the corresponding rate of
energy dissipation R = GV � 0. Based on the analysis of
the corresponding modes of radiation, one can see that R is
strictly positive for subkinks and shocks but equals zero for
superkinks.

More specifically, depending on the structure of the real
roots of the characteristic equations, the transition front may
or may not emit elastic waves. In general, we have R = R+ +
R−, where

R+ =
∑

k∈N+

〈E+(k)〉[ω′
+(k) − V ] = G+V,

R− =
∑

k∈N−

〈E−(k)〉[V − ω′
−(k)] = G−V, (47)

and G+ and G− are the cumulative energy fluxes associ-
ated with emitted elastic waves ahead and behind the front,
respectively. Here N± = {k : Imk = 0, Rek > 0, ω±(k) =
V k, ω′

±(k) ≷ V } is the set of positive real roots of the char-
acteristic equation for the corresponding linear regime that
satisfy the radiation conditions (36), and E±(k) are the energy
densities associated with the corresponding modes, averaged
over the corresponding time period T = 2π/ω±(k), with
〈 f 〉 = T −1

∫ T
0 f dt . The energy is transported away from the

front with relative velocities ω′
±(k) − V [125].

From the structure of the exact solutions of the QC model,
one can see that the set N+ is empty for all transition fronts.
Thus, independently of the front type there is no radiation of
phonons ahead of the front, and G+ = 0. In the superkink
regime, N− is also empty, and therefore G− = 0 as well,
yielding R = 0. In the case of subkinks and shocks there is
a single emitted lattice wave mode with wave number r > 0
propagating in the region η < 0, so that N− = {r}. The asso-
ciated energy with the density

E−(r) = V 2

2
(�2

− + a1(�′
−)2 + a2(�′′

−)2) + γ 2

2
�2

−,

averaged over the period 2π/ω−(r), is transported backwards
relative to the moving front with the relative velocity ω′

−(r) −
V [125]. This yields the driving force G = G− + G+ given by

G = G− = 2γ 2(α−)2ω2
−(r)

(
1 − ω′

−(r)

V

)
> 0,

where we recall that α− is half of the amplitude of the radi-
ation contribution to the solution defined in Eq. (46) and can
be obtained from Eqs. (40) and (42) for subkinks and shocks,
respectively. The difference is that for subkinks the function
G(V ) is fixed, while for shocks we obtain a one-parametric
family of such functions.

J. Admissibility

We recall that the explicit expressions for the general
solution of the piecewise linear problem are invalid if the
admissibility conditions (27) are violated. Therefore, the in-
equalities ε(η) > εc for η < 0 and ε(η) < εc for η > 0 must
be checked a posteriori, which means that some of the
formally constructed solutions may have to be discarded
[84,126].

The analysis of the global behavior of the obtained strain
fields shows that all subkinks with V < 1 and all superkinks
with V > γ are automatically admissible. In both of these
cases, the transition fronts can be represented in the space
of parameters ε+ and �σ by one-dimensional manifolds be-
cause the velocity of the front is determined uniquely by
the corresponding kinetic relation. In the case of shocks,
which can be either admissible or inadmissible, the velocity
V is not determined internally. Therefore, shocks occupy a
two-dimensional (2D) domain in the (ε+, �σ ) plane. This
domain is further divided into two subdomains: at sufficiently
large values of �σ shocks are admissible, while those located
below a certain threshold are inadmissible. The inadmissible
shocks show the repeated crossing of the εc threshold by the
oscillatory tail behind the moving front.

The admissibility diagram in the (V, �σ ) plane is shown
in Fig. 6, where we fixed ε+ = 0. The insets illustrate the
analytical solutions describing different types of transition
fronts. The 2D domain of shocks on this diagram is bounded
on two sides by the condition 1 < V < γ and from below by
the dotted line below which ε− < εc. One can see that only the
shock solutions in the pink (upper) region above the threshold
values �σ ∗(V ) marked by a solid black curve are admissible,
while the ones in the blue (lower) region are inadmissible.
This is illustrated in the corresponding inset by the multiple
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FIG. 6. Admissibility sets of solutions of the QC problem. In the
blue region we have ε(η) � εc for some intervals of η < εc, and its
dotted lower boundary marks the threshold ε− = εc. The insets show
examples of the strains ε(η), with horizontal lines marking ε = εc.
Here γ 2 = 1.5, εc = 1, and we set ε+ = 0.

crossings of εc (the dash-dotted horizontal line) by the strain
profile ε(η).

To understand which solutions replace shocks in the “for-
bidden” region, we need to resort to simulations. Using direct
numerical simulations of Eq. (12) for a sufficiently broad set
of initial data, we can also numerically test the stability of the
admissible transition fronts.

K. Numerical simulations

We solve Eq. (24) in the finite domain x ∈ (0, 200) with
the Riemann-type initial data

ε(x, 0) =
{
εl , x < 100,

0, x � 100,

∂ε

∂t
(x, 0) = 0.

using the implicit fourth-order conservative finite-difference
method developed in [127]. The first and second spatial
derivatives of strain are set to 0 at the boundaries. The emer-
gence of particular transition fronts, as an outcome of the
breakdown of the initial state, will then depend on the choice
of the parameters �σ and εl .

The results are summarized in Fig. 7, which shows time
snapshots near the end of four different simulations. In each
simulation we have chosen a particular set of parameters εl

and �σ to reach one of the four structurally dissimilar regimes
shown in Fig. 6.

While in all presented snapshots we observe complex
breakdown patterns, most of their elements correspond to
linear dispersive pulses with their characteristic overshoots.
To identify genuinely nonlinear substructures, one needs to
look for the patterns magnified in the insets in Fig. 6. Thus,
the inset in Fig. 7(a) shows an admissible subkink moving to
the right. The comparison of the internal structure of such
numerically generated wave profile with the corresponding
analytical solution shows perfect agreement, which confirms
that the transformation fronts of this type can indeed serve as

FIG. 7. Different regimes of front propagation in the QC model
with the parameters γ 2 = 1.5 and εc = 1 at t = 50: (a) subkink
(εl = 6, �σ = 2.5); (b) conventional shock (εl = 10, �σ = 2.5);
(c) dispersive shock (εl = 10, �σ = 0); (d) superkink (εl = 6,
�σ = −1.5).

dynamical attractors. Similarly, the inset in Fig. 7(d) shows an
admissible superkink moving to the right, which also matches
the analytical waveform and points towards stability of the
corresponding traveling wave solution. An admissible shock
is shown in the inset of Fig. 7(b), and we again see that the
analytical profile is reproduced faithfully and conclude that
such transition fronts can be stable. The remaining panel (c) of
Fig. 7 corresponds to parameter values that target inadmissible
shocks. Not surprisingly, we do not observe a traveling wave
profile in this case. Instead, the nonlinear structure that we see
is reminiscent of a nonsteady dispersive shock wave (DSW).

Our broader numerical experiments strongly suggest that,
in the whole domain of nonadmissibility, shock traveling
waves are replaced by DSWs. This result, obtained so far
only in the QC setting, will be confirmed below by a similar
analysis of the original discrete problem. We recall that DSWs
have been extensively studied using various other QC ap-
proximations of the FPU system (see, for example, [100,102,
128–130]). We conclude that in our regime diagram shown
in Fig. 6, the domain of inadmissible shocks should be
interpreted as a domain of stability of DSW-type non-
steady (spreading) transition fronts. The absence of steadily
moving shock fronts in the FPU model with convex en-
ergy density (�σ � 0 in our problem) is well known. It
has been previously linked to the low dimensionality (lack
of transversal radiation) and the absence of irreversibility
(purely elastic constitutive modeling), which is a ubiquitous
feature of the real crystals [131–133]. Here by allowing
regimes with �σ > 0 we acquire a limited parametric domain
where stable stationary shocks exist. One can argue that the
nonconvexity, which allows the one-dimensional system to
accommodate large-amplitude lattice waves transmitting ra-
diated energy away from the moving front, is the way to bring
multivaluedness into the constitutive response, which ul-

024210-12



TRANSITION FRONTS AND THEIR UNIVERSALITY … PHYSICAL REVIEW E 106, 024210 (2022)

timately imitates the inherent multistability of the plastic
response.

To summarize, the analysis of the dispersively regularized
QC model allowed us to clarify the ambiguities left by the
classical continuum description. In such an essentially micro-
scopic model, all three classes of transition fronts acquired
their natural raison d’être, with the numerical simulations
providing confirmation of the exhaustiveness for the proposed
classification. It is rather remarkable that such a task could be
accomplished using a relatively simple QC approximation of
the original discrete problem. Note, however, that the chosen
approximation was not of the lowest order, and to capture the
complete picture we had to introduce two internal time scales
and modify the kinetic rather than elastic energy. As we show
in the next section, the obtained description is fully adequate
when compared to the discrete model.

IV. DISCRETE MODEL

We now analyze the dimensionless version of the original
FPU problem (2), which takes the form

d2εn(t )

dt2
= σ (εn+1) − 2σ (εn) + σ (εn−1), (48)

with bilinear interactions σ (ε) = ε at ε < εc, and σ (ε) =
γ 2ε − σ0 at ε > εc. The dispersion relations in each linear
regime are defined by

ω2
+(k) = ω2

−(k)/γ 2 = 4 sin2 (k/2) (49)

and are much more intricate than in the QC model due to the
presence of lattice resonances and the richness of the spectrum
of available lattice-scale waves. Therefore, the analysis of the
discrete problem can potentially challenge the description of
the energy radiation provided by the QC model.

To find the corresponding traveling wave solutions εn(t ) =
ε(η), η = n − V t of the discrete problem (48), we need to
solve the advance-delay equation

V 2 d2ε

dη2
= σ (η + 1) + σ (η − 1) − 2σ (η), (50)

where the function σ (η) = σ (ε(η)) is given by Eq. (31). We
will use the Fourier transform technique to solve Eq. (50) sub-
ject to the consistency condition (26), the boundary conditions
(28), and the radiation conditions (36).

It is convenient to represent the transformed function in the
form

ε̂(k) =
∫ ∞

−∞
ε(η)eikη dη = ε̂+(k) + ε̂−(k),

where

ε̂±(k) =
∫ ∞

−∞
ε(η)H (±η)eikη dη

are analytic in Imk ≷ 0. The Fourier transform of (50) then
yields

M+ε̂+ + M−ε̂− = M− − M+
ik

ε∗, (51)

FIG. 8. Magnitudes of (a) the real roots k = ±r and (b) the imag-
inary roots k = ±iq in the discrete (solid curves) and QC (dashed
curves) for ω2

+(k) − k2V 2 = 0 (blue curves) and ω2
−(k) − k2V 2 = 0

(red curves). Black solid lines mark the sonic limits separating the
velocity domains of different transition fronts. Complex roots with
nonzero real and imaginary parts bifurcate at the velocities V∗ and V∗∗
marked by dash-dotted lines in the QC model and from the nonsonic
maxima of the real root curve in (a) in the discrete model. Here
γ = 2.

where we introduced the parameter

ε∗ = σ0

γ 2 − 1
(52)

and the characteristic functions

M±(k) = ω2
±(k) + (0 + ikV )2. (53)

Here 0 ± ikV = lims→0+(s ± ikV ), and we use the causality
principle [80] to handle the zero at the origin. A comparison of
the characteristic functions (53) with their QC analogs in the
whole complex plane shows that while the discrete dispersion
relations (49) are more complex than their QC counterparts
(35), the QC approximation captures the long-wave behavior
adequately. More precisely, as shown in Fig. 8, the QC model
gives an excellent approximation of the real and purely imag-
inary roots of Eq. (53) that have sufficiently small magnitude.
In general, it captures the four nonzero roots of each charac-
teristic function that are closest to k = 0 qualitatively well but
may represent purely imaginary roots by complex quadruples
and vice versa.

A. Characteristic roots

Similar to the QC model, the solution of the discrete
problem can be written in terms of elementary waveforms
associated with the roots of the characteristic functions (53).
In what follows, we consider the generic case when V is
nonresonant [V �= ω′

+(k) and V �= ω′
−(k) for any real k]. We

can then define the sets Z = Z+
r ∪ Z−

r ∪ Z+
c ∪ Z−

c and P =
P+

r ∪ P−
r ∪ P+

c ∪ P−
c containing nonzero roots of the charac-

teristic equations M±(k) = 0. Here

Z±
r = {z : M+(z) = 0, z �= 0, Imz = 0, ω′

+(z) ≷ V },
P±

r = {p : M−(p) = 0, p �= 0, Imp = 0, ω′
−(p) ≷ V },

Z±
c = {z : M+(z) = 0, Imz ≶ 0},

P±
c = {p : M−(p) = 0, Imp ≶ 0}. (54)

The structure of the roots of Eq. (53) is illustrated in Fig. 9,
which can be compared to the corresponding root structure
for the QC model shown in Fig. 5 (see also Fig. 8, which
compares the structure of real and purely imaginary roots). As
in that case, the even symmetry of each characteristic function
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FIG. 9. Distribution of the roots of M±(k) in Eq. (53) for the discrete model when (a) V < 1, (b) 1 < V < γ , and (c) V > γ . Due to
symmetry, only the roots with Rek � 0 and Imk � 0 are shown. Insets show the dispersion relations and real roots as intersections with the
line V k.

implies that the roots are symmetric about the origin, and it
suffices to consider the region Rek � 0 and Imk � 0.

Of particular importance are the sets of nonzero real roots
Z+

r ∪ Z−
r [roots of M+(k)] and P+

r ∪ P−
r [roots of M−(k)]. As

we will see, some of these roots correspond to radiated lattice
waves. When these sets are nonempty for given nonresonant
V , they contain an odd number of positive real roots, equal
to 2l + 1 and 2m + 1, respectively. We arrange these roots
in ascending order: z j < z j+1, j = 1, . . . , 2l , and p j < p j+1,
j = 1, . . . , 2m.

We observe that in the case of superkinks (V > γ ) both
functions M±(k) have no nonzero real roots, as shown in
Figs. 8(a) and 9(c), and hence there are no radiated waves
in this case (no dissipation). For shocks (1 < V < γ ) only
M−(k) has such roots [see Figs. 8(a) and 9(b)]. More specifi-
cally, we have m = 0 (i.e., one positive real root) for the values
of velocity V above the first resonance velocity V1, which
equals ω′

−(k) for some real k and satisfies the condition V1 > 1
for large enough γ > 1. We then have m = 1 (three positive
real roots) for the values of V between the first and second
resonance velocities, where the second resonance velocity is
defined accordingly, and so on. Finally, for subkinks (V < 1)
each of the characteristic equations has at least one positive
real root [see Figs. 8(a) and 9(a)], with l and m each increasing
by 1 when the corresponding resonance velocity is crossed.

In addition to real roots, there are infinite sets of com-
plex roots Z+

c ∪ Z−
c [roots of M+(k)] and P+

c ∪ P−
c [roots

of M−(k)] with a nonzero imaginary part that can be seen
in Fig. 9. These roots bifurcate from the maxima of the
real-root curves shown in Fig. 8(a). This includes purely imag-
inary roots that bifurcate from the sonic maxima at k = 0
and are shown in Fig. 8(b). The nonreal roots define the
structure of the boundary layers on both sides of the moving
front.

B. Characteristics revisited

To make a connection with the classical continuum theory,
we recall that the configuration of the real roots z j and p j

around the origin k = 0 is intimately related to the structure
of the characteristics in the continuum approximation. There-
fore, by studying these roots one can expect to reconstruct the
main subdivision of the transformation fronts into the three
universality classes.

More precisely, we can exploit the fact that in the long-
wavelength limit, the discrete problem can be replaced by a
single nonlinear wave equation. Indeed, in the limit k → 0,
s → 0+ we can approximate the linear operators in Eq. (53)
by

M+(k) = ω2
+(k) + (s + ikV )2 ≈ g+(k, s)

≡ [(1 + V )(−ik) − s][(1 − V )(−ik) + s],

M−(k) = ω2
−(k) + (s + ikV )2 ≈ g−(k, s)

≡ [(γ + V )(−ik) − s][(γ − V )(−ik) + s]. (55)

Observe also that using the convective coordinate η = x − V t ,
we can rewrite the system (4) as a pair of linear wave equa-
tions for ε(η, t ) in each of the two domains of linearity:[

(1 + V )
∂ε

∂η
− ∂ε

∂t

][
(1 − V )

∂ε

∂η
+ ∂ε

∂t

]
= 0, η > 0,

[
(γ + V )

∂ε

∂η
− ∂ε

∂t

][
(γ − V )

∂ε

∂η
+ ∂ε

∂t

]
= 0, η < 0.

(56)

Applying Fourier transform in η and Laplace transform in
t turns Eq. (56) into the equations g±(k, s) = 0, where the
functions g±(k, s) are defined in Eq. (55).

Since the characteristics of Eq. (56) are defined by the
equations η ± (1 ± V )t = const at η > 0 and η ± (γ ± V )t =
const at η < 0, the location of the roots of the functions
g±(k, 0) is directly linked to the configuration of the charac-
teristics relative to the line η = const. The configuration of the
roots of the equations g±(k, 0) = 0 is shown schematically in
Fig. 10 separately for each class of the transition fronts. One

FIG. 10. Schematic presentation of the roots g+(k, 0) (blue tri-
angles) and g−(k, 0) (red circles): (a) V < 1, (b) 1 < V < γ , (c)
V > γ .
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can see that in the range V < 1 (subkinks) the purely imagi-
nary roots are located in two different complex half-planes for
both g+(k, 0) = 0 and g−(k, 0) = 0. This is equivalent to the
fact that there is one incoming and one outgoing characteristic
on both sides of the line x − V t = const. Both roots of the
equation g+(k, 0) = 0 end up in the upper complex half-plane
in the range 1 < V < γ (shocks), producing two incoming
characteristics on the right side of the line x − V t = const,
while there is still one incoming and one outgoing character-
istic on the left side. Finally, in the range V > γ (superkinks),
the remaining roots of g−(k, 0) = 0 also shift into the upper
complex half-plane, which produces two outgoing character-
istics behind the moving front. One can see that the location of
the roots in Fig. 10 is in full agreement with the propagation
direction of the macroscopic perturbations with respect to the
moving front for each of our universality classes, as shown in
Fig. 3.

C. Solution of the discrete problem

We observe that ε̂±(k) can be written as

ε̂±(k) = ε±
0 ∓ ik

+ χ̂±(k), (57)

where the first term accounts for the boundary conditions
(28), and the second term satisfies limk→±i0 χ̂±(k) = 0, so
that limη→±∞〈ε(η)〉 = limk→±i0 ε̂±(k) = ε±.

To find χ̂±(k), we use the Wiener-Hopf technique
[62,77,86,88]. To this end, we factorize the main linear op-
erator

L(k) = M+(k)

M−(k)
= ω2

+(k) + (0 + ikV )2

ω2−(k) + (0 + ikV )2
(58)

of the problem, which means representing it in the form

L(k) = L+(k)L−(k), (59)

where the superscripts ± identify functions that are regular
(have no zeros or singularities) in Imk ≷ 0, respectively. Such
factorization allows us to rewrite (51) as

L+(k)

[
−ε∗ − ik

(
χ̂+(k) + ε+

0 − ik

)]

= 1

L−(k)

[
ik

(
χ̂−(k) + ε−

0 + ik

)
− ε∗

]
. (60)

This representation ensures that the right-hand side is regular
in the lower half-plane, while the left-hand side is regu-
lar in the upper half-plane, so that both can be analytically
continued to the whole plane after we move the zeros and sin-
gularities on the real axis into the corresponding half-planes.

Using the infinite product theorem [134], we can represent
L±(k) as follows [135]:

L±(k) = l±(k)L0
±(k). (61)

Here the terms l±(k) depend on nonzero real roots of the
characteristic equations, while the terms L0

±(k) are defined
by the remaining nonreal (complex) roots.

More specifically, we have

L±
0 (k) =

√
1 − V 2

γ 2 − V 2

∏
z∈Z±

c

(
1 − k

z

)
∏

p∈P±
c

(
1 − k

p

) , (62)

where the products are over the sets Z±
c and P±

c of nonreal
roots defined in Eq. (54). Note that the zeros and poles of
L+

0 (k) (the set Z+
c ∪ P+

c ) are all located in Imk < 0, and the
zeros and poles of L−

0 (k) (the set Z−
c ∪ P−

c ) are all in Imk > 0.
Similarly, the functions l±(k) can be expressed in terms

of the nonzero real roots of the corresponding characteristic
equations belonging to the sets Z±

r and P±
r in Eq. (54). These

roots are placed into the “+” sets (which contribute to the so-
lution at η > 0) if the associated group velocities ω′(k) exceed
the phase velocity V , and into the “−” sets (contributing to the
solution at η < 0) if ω′(k) < V . This ensures that the solution
satisfies the radiation condition (36), and the radiated waves
carry energy away from the front. Recalling the structure of
the real roots discussed in Sec. IV A, we observe that for sub-
kinks (V < 1) this implies that the roots ±z2 j , j = 1, . . . , l , of
M+(k) in Z+

r and the roots ±p2 j , j = 1, . . . , m, of M−(k) in
P+

r contribute to l+(k), while the remaining roots ±z2 j−1, j =
1, . . . , l + 1, of M+(k) in Z−

r and ±p2 j−1, j = 1, . . . , m + 1,
of M−(k) in P−

r contribute to l−(k). We thus obtain

l+(k) =
∏l

j=1

(
1 + (0−ik)2

z2
2 j

)
∏m

j=1

(
1 + (0−ik)2

p2
2 j

) ,

l−(k) =
∏l+1

j=1

(
1 + (0+ik)2

z2
2 j−1

)
∏m+1

j=1

(
1 + (0+ik)2

p2
2 j−1

) (63)

for subkinks. When l = 0 or m = 0, the corresponding prod-
ucts equal unity. Here we combined symmetric pairs ±r of
real roots using(

1 − k

r ± i0

)(
1 − k

−r ± i0

)
= 1 + (0 ± ik)2

r2
,

where the notation r ± i0 underscores the fact that the real
roots are effectively shifted into the half-planes Imk ≷ 0. In
particular, the zeros and poles of l+(k) (the set Z+

r ∪ P+
r ) are

moved into Imk < 0, while the zeros and poles of l−(k) (the
set Z−

r ∪ P−
r ) are shifted into Imk > 0. In the case of shocks

(1 < V < γ ), the sets Z±
c are empty, and we have

l+(k) = 1∏m
j=1

(
1 + (0−ik)2

p2
2 j

) ,

l−(k) = 1∏m+1
j=1

(
1 + (0+ik)2

p2
2 j−1

) . (64)

Finally, in the superkink regime, both characteristic functions
have no nonzero real roots, and thus we have

l±(k) = 1. (65)

We now consider the asymptotic behavior of the functions
L±(k). Note first that Eqs. (61)–(65) imply that

L±(k) ∼
√

1 − V 2

γ 2 − V 2
, k → ±i0, (66)

where we take the principal branch of the square root, which
becomes purely imaginary when 1 < V < γ . As shown in
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Appendix, the asymptotic behavior at infinity is given by

L±(k) ∼ R∓1, k → ±i∞, V < 1 or V > γ ,

L±(k) ∼ R∓1k±1, k → ±i∞, 1 < V < γ (67)

where R is given by

R = �+
z �−

p

�−
z �+

p

=
∏l

j=1 z2 j
∏m+1

j=1 p2 j−1∏l+1
j=1 z2 j−1

∏m
j=1 p2 j

, V < 1 (68)

for subkinks,

R = �−
p

�+
p

=
∏m+1

j=1 p2 j−1∏m
j=1 p2 j

, 1 < V < γ (69)

for shocks, while for superkinks the absence of radiation im-
plies

R = 1, V > γ .

Following the standard Wiener-Hopf procedure [134], we
perform the analytic continuation of both sides of Eq. (60)
to the entire complex plane and apply the Liouville theorem.
Noting that the asymptotic estimates in Eq. (67) imply that
both sides of Eq. (60) can be continued to a function that is at
most linear in k, we obtain

L+(k)

[
− ε∗ − ik

(
χ̂+(k) + ε+

0 − ik

)]

= 1

L−(k)

[
− ε∗ + ik

(
χ̂−(k) + ε−

0 + ik

)]

= ψ0 + ψ1k. (70)

Here the constants ψ0 and ψ1 depend on the velocity regime
due to the different asymptotic behavior in Eq. (67) for kinks
and shocks. Taking the limit k → ±i0 in Eq. (70) and using
the asymptotics Eq. (66), we obtain√

1 − V 2

γ 2 − V 2
(ε+ − ε∗) =

√
γ 2 − V 2

1 − V 2
(ε− − ε∗) = ψ0. (71)

These relations hold for all velocities. Recalling Eq. (52), one
can see that the first equality in Eq. (71) implies that the RH
condition (29) automatically holds for ε±.

Observe now that by Eq. (67), both sides of the first equal-
ity in Eq. (70) are constant at infinity when either V < 1
or V > γ . Therefore, we must set ψ1 = 0 in these velocity
ranges. For subkinks (V < 1) and superkinks (V > γ ), taking
the limits of the two sides of the first equality in Eq. (70) as
k → i∞ and k → −i∞, respectively, equating them to ψ0,
and applying the consistency condition (26), which implies
lims→∞[sε̂±(±is)] = ε(0±) = εc, then yields

ψ0 = εc − ε∗
R

, (72)

where we recall Eq. (57). Here R is defined in Eq. (68) for
subkinks and R = 1 for superkinks. Equations (71) and (72)
then imply that in these regimes, the limiting states ε± are
fully determined by the velocity V via

ε± = ε∗ + εc − ε∗
R

(
1 − V 2

γ 2 − V 2

)∓1/2

. (73)

Shocks (1 < V < γ ) correspond to the generic case when
both constants ψ0 and ψ1 in Eq. (70) are nonzero. In this case,
the zero-limit equation (71), which still holds, and the limits
k → ±i∞ yield

ψ0 = i

√
γ 2 − V 2

V 2 − 1
(ε− − ε∗), ψ1 = εc − ε∗

R
, (74)

where R is defined in Eq. (69). Note, however, that although,
as noted above, the RH condition (29) is automatically sat-
isfied for all three types of fronts, in the case of shocks the
limiting states ε± are not uniquely determined by V , i.e., there
is no condition that is equivalent to Eq. (73) that we have
for subkinks and superkinks. Therefore, in the case of shocks
one of the limiting strains remains a free parameter, which
agrees with the conclusions we reached while considering the
problem in both continuum and QC frameworks.

The solutions of the two equations in Eq. (70) thus take the
form

χ̂±(k) = ε∗ − ε±
0 ∓ ik

+ ψ0 + ψ1k

0 ∓ ik
[L±(k)]∓1. (75)

Here ψ0 is given by Eq. (72) and ψ1 = 0 in the case of both
kinks and subkinks. Instead, in the case of shocks ψ0 and ψ1

are given by Eq. (74). This yields the strains in the physical
space given by

ε(η) = ε± + 1

2π

∫ ∞

−∞
χ̂±(k)e−ikη dk, η ≷ 0, (76)

where the integrals are computed by closing the contour of
integration in Imk ≶ 0 for η ≷ 0 and applying the residue the-
orem. Here we recall that all real zeros and singularities have
been effectively shifted off the real axis into the corresponding
half-planes. As in the QC case, the solution can then be ex-
pressed in the general form (45). Recall that this form includes
localized [�±(η)] and radiative [�±(η)] components.

The localized components �±(η) are given by exponen-
tially decaying functions arranged in the infinite sums

�+(η) =
∑
z∈Z+

c

ω2
−(z) − (zV )2

2z2V [ω′+(z) − V ]
L−(z)(ψ0 + ψ1z)e−izη,

�−(η) =
∑
p∈P−

c

ω2
+(p) − (pV )2

2p2V [ω′−(p) − V ]

(ψ0 + ψ1 p)

L+(p)
e−ipη. (77)

The summation is over the sets of complex roots P−
c [the

poles of L−(k) in Imk > 0] and Z+
c [the poles of 1/L+(k)

in Imk < 0] defined in (54). To compute the residues, we
used Eq. (58) and the identities 1/L+(k) = L−(k)/L(k) and
L−(k) = L(k)/L+(k) that follow from Eq. (59).

The radiative components �±(η) in Eq. (45) describe the
lattice waves taking the energy from the moving front to
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infinity. For subkinks (V < 1), we have

�−(η) = 2
m+1∑
j=1

α−
j cos (p2 j−1η + β−

j ),

�+(η) = 2
l∑

j=1

α+
j cos (z2 jη + β+

j ), (78)

where the second sum is zero when l = 0. For shocks
(1 < V < γ ), there is no radiation ahead of the front, so
�+(η) ≡ 0, while �− has the same form as above. The real
coefficients α±

j and β±
j can be obtained from the polar repre-

sentation

α+
j e−iβ+

j = L−(z2 j )[ω2
−(z2 j ) − (z2 jV )2]

2z2
2 jV [ω′+(z2 j ) − V ]

(ψ0 + ψ1z2 j ),

α−
j e−iβ−

j = − [ω2
+(p2 j−1) − (p2 j−1V )2]

2p2
2 j−1V [V − ω′−(p2 j−1)]L+(p2 j−1)

× (ψ0 + ψ1 p2 j−1)

with the corresponding values of ψ0 and ψ1. Only the second
equation is relevant for shocks since �+ = 0 in that case.
Here we used Eqs. (A4) and (A5) obtained in Appendix.
Finally, for superkinks (V > γ ) there is no radiation either
ahead or behind the propagating front, and so in this case
�−(η) = �+(η) ≡ 0.

In addition to strains, we can also explicitly compute the
particle velocities v(η). To this end, we need to solve the
equation v(η + 1) − v(η) = −V ε′(η), where ε(η) is given by
Eqs. (45), (77), and (78). Using Fourier transform, we obtain

v(η) = v± + �±(η) + ϒ±(η), η ≷ 1/2,

where v+ − v− = −V (ε+ − ε−) coincides with the first RH
condition in Eq. (5) for the continuum problem, and since
one of v± is arbitrary by Galilean invariance, we may set
v± = −V ε±. Here we can explicitly identify the exponentially
decaying terms

ϒ+ = −
∑
z∈Z+

c

ω−(z) − (zV )2

4z sin z
2 [ω′+(z) − V ]

L−(z)

× (ψ0 + ψ1z)e−iz(η−1/2),

ϒ− = −
∑
p∈P−

c

ω+(p) − (pV )2

4p sin p
2 [ω′−(p) − V ]

(ψ0 + ψ1 p)

L+(p)
e−ip(η−1/2)

and the oscillatory terms �±(η) describing radiation. For sub-
kinks (V < 1), we have

�+(η) = −
l∑

j=1

α+
j z2 jV

sin z2 j

2

cos (z2 j (η − 1/2) + β+
j ),

�−(η) = −
m+1∑
j=1

α−
j p2 j−1V

sin p2 j−1

2

cos (p2 j−1(η − 1/2) + β−
j ),

(79)

where the second sum is zero when l = 0. For shocks
(1 < V < γ ), the function �−(η) has the same form, while
�+(η) ≡ 0. For superkinks, �−(η) = �+(η) ≡ 0.

D. Dissipation rate

The knowledge of the exact solution of the discrete prob-
lem gives us access to the energy (phonon) radiation from
the moving fronts to infinity. As we have already mentioned,
since the radiated energy is lost by the front, the associated
rate of the energy transport to infinity by lattice waves can be
interpreted as the rate of dissipation.

Following the procedure we used for the QC model, we
again consider the cumulative energy fluxes G+ and G−
emitted ahead and behind the front. Recalling Eq. (47), we
find that dissipation rates R± = G±V on both sides are zero
for superkinks, which involve no phonon radiation, and thus
G+ = G− = 0 in this case. For subkinks (V < 1) we obtain

R+ =
l∑

j=1

〈E+(z2 j )〉[ω′
+(z2 j ) − V ],

R− =
m+1∑
j=1

〈E−(p2 j−1)〉[V − ω′
−(p2 j−1)],

where R+ = 0 when l = 0, and E+(z2 j ) = v2
j /2 + ε2

j /2 and
E−(p2 j−1) = v2

j /2 + γ 2ε2
j /2 are energy densities carried by

individual lattice waves with (real and positive) wave numbers
z2 j ∈ Z+

r and p2 j−1 ∈ P−
r , respectively, and the averaging is

over the corresponding time periods. Using the expressions
for strains ε j in Eq. (78) and particle velocities v j in Eq. (79)
of the emitted waves with the corresponding wave numbers,
we obtain

G+ = 2
l∑

j=1

(α+
j )2ω2

+(z2 j )

(
ω′

+(z2 j )

V
− 1

)
,

G− = 2γ 2
m+1∑
j=1

(α−
j )2ω2

−(p2 j−1)

(
1 − ω′

−(p2 j−1)

V

)
, (80)

where G+ = 0 when l = 0. For shocks (1 < V < γ ), G−
has the same form, and G+ = 0. This yields explicit expres-
sions for the driving force G = G+ + G− in different velocity
regimes. Alternatively, we can compute the driving force from
the macroscopic area-difference formula (9) (with E1 = 1 and
E2 = γ 2 in the dimensionless formulation). Using Eq. (73) for
the kink regimes, Eq. (29) for shocks, and recalling Eq. (52),
we obtain

G =

⎧⎪⎨
⎪⎩

γ 2−1
2

(
1 − 1

R2

)
(εc − ε∗)2, V < 1,

γ 2−1
2 [(εc − ε∗)2 + V 2−1

γ 2−V 2 (ε+ − ε∗)2], V ∈ (1, γ ),
0, V > γ .

For subkinks and superkinks, this yields the kinetic relations
G = G(V ) [recall that R depends on V via Eq. (68) in the sub-
kink regime], which complement the classical RH conditions,
while for shocks the driving force remains dependent on the
choice of ε+, which, as we recall, is a free parameter in this
case. We have verified that these “macroscopic” expressions
for G are equivalent to the ones obtained by computing the
energy fluxes directly.
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FIG. 11. Admissibility sets of solutions of the discrete problem.
In the blue region we observe ε(η) � εc when η < εc, and the dashed
lower boundary of the region marks the threshold ε− = εc. The insets
show examples of the strains ε(η). Here γ 2 = 1.5, εc = 1, and we set
ε+ = 0.

E. Admissibility

As in the case of the QC approximation, one still needs
to check which of the obtained solutions are admissible, i.e.,
satisfy Eq. (27). In Fig. 11 we show the admissibility diagram
for the discrete problem, which is a direct analog of the
similar diagram for the QC model presented in Fig. 6. As
in that case, admissible subkink and shock solutions in the
discrete problem feature a single radiation mode propagating
behind the front, where the wave number r is a positive root
of the characteristic equation ω−(r) = V r, while �+ ≡ 0. In
the superkink case, �± ≡ 0. In the case of shocks, one of
the limiting states remains a free parameter, which agrees
with both continuum and QC approximations. One can see
that for V < 1, sufficiently fast subkinks are admissible. For
V > γ , all superkinks satisfy the assumed inequalities. In the
interval 1 < V < γ , the TW solutions describing shock waves
are admissible inside the pink domain. In the blue domain,
such TW solutions are not admissible and are replaced by the
DSWs, as we will discuss in the next subsection.

We conclude that the main features of the QC regime
diagram Fig. 6 are preserved in the full discrete model. Thus,
both types of kinks, represented in Fig. 11 by one-dimensional
manifolds, are admissible (for sufficiently large V in the case
of subkinks). Shocks are again not defined uniquely for a
given �σ and are admissible for sufficiently large values
of �σ . The two diagrams differ significantly only at small
V < 1, where the QC model, as expected, does not capture
the complex resonant behavior of the (typically inadmissible)
slow discrete subkinks.

Our comparison suggests that outside the regimes of par-
ticularly slow subkinks, all three types of transition fronts are
adequately described by only a few roots of the character-
istic equation capturing long (but not infinitely long) lattice
waves. This implies that carefully designed QC theories with
only a few parameters (describing the crucial mesoscopic
scales) can be successful in capturing such a fundamental

FIG. 12. Different regimes of front propagation in FPU chain
under Riemann-type initial conditions with different left strain εl

and �σ : (a) subkink (εl = 5, �σ = 2.5); (b) conventional shock
(εl = 25, �σ = 2.5); (c) dispersive shock (εl = 25, �σ = 0); (d) su-
perkink (εl = 5, �σ = −1.5). Here γ 2 = 1.5, εc = 1, and t = 300.

nonlinear dynamic effect as radiative friction. It also points
to the paramount importance of the QC reproduction of the
relevant mesoscopic time scales, in addition to the more
conventional task of modeling the internal length scales. In
other words, the task of the adequate dispersive approxima-
tion of the kinetic energy may be at least as crucial as the
task of the satisfactory representation of the nonlocal elastic
energy.

F. Numerical simulations

To test the stability of the obtained analytical solutions,
we conducted a series of numerical simulations, in which,
starting with Riemann initial data, we traced the emergence
of the nonlinear transition fronts propagating at constant ve-
locity. More specifically, we solved numerically the system
(2) (rescaled so that ρ = 1 and h = 1) with N = 1000 springs
and discontinuous initial conditions of the form

εn(0) =
{
εl , n < 500,

0, n � 500,

dεn

dt
(0) = 0

and free boundary conditions. We used the Dormand-Prince
algorithm (ode45 in MATLAB), and the duration of simulations
was such that the boundaries did not affect the front dynamics.
In each simulation, we varied εl and �σ while keeping all
other parameters fixed. As in the case of the QC model,
we identified four generic types of traveling fronts which all
emerged and stabilized by the numerical time t = 500.

The results of the simulations are summarized in Fig. 12.
They confirm the possibility of stable propagation of all three
types of transition waves. Similar to the QC model, the tran-
sition fronts are accompanied by linear dispersive waves. In
particular, in all cases such a wave appears behind the front
and moves away from it with velocity −γ . In the case of a
subkink shown in Fig. 12(a), there is also a linear dispersive
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wave propagating ahead of the transition front with velocity
1. In the superkink case [Fig. 12(d)], there are two linear
dispersive waves moving behind the front with velocities γ

and −γ .
Our results suggest stability of all three regimes—

subkinks, shocks, and superkinks—inside the corresponding
admissible domains of the (V,�σ ) plane. Recall that sub-
kinks are admissible when V < 1 is sufficiently large. An
example of a subkink propagation is shown in Fig. 12(a).
We found that superkinks can only appear when V > 1 and
�σ < −εc(γ 2 − 1) < 0. An example is shown in Fig. 12(d).
Recall also that shocks are only admissible when 1 < V < γ

and �σ is above a certain threshold, as shown in Fig. 11.
An example of an admissible shock propagation is shown
in Fig. 12(b). Inside the domain of inadmissible shocks, we
expectedly do not find steady transition fronts but find instead
the spreading transition profiles of DSW type [Fig. 12(c)],
similar to the corresponding prediction of the QC model. We
reiterate that the DSWs are mentioned here only for complete-
ness. A detailed study of such nonsteady regimes is outside the
scope of this paper, in part because these solutions are well
documented in the literature. They appear here naturally as
stable replacements for the inadmissible traveling waves.

V. APPLICATIONS IN METAMATERIAL DESIGN

The importance of metamaterials is due to their ability to
exploit post-instability structural responses. Effectively, meta-
materials utilize internal changes in the subelements, which
imitate molecular phase transitions at supermolecular scales.
The success of the metamaterial paradigm is due to the fact
that artificial “metamolecules” with desired properties can be
manufactured at the relevant scales.

The localized transition fronts studied in this paper can be
viewed as elementary bites of mechanical information that can
be generated, delivered, and erased in periodic lattice meta-
materials. Due to the presence of stress-sensitive repeating
structural units, such metamaterials can manipulate mechani-
cal information using advantageously the dispersion of elastic
waves. By carefully tailoring relationships between charac-
teristic dimensions, one can design metamaterials combining
the effects of strong dispersion with various forms of energy
nonconvexity. One of the main challenges in the design of
metamaterial structures is to ensure that the switching takes
place at a predefined level of stress and that the particular
switching waves are generated when the task is, for instance,
to enhance actuation or perform energy harvesting.

In view of these and other potential applications, the proto-
typical FPU model studied in this work can serve as a proof of
concept showing the broad variety of the functionally distinct
switching regimes, which can be controlled by the deliberate
parameter tuning. Even though the actual 3D metamaterials
with the desired properties would still have to be designed,
the results obtained in this paper already provide a specific
guidance regarding, for instance, which metamaterial should
be chosen to ensure a supersonic, dissipation-free commu-
nication of mechanical information, as opposed to a design
favoring subsonic switching, which ensures a heavily dissipa-
tive response.

VI. CONCLUSIONS

The goal of this paper was to reveal the interrela-
tions between structurally different steadily moving transition
(switching) fronts in the classical FPU model. Our main re-
sult is the demonstration that this non-integrable Hamiltonian
model supports three types of such fronts that can be classified
as subsonic (subkinks), intersonic (shocks), and supersonic
(superkinks).

To obtain analytical results, we limited our analysis to
piecewise linear elastic responses. In this case, exact solu-
tions of the discrete model for each class of fronts can be
presented in the form of infinite series. Within this setting,
we have shown that the proposed classification is exhaustive.
The common framework considered in this work allows us
to describe all three types of switching waves in a unified way
and associate them with particular classes of elastic responses.

While the constructed explicit solutions of the discrete
problem are sufficient to corroborate these qualitative claims,
the origin of the difference between the three types of fronts
remains relatively opaque in the FPU setting dealing with an
infinite system of nonlinear ordinary differential equations.
To achieve conceptual transparency, we constructed a QC
approximation of the FPU problem. An excellent agreement
with the behavior of the discrete model was obtained using a
long-wave (infrared) approximation utilizing only two inter-
nal scales. We stress that the successful coarse-grained theory
relies on the approximation of kinetic energy, in contrast to
more conventional asymptotic approaches such as the KdV
model and its higher-order analogs.

A detailed comparison of the exact solutions for the QC
theory and the discrete problem showed that the chosen ap-
proximation adequately describes the complex interrelation
between all three types of the transition fronts. This means
that the whole complexity of the dispersive structure of the
FPU model was not really necessary for the description of the
main features of these special solutions. In other words, the
dispersive properties of all three different classes of fronts can
be satisfactorily captured using a simple QC model.

Our analysis also reveals that the obtained macroscopically
dissipative subkink and shock front profiles cannot be ade-
quately described by the continuum nonlinear wave equation,
as may be suggested by a naive homogenization. Instead, they
should be interpreted as microscopic descriptions of Whitham
shocks connecting oscillatory and constant states [136,137].
Such generalized (dispersive) shocks usually correspond to
heteroclinic traveling waves of a dispersive model connecting
standard critical points with periodic orbits. To capture such
connections in a PDE format, we had to use a higher-order QC
model.

To fully understand the different structure of the three types
of transition fronts, we have drawn upon a broad variety of
physical and mathematical considerations, including charac-
teristics, barriers, topological transitions, undercompressive
nature, critical manifolds, and kinetic relations, which all
point to the existence of exactly three universality classes
of transition fronts. In this sense, the obtained perspective
can be viewed as unifying not only for the description of
switching waves but also for different analytical approaches
to the analysis of nonlinear dispersive systems.
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Several important issues have been naturally left for fu-
ture studies. The traveling wave description of the switching
waves is clearly incomplete when it comes to transient effects
such as interaction with obstacles and multiple collisions.
The approach to such problems proposed for special cases in
[138] can also be generalized and applied in our more gen-
eral framework. The present work does not address thermal
effects, which may become relevant for metamaterial with
a submicron scale mimicking cytoskeleton or extracellular
environment. For these purposes, the approach proposed in
[139] can be generalized here as well. Another issue that we
have not addressed in this work concerns different modes of
manipulation and control of transition fronts from a distance
using DC- and AC-type dynamic loading, which is of par-
ticular interest for metamaterial applications. The successful
use of such control was recently demonstrated for semilinear
discrete systems in [124].
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APPENDIX: SOME ASYMPTOTIC RESULTS

To obtain the asymptotic behavior at infinity, we follow
Ref. [135] and observe that for subkinks (V < 1) we have

H±
z (k) =

√
1 − V 2

∏
z∈Z±

c

(
1 − k

z

)

= V �+
z �−

z

T ±
z (k)

exp

[
± 1

2π i

∫ ∞

−∞
ln

(
Hz(ξ )Tz(ξ )

V 2�2
z

)
dξ

ξ − k ∓ i0

]

∼ V �+
z �−

z (0 ∓ ik)−2l−1, k → ±i∞, (A1)

where

T ±
z (k) = (0 ∓ ik)2l+1, Tz = T +

z T −
z , Hz = H+

z H−
z

and

�+
z =

l∏
j=1

z2 j, �−
z =

l+1∏
j=1

z2 j−1, �z = �+
z �−

z ,

and

H±
p (k) =

√
γ 2 − V 2

∏
p∈P±

c

(
1 − k

p

)

= V �+
p �−

p

T ±
p (k)

exp

[
± 1

2π i

∫ ∞

−∞
ln

(
Hp(ξ )Tp(ξ )

V 2�2
p

)
dξ

ξ − k ∓ i0

]

∼ V �+
p �−

p (0 ∓ ik)−2m−1, k → ±i∞, (A2)

where

T ±
p (k) = (0 ∓ ik)2m+1, Tp = T +

p T −
p , Hp = H+

p H−
p

and

�+
p =

m∏
j=1

p2 j, �−
p =

m+1∏
j=1

p2 j−1, �p = �+
p �−

p .

Here the expressions under the logarithms in the Cauchy-type
factorization integrals are set up in such a way that they tend
to 1 as k → ±i∞, while the logarithms remain real along the
entire integration path [135]. These asymptotic expressions
imply that in the subkink regime

L±
0 (k) = H±

z (k)

H±
p (k)

∼ �+
z �−

z

�+
p �−

p

(0 ∓ ik)2(m−l ), k → ±i∞,

while

l±(k) ∼ (�±
p )2

(�±
z )2

(0 ∓ ik)2(l−m), k → ±i∞,

so that

L±(k) ∼ R∓1, k → ±i∞, V < 1,

where R is given by Eq. (68). For shocks (1 < V < γ )
Eq. (A2) still holds, but due to the absence of nonzero real
roots of M+(k) in this regime, Eq. (A1) is replaced by [135]

H±
z (k) = i

√
V 2 − 1

∏
z∈Z±

c

(
1 − k

z

)

= iV exp

[
± 1

2π i

∫ ∞

−∞
ln

(
Hz(ξ )

V 2

)
dξ

ξ − k ∓ i0

]

∼ iV, k → ±i∞, (A3)

so that

L±
0 (k) ∼ i

�+
p �−

p

(0 ∓ ik)2m+1, k → ±i∞,

which together with

l+(k) ∼ (�+
p )2(0 − ik)−2m, k → i∞,

l−(k) ∼ (�−
p )2(0 + ik)−2(m+1), k → −i∞,

implies that

L± ∼ R∓1k±1, k → ±i∞, 1 < V < γ ,

where R is given by Eq. (69). Finally, for superkinks (V > γ ),
both characteristic functions have no nonzero real roots, and
thus H±

z ∼ iV as in Eq. (A3) and H±
p ∼ iV in the limit k →

±i∞. Together with (65), this implies L± ∼ 1 as k → ±i∞
in this velocity regime. Combining these results, we obtain
Eq. (67).

Recalling Eq. (58) and Eq. (59), one can also show that
near the real singularities,

1

L+(k)
∼ ω2

−(z2 j ) − (z2 jV )2

2z2 jVi|ω′+(z2 j ) − V |

× L−(z2 j )

0 − i(k − z2 j )
, k → z2 j (A4)
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and

L−(k) ∼ ω2
+(p2 j−1) − (p2 j−1V )2

2p2 j−1Vi|ω′−(p2 j−1) − V |
1

L+(p2 j−1)

1

0 + i(k − p2 j−1)
, k → p2 j−1, (A5)

with similar expressions for the negative real singular points.
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