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A B S T R A C T

Dislocation nucleation in homogeneous crystals begins as a symmetry-breaking elastic instability. In the
absence of explicit nucleation centers, such instability develops simultaneously all over the crystal and due
to the dominance of long range elastic interactions it advances into the nonlinear stage as a collective
phenomenon through pattern formation. In this paper we use a novel mesoscopic tensorial model (MTM) of
crystal plasticity to study the delicate role of crystallographic symmetry in the development of the dislocation
nucleation patterns in defect free crystals. The model is formulated in 2D and we systematically compare the
unfolding of the pattern formation phenomenon in lattices with square and triangular symmetry. To avoid the
dominance of the conventional plastic mechanisms, we consider the loading paths represented by pure shears
applied on the boundary of the otherwise unloaded body. These peculiar loading protocols can be qualified
as exploiting the ‘softest’ and the ‘hardest’ directions and we show that the associated dislocation patterns are
strikingly different.
1. Introduction

Plastic flow in crystals is a result of the motion of crystal de-
fects among which the dominant role is played by lattice disloca-
tions (Movchan et al., 1998; Karlin et al., 2000; Movchan, 1987;
Bullough et al., 1992; Movchan et al., 2003). Understanding the mech-
anism of creation of dislocations is essential for the development of
the fundamental theory of crystal plasticity whose ultimate goal is to
control the mechanical strength of crystalline materials (Geslin et al.,
2017; Mayer, 2021; Lilleodden et al., 2003; Mason et al., 2006).

Homogeneous nucleation of dislocations in crystalline solids attracts
particular attention as the main mechanism for incipient plasticity in
nanomaterials where one usually has to deal with practically defect-free
crystals (Aubry et al., 2011; Asenjo et al., 2006; Zhang et al., 2020;
Skogvoll et al., 2021). Since the action of standard (heterogeneous)
dislocation sources at these scales is suppressed, the knowledge of alter-
native (homogeneous) dislocation nucleation mechanisms is of crucial
importance for the understanding of the mechanical response of such
materials. Sub-micron materials are currently of great interest as they
are known to demonstrate extraordinary mechanical properties due to
the presence of peculiar, micro-scale-specific deformation mechanisms
(Li, 2007; Zhu et al., 2009; Li et al., 2010).

Nucleation of dislocations signals the loss of stability of a perfect lat-
tice subjected to sufficiently large shear stresses (Grimvall et al., 2012).
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The resulting symmetry breaking instability may lead to reconfigura-
tion of only few atomic bonds, as is the case of a nucleation of a single
dislocation, or carry a large-scale restructuring of the atomic lattice, as
during a catastrophic, brittle-like, collective nucleation of a large num-
ber of dislocations which leads to the formation of intricate dislocation
patterns (Salman et al., 2021). Although at macro-scales such massive
nucleation of dislocations can be usually neglected in comparison with
emission of individual dislocations from heterogeneities, it may be also
a dominant factor in bulk materials subjected to high intensity dynamic
loadings (Shehadeh and Zbib, 2016; Bringa et al., 2006).

In this paper we contribute to the study of the emergence of intricate
dislocation patterns which are observed in pure crystals subjected to
monotone loading. Similar dissipative patterns are known to emerge
spontaneously in many other driven systems, however the mechanisms
leading to the instability of the underlying homogeneous states may be
rather diverse (Pismen, 2006; Cross and Greenside, 2009; Bär et al.,
2020; Würthner et al., 2022). In this general perspective the subject of
our study is a peculiar type of dissipative patterns formed by strongly
interacting stress singularities which represent crystal dislocations. Our
study reveals that in pristine crystals the dislocations can indeed appear
cooperatively and further corroborates the idea that their complex self-
patterning is mediated by both, the crystallographic constraints and the
long-range elastic interactions. For other perspectives on the dislocation
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self-patterning, see (Kratochvíl and Sedláček, 2003; Groma and Balogh,
1999; Sandfeld and Zaiser, 2015; Zhou et al., 2015; Chen et al., 2013).

Given that the sizes associated with dislocation cores can be as
small as a few lattice spacings, the continuum theory is hardly appli-
cable for the description of the developed (post-bifurcational) stages of
lattice instability resulting in the formation of dislocations. Therefore
molecular dynamics simulation played an important role in uncov-
ering the fundamental mechanisms of the nucleation of individual
dislocations, however its limited timescale still remains a significant
challenge for studying collective nucleation at experimentally rele-
vant conditions (Bulatov and Cai, 2006). To insure the resolution at
a reasonable computational cost, various accelerated mesoscale ap-
proaches have been proposed including the microscopic phase-field
crystal theory (Salvalaglio et al., 2020; Chan et al., 2010), the multi-
scale quasi-continuum method (Shenoy et al., 1999; Ortiz and Phillips,
1998), the periodized-discrete-elasticity model (Plans et al., 2007), and
the phase-field dislocation dynamics (Javanbakht and Levitas, 2016).
Each of these conceptual and computational approaches was successful
in addressing a particular range of time and length scales.

Major efforts have been focused on finding the dislocation nucle-
ation criterion (Li et al., 2002; Van Vliet et al., 2003; Miller and
Acharya, 2004). In view of the fact that behind dislocation nucleation
is a linear instability of an elastically pre-stressed solid, many attempts
were made to reduce the corresponding continuum-scale criterion to
nanoscale, for instance, by using the continuum loss of strong ellip-
ticity condition with atomic level entries (Garg et al., 2015; Delph
et al., 2009). However, even in the case of apparently homogeneous
dislocation nucleation under micro-indenter, the molecular dynamics
simulations revealed complex mesoscale processes involving a large
number of atoms and producing a strong local distortion of the lattice
which makes a phonon stability analysis hardly applicable (Schall
et al., 2006; Tschopp et al., 2007; Miller and Rodney, 2008; Wagner
et al., 2008). As a result various nonlocal corrections were proposed to
‘delocalize’ the mesoscale atomic acoustic tensor and the results were
extensively compared with molecular dynamics simulations (Garg and
Maloney, 2016). Despite this progress, our ability to predict the instant
and the location of the nucleation of an individual dislocation remains
limited, and the first efforts to understand the corresponding collective
effects have started only recently (Plans et al., 2007; Baggio et al.,
2019; Salman et al., 2021). In general, little remains known about the
collective side of dislocation nucleation including the dependence of
emerging patterns of cells and walls on the crystallographic symmetry
of the lattice.

The goal of this paper , therefore, is to contribute to the under-
standing of the collective nucleation of dislocations in perfect crystals
as a bifurcation phenomenon with the focus on post-bifurcational de-
velopment of patterns and textures. We assume that in the absence
of explicit nucleation centers, the instability develops simultaneously
all over the crystal and that, due to the dominance of long range
elastic interactions, it proceeds into the nonlinear stage as a cooperative
avalanche which involves self-organization of dislocations into energy
minimizing patterns. We design a series of numerical experiments
where we load pristine crystals with different crystallographic sym-
metries beyond the stability limit of the homogeneous state. We then
study the transient unfolding of the dislocation nucleation avalanche.
We show that it leads to the catastrophic stress drop as the optimal
dislocational microstructure settles down. For simplicity we operate
in 2D where we can systematically compare the peculiarities of the
collective nucleation in lattices with square and triangular symmetry.
To avoid immediate activation of the conventional plastic mechanisms,
we consider the loading paths represented by pure shears applied on the
boundary of the otherwise unloaded body. These loading protocols can
be qualified as exploiting the ‘softest’ and the ‘hardest’ directions and
we show that the associated dislocation patterns are strikingly different.

Our main computational tool is the novel mesoscopic tensorial
model (MTM) of crystal plasticity allowing one to capture in a geo-
2

metrically precise way the role of crystallographically-specific lattice
invariant shears while still operating with the macroscopic notions
of stress and strain (Salman and Truskinovsky (2011, 2012), Baggio
et al. (2019), Salman and Baggio (2019), Salman et al. (2021), Baggio
et al. (2021)). The model implies the construction of an energy density
respecting the global symmetry of Bravais lattices described by the
group 𝐺𝐿(𝑛,Z) (Ericksen, 1970, 1983; Folkins, 1991; Parry, 1998; Conti
and Zanzotto, 2004).

The MTM can be viewed as a finite element version of nonlinear
elasticity theory accounting for geometrically nonlinear kinematics.
The size of the elements is viewed as a physical regularizing (cut-
off) parameter bringing an internal scale into the theory. Behind such
coarse-grained approach lies the assumption that the deformation in-
side the mesoscale material elements can be considered as affine and
their response is characterized by an effective energy landscape which
is globally periodic reflecting the presence of an infinite number of
equivalent lattice configurations. From the perspective of such Landau-
type continuum theory, plastically deformed crystal can be seen as
a multi-phase mixture of equivalent ‘‘phases’’. Plastic yield can be
then interpreted as an escape from the reference energy well, and
plastic ‘‘mechanisms’’ can be linked to low-barrier valleys of the energy
landscape. Rate-independent dissipation emerges in such theory due to
the fast (abrupt, at the time scale of the loading) well-switching events
describing elementary plastic slips.

The main advantage of the MTM approach is that it is formulated
in terms of macroscopically measurable quantities (stress and strain)
while being able to distinguish between different crystal symmetries
including the resolution of the symmetry dependent configuration of
the dislocation cores. It can therefore account adequately for both long-
and short-range interactions between dislocations. Most importantly,
it allows for topological transitions associated with dislocation nucle-
ation and annihilation even though the details of the corresponding
‘‘reactions’’ may appear as blurred on the scale of regularization. Last
but not least, in the MTM approach the interaction of dislocations
with various obstacles, including self locking and the formation of
other types of dislocational entanglements, can be handled without
introducing ad-hoc relations.

Using this modeling framework we show that following the loss
of elastic stability plasticity develops in the form of a system size
avalanche. It results in massive nucleation of dislocations which self-
organize into system size patterns. The latter involve the formation
of extended low-energy patches (or grains) undergoing pseudo-rigid
rotations. Individual grains are separated by high-energy dislocation
walls. The observed deformation patterns defy conventional continuum
description with its insistence on rigid plastic mechanisms limited to
crystallographically specific simple shears and its neglect of the effects
of geometrical nonlinearity. A complex picture is observed with various
slip systems activated simultaneously and finite elasticity playing an
important role in the dislocation patterning.

The fact that the MTM energy can be formulated for lattices with
different symmetries and that we can model general loading paths
allows us to explore non-trivial deformation mechanisms peculiar to
lattices with higher and lower symmetries. To highlight these ideas we
focus in what follows on the simplest nontrivial case of 2D lattices with
two types of symmetries, square and triangular. We study systemati-
cally two fundamentally different loading directions which we consider
as providing conceptual bounds for the whole spectrum of available
responses. One of them is directed towards the lowest and another one
to the highest energy barrier away from the original energy well. The
resulting breakdown of the homogeneous state displays complex nucle-
ation pattern with a large number of nucleated dislocations forming a
highly organized crystal texture. The ‘softest’ path highlights the role
of the metastable phases in driving the complexity of the emerging
dislocation arrangement. The ‘hardest’ path shows in some cases the
possibility of collective rearrangements of the lattice taking the form
of inelastic rotations in which dislocations play the role of invisible

intermediaries.
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The paper is organized as follows. We begin by introducing the
𝐺𝐿(2,Z)-invariant energy and then discuss the resulting energy land-
cape (Section 2). In Section 3, we propose an approximate criterion
etecting the instability of the homogeneously loaded lattice which
eveals various features of the instability modes. We then present in
ection 4 the results of the numerical experiments which confirm the
alidity of our instability criterion and discuss the post avalanche
rrangement of the nucleated dislocations. A brief description of the
umerical algorithm is given in Appendix A. The solution of the rele-
ant twinning equations is presented in Appendix B. Our conclusions
re summarized in the final Section 5.

. The model

attice invariant shears. The proposed model, whose simplest nontrivial
daptation is for 2D Bravais lattices, allows one to include plastic
eformation in a continuum elastic framework, while simultaneously
ccounting of the discrete nature of the underlying lattice structure.
his is achieved with the construction of an energy density whose mate-
ial symmetry properties are described by the global symmetry group of
he lattice 𝐺𝐿(2,Z). The latter is broader than the crystallographic point
roup (Truesdell and Noll, 2004) and includes the lattice invariant
hears accounting for plastic slips (Ericksen, 1977, 1979, 1980, 1987,
991, 2005).

The energy density in the MTM model should be invariant under the
ction of the group which is comprised of unimodular integer valued
atrices 𝐦. Indeed, two bases 𝐞𝐼 and �̄�𝐼 describe the same lattice if and

only if Pitteri and Zanzotto (2002): 𝐞𝐽 = 𝑚𝐼𝐽 �̄�𝐼 with 𝑚𝐼𝐽 ∈ Z. More
ormally, we can say that all 2D simple lattices are invariant under the
ction of a group 𝐺𝐿(2,Z) =

{

𝐦, 𝑚𝐼𝐽 ∈ Z, det(𝐦) = ±1
}

. We remark
hat the group 𝐺𝐿(2,Z) accounts for the lattice invariance in shear,
ut also of invariance under rotations and reflections and in this sense
t can be viewed as the finite strain extension of the crystallographic
oint group (Pitteri, 1984). The resulting multiplicity of the energy
ells implies that such equivalent configurations can be interpreted as
ifferent ‘‘phases’’ describing the same crystal. In such a description,
islocations will appear as incompatible parts of ‘phase boundaries’.

In the following we take for granted that the lattice energy density
(

�̄�𝑖
)

, where �̄�𝑖 = 𝐅𝐞0𝑖 is the deformed basis while 𝐞0𝑖 is the reference
asis, can be identified with a continuum strain–energy density such
hat 𝜙(𝐅) ∶= 𝜑(𝐅𝐞0), with 𝐅 = ∇𝐮 being the deformation gradient. In
iew of frame indifference requirement, the strain–energy density 𝜙
ust be a function of the lattice metric tensor 𝐂 = 𝐅𝑇𝐅 (Finel et al.,
010; Salman et al., 2019). The configuration space is then described
y the three significant components of the metric tensor: 𝐶11, 𝐶22 and
12. Every point of the surface det 𝐂 = 𝐶22𝐶11 − 𝐶2

12 = 1 corresponds to
a one-parametric family of rigidly rotated lattice configurations.

Minimum periodicity domain. The global invariance of the energy sug-
gests that we can construct the image of 𝐂 in its minimum periodicity
domain 𝐷 = {𝐂 ∈ det 𝐂 = 1, 0 < 𝐶11 ≤ 𝐶22, 0 ≤ 𝐶12 ≤ 𝐶11∕2}.
The metric tensors belonging to it are associated with lattices bases
characterized by the ‘‘minimal’’ vectors �̃�1, �̃�2. The latter are selected in
such a way that: �̃�1 is the shortest lattice vector and �̃�2 is the shortest
lattice vector not collinear with �̃�1. The direction of these vectors is
chosen in such a way that the angle between the two is acute. This
type of basis is said to have reduced form of Lagrange (Engel, 2012).

To visualize the tessellation of the configurational space into equiv-
alent periodicity domains, we will use in what follows the stereographic
projection of the infinite surface det 𝐂 = 1 on a disk with unit ra-
dius (Poincaré disk). The mapping, which associates the configuration
(𝐶11, 𝐶22, 𝐶12), with the point (𝑥, 𝑦) on the unit disk where det 𝐂 = 1, is
given by the formulas

𝑥 =
(𝐶12𝐶22

)2 + (
√

det 𝐂
𝐶22

)2 − 1

(𝐶12 )2 + ((
√

det 𝐂 ) + 1)2
, 𝑦 =

2(𝐶12𝐶22
)

(𝐶12 )2 + ((
√

det 𝐂 ) + 1)2
. (1)
3

𝐶22 𝐶22 𝐶22 𝐶22
t

In Fig. 1 we show the location of the minimal periodicity domain 𝐷
n the hyperbolic surface det 𝐂 = 1 in the space of metric tensors
nd on its projection on the Poincaré disk. We highlight there the
onfigurations 𝐒 and 𝐓 which are the unique representatives of the
nfinite equivalence classes of unloaded square and triangular lattices,
elonging to 𝐷. The small black squares in Fig. 1 corresponding to
ther (not belonging to 𝐷) variants of the square lattice; the equivalent
ariants of triangular lattices with hexagonal symmetry are represented
y small red triangles. The rectangular and the rhombic lattices with
ne parametric degeneracy are located in Fig. 1 along the continuous
nd dashed gray lines; the generic obliques lattices with two parametric
egeneracy are located in the open regions.

agrange reduction. For the ‘equivalent’ of 𝐂 inside the minimal peri-
dicity domain we use the notation 𝐂𝟎. The metric tensor 𝐂𝟎 is defined
y the mapping 𝐂0 = 𝐦𝑇𝐂𝐦 and the task of finding the corresponding
nimodular matrix 𝐦 is known as the Lagrange reduction (Engel,
012). It is a recursive procedure which can be formulated in the form
f an algorithm: (i) initiate 𝐦 = I; (ii) define the following three

atrices : 𝐦1 =
(

1 0
0 −1

)

, 𝐦2 =
(

0 1
1 0

)

, 𝐦3 =
(

1 −1
0 1

)

; (iii)

initiate recursive algorithm : if 𝐶12 < 0, change sign to 𝐶12, 𝐦 →m𝐦1;
if 𝐶22 < 𝐶11, swap these two components, 𝐦 →m𝐦2; if 2𝐶12 > 𝐶11,
set 𝐶12 = 𝐶12 − 𝐶11, and 𝐶22 = 𝐶22 + 𝐶11 − 2𝐶12, 𝐦 →m𝐦3. Note
hat the action of the matrix 𝐦1 is related to the sign of the angle
etween two lattice vectors 𝐞𝑖 and returns an acute angle, whereas the
ction of the matrix 𝐦2 is to swap two lattice vectors 𝐞𝑖. Therefore, both
hese two operations do not result in any change in vectors’ length and
ffectively maintain the metric in the same elastic well composed of
he four copies of the fundamental domain 𝐷. Therefore, the associated
ransformations are not associated with a plastic strain. On the other
and, the length of the lattice vectors is changed (shortened) under
he action of the matrix 𝐦3, whose presence indicates that the current
etric belongs to a different elastic well and accumulates plastic strain.

nergy density. Given that the energy density is defined fully as long as
t is defined in the minimum periodicity domain we will use for such

single period description a special notation 𝜙𝐷(𝐂0) so that 𝜙(𝐂) =
(𝐦𝑇𝐂𝐦) = 𝜙𝐷(𝐂0). By defining 𝜙𝐷 as a function of scaled variables
̃ = 𝐂∕(det1∕2 𝐂) we decouple the isochoric contribution to the energy
rom the volumetric one that can be added separately. We will require
or 𝜙𝐷 2 smoothness, which ensures the continuity of the elastic
oduli. Moreover, 𝜙𝐷 must have a minimum which corresponds to the

hosen crystal symmetry. For instance, when modeling a square lattice,
𝐷 will be constructed in such a way that such minimum describes the
quare symmetry lattice (that is point 𝐶11 = 𝐶22 = 1, 𝐶12 = 0).

A 6-th order polynomial energy 𝜙𝐷 with the required properties was
onstructed in Conti and Zanzotto (2004). The corresponding energy
ensity is written in terms of the three invariants: 𝐼1 =

1
3 (𝐶11+𝐶22−𝐶12),

𝐼2 =
1
4 (𝐶11−𝐶22)2+

1
12 (𝐶11+𝐶22−4𝐶12)2 and 𝐼3 = (𝐶11−𝐶22)2(𝐶11+𝐶22−

𝐶12)−
1
9 (𝐶11+𝐶22−4𝐶12)3 and takes the form �̃�𝐷(�̃�) = 𝛽1𝜓1(�̃�)+𝜓3(�̃�)

here 𝜓1 = 𝐼14 𝐼2 −
41 𝐼23

99 + 7 𝐼1 𝐼2 𝐼3
66 + 𝐼3𝑠𝑜𝑓2

1056 and 𝜓2 = 4 𝐼23

11 + 𝐼13 𝐼3 −
8 𝐼1 𝐼2 𝐼3

11 + 17 𝐼32

528 . The choices of parameter 𝛽1 = −0.25 (𝛽1 = 4) ensure that
the global minimum of the energy has, accordingly, square (triangular)
symmetry. To account for a volume change, we can add a volumetric
term to �̃�𝐷(�̃�). For instance, to exclude configurations with infinite
ompression one can use an expression ℎ(det 𝐂) = −𝐾(ln det 𝐂 − det 𝐂),
nd assume that 𝜙𝐷(𝐂) = �̃�𝐷(�̃�)+ℎ(det 𝐂). Here, the coefficient 𝐾 plays
he role of a bulk modulus. The energy density 𝜙𝐷(𝐂) is used in all
umerical experiments reported in this paper.

nternal length scale. Since the energy 𝜙 is non convex, the corre-
ponding continuum elasticity problem, which is by definition scale
ree, is highly degenerate. The minimization in this setting can pro-
uce infinitely fine microstructures reducing the rigidity in the relaxed
roblem to zero (Fonseca, 1987). The lack of convexity is a property
hat the MTM of crystal plasticity shares with other similar Landau



European Journal of Mechanics / A Solids 99 (2023) 104897R. Baggio et al.
Fig. 1. (a) A portion of the hyperbolic surface det 𝐂 = 1, points and lines corresponds to the different Bravais lattices. The respective basis vectors 𝐞𝑖 are shown on insets. (b) A
stereographic projection of the surface det 𝐂 = 1 on the Poincare disk. 𝐷 is the minimal periodicity domain.
type theories. However, in contrast to the conventional Ginzburg–
Landau approaches, relying for regularization on higher gradients of
the order parameters, in MTM the regularization is achieved by spatial
discretization, which reduces the space of admissible deformations to
a finite dimensional set of compatible, piece-wise affine mappings. In
other words, deformation is assumed to be piecewise linear and the
elastic response is attributed to discrete material elements whose scale
ℎ controls the resolution of the model. In MTM, it is viewed as a
physical parameter (Salman and Truskinovsky, 2011; Baggio et al.,
2019).

More specifically, the original lattice is coarse-grained with an
introduction of a uniform mesoscale grid having the symmetry of the
crystal. The scale of the elements of the grid is selected to make sure
that the Cauchy–Born type energy (Ericksen, 2005, 2008), computed by
ab initio methods, is (almost) periodic in the interesting range of strains.
In many crystals the periodicity at the level of the few first energy wells
can be captured already for ℎ ∼ 10𝑎 where 𝑎 is the atomic scale.

Note that in, in the resulting coarse grained description, some
microscopic features like, for instance, dislocation cores will emerge as
blurred because the scales smaller than ℎ are effectively homogenized
out. While some aspects of a truly atomistic description will be then
necessarily lost, for instance, the implied cut-offs may compromise the
short-range interaction of dislocation cores during dislocation reac-
tions, the crucial mesoscopic interactions at distances of the order and
larger than ℎ are expected to be captured correctly. If we normalize the
linear size of the macroscopic sample by setting 𝐿 = 1, we acquire a
small dimensionless parameter ℎ∕𝐿 = 1∕𝑁 , where 𝑁2 is the number
of the nodes in the mesoscopic finite-element grid. For instance, if ℎ
is in nm size range, the simulations with 𝑁 ∼ 103 would describe a
micrometer size samples.

Computational approach. Solution of a continuum elastic problem im-
plies local minimization of the energy 𝑊 = ∫𝛺 𝜙(∇y)𝑑x which is
defined on a reference domain 𝛺. We assume that the system is loaded
by an affine displacement field prescribed on 𝜕𝛺 (hard device). The
conditions of mechanical equilibrium read ∇ ⋅ 𝐏 = 0, where 𝐏 =
𝜕𝜙∕𝜕𝐅 is the Piola–Kirchhoff stress tensor. Using the Eulerian 𝑖, 𝑗 = 1, 2
and the Lagrangian 𝐾,𝐿 = 1, 2 indexes and assuming summation on
repeated indexes, we can rewrite the equilibrium equations in the form
𝐴𝑖𝐾𝑗𝐿𝑦𝑗,𝐾𝐿 = 0, where 𝐴𝑖𝐾𝑗𝐿 is the tensor of the tangential elastic
moduli: 𝐴𝑖𝐾𝑗𝐿 = 𝜕2𝜙0(𝐂0)

𝜕𝐹𝑖𝐾 𝜕𝐹𝑗𝐿
. Here 𝐂0 = m𝑇Cm, where the integer-valued

matrix m is computed for each value of C using the Lagrange reduction
algorithm.
4

The meso-scopic finite element grid is formed by a network of
nodes, labeled by integer valued coordinates 𝑎 = 1,… , 𝑁2. We assume
that each element of the network is a deformable triangle and write the
displacement field in the form 𝐮(𝐱) = 𝐮𝑎 𝑎(𝐱), where  𝑎(𝐱) are the
compactly supported shape functions, 𝐮𝑎 are the amplitudes of nodal
displacements and summation over repeated indexes extends over el-
ements containing or bounding point 𝐱. The mesoscopic deformation
gradient is then 𝐅(𝐱) = I+∇𝐮(𝐱), and the equilibrium equations can be
written in the form 𝜕𝑊 ∕𝜕𝐮𝑎 = ∫𝛺 𝐏(𝐅)∇ 𝑎(𝐱)𝑑𝐱 = 0. The prescribed
hard device loading is set through the displacement 𝐮(𝛼) = (�̃�(𝛼)−I)𝐱 for
all nodes 𝑎 on the boundary of the body 𝜕𝛺, where �̃�(𝛼) is the applied
deformation gradient with amplitude 𝛼. We also performed simulations
with periodic boundary conditions 𝐮𝐵 − 𝐮𝐴 = (�̃�(𝛼) − I)(𝐱𝐵 − 𝐱𝐴), where
𝐴 and 𝐵 are two points periodically located on the boundary of the
body 𝜕𝛺. The equilibrium problem can be solved by quasi-Newton
method followed by the so called NR ‘refinement’ when the initial guess
is too far from the solution for Newton–Raphson method to converge
initially (Salman et al., 2021).

More specifically, to find 𝐮𝑎 we first use the L-BFGS algorithm
(Bochkanov and Bystritsky, 2013) which builds a positive definite
linear approximation allowing one to make a quasi-Newton step low-
ering 𝑊 . Such iterations continue till the increment of total energy 𝑊
becomes sufficiently small. The obtained approximate solution is then
used as an initial guess 𝐰𝑎 to solve, using LU factorization (Sanderson
and Curtin, 2016), the equations for the correction d𝐰𝑎 which read
𝐾𝑎𝑏
𝑖𝑗 𝑑𝑤

𝑏
𝑗 + 𝑅

𝑎
𝑖 = 0, where 𝐾𝑎𝑏

𝑖𝑗 = 𝐴𝑖𝐾𝑗𝐿(𝐅)
𝜕 𝑎

𝜕𝑥𝐾
𝜕 𝑏

𝜕𝑥𝐿
and 𝑅𝑎𝑖 = 𝑃𝑖𝐾 (𝐅)

𝜕 𝑎

𝜕𝑥𝐾
.

The displacement field can be updated in this way till the value of the
forces acting on the nodal points are sufficiently small and then the
loading parameter can be advanced again, see Appendix A for more
details.

3. Loading paths

In Figs. 2 and 3, we illustrate the energy landscapes in the cases
when either square or a triangular lattice is chosen as the ground
state. While some details are specific for the polynomial form of the
energy density chosen in this work (say, the size of energy barriers)
these landscapes are generic and directly related to the symmetry
requirements imposed on the energy. To illustrate the periodic nature of
such energy we show in the insets its evolution along selected shearing
deformation paths.
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Fig. 2. (a) Poincaré disk showing the energy landscape for the case 𝛽 = −1∕4. Minima of the energy are located on square lattice configurations. Loading paths corresponding
to simple shears are illustrated in white (dashed for 𝐅(𝛼, 0) and dash-dotted for 𝐅(𝛼, 𝜋∕2). Gray lines are the rhombic pure shear 𝐅♢ (solid) and the rectangular 𝐅 (dashed). (b)
Energy landscape along the loading paths 𝐅(𝛼, 0) and 𝐅(𝛼, 𝜋∕2), the equivalent configurations of the square lattice are illustrated on the insets below the corresponding energy
wells. Energy landscape along the rectangular and the rhombic pure shear paths 𝐅 and 𝐅⋄ are also shown for comparison.
Fig. 3. (a) Poincaré disk showing the energy landscape for the case 𝛽 = 4. Minima of the energy are located on triangular lattice configurations and simple shears form circular
trajectories (shown in white). The loading paths 𝐅♢ and �̄�◊ are illustrated in gray (with a continuous and a dashed line respectively). (b) Energy landscape along shearing
deformation paths �̄�(𝛼, 0), �̄�(𝛼, 𝜋∕3) and �̄�(𝛼, 2𝜋∕3), the shear-invariant triangular configurations are illustrated below the corresponding energy wells. The non-symmetric energy
landscapes along the two pure shear paths are shown as well for comparison.
Square lattice. Consider first the case of a lattice with square symmetry.
Slip systems correspond in this case to the simple shear trajectories
described by deformation gradients of the type

𝐅(𝛼, 𝜃) = 𝐈 + 𝛼𝐑(𝜃)𝐞01 ⊗ 𝐑(𝜃)𝐞02, (2)

where 𝐞0𝑖 are the vectors of the reference orthonormal basis, 𝐑(𝜃) is an
orthogonal matrix representing a clockwise rotation at the angle 𝜃 with
respect to 𝐞01 and 𝛼 is the shear amplitude parameter. The associated
strain tensors 𝐂 follow circular trajectories on the Poincaré disk. In
Fig. 2 the white continuous and dotted circles correspond respectively
to shears 𝐅(𝛼, 𝜃 = 0) and 𝐅(𝛼, 𝜃 = 𝜋∕2), which are oriented along close
packed directions. In Fig. 2(b), we illustrate the energy landscape along
such simple shear trajectories with the corresponding deformed lattice
configurations shown underneath.
5

While both ‘soft’ and ‘hard’ simple shear loading paths were consid-
ered in detail in Salman et al. (2021), in this paper we focus on the pure
shear paths, that is, on volume preserving deformations that shrink the
elementary cell of the crystal along one axis while elongating it along
another one oriented in the perpendicular direction.

We consider two pure shear loading paths for which the corre-
sponding metric tensors 𝐂 are non-generic as they are located on the
boundaries of the fundamental domain 𝐃. In the purely elastic regime
such loading protocols transform the original square configurations into
either rectangular or rhombic loaded configurations without changing
their specific volumes; in what follows we use the notation 𝐅♢ for the
rhombic pure shear and 𝐅 for the rectangular pure shear.

Along the rhombic path the direction −(
√

2∕2)𝐞01 + (
√

2∕2)𝐞02 is
shortened while the direction (

√

2∕2)𝐞0 + (
√

2∕2)𝐞0 is elongated with
1 2
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Fig. 4. (a) Loading paths 𝐅0 (dashed white), 𝐅 (dashed gray) and 𝐅♢ (gray). The latter two correspond to the boundary of the periodicity domain 𝐷 and describe the deformations
of the square lattice towards rectangular and rhombic configurations, respectively. (b) Energy landscape along the illustrated paths. The low energy path 𝐅♢ spans the bottom of
the energy barrier and crosses the high symmetry point 𝐓.
the volume of the element remaining constant. The corresponding
deformation gradient, chosen in such a way that the lower side of the
element is aligned with the horizontal direction during the deformation
process, can be written as 𝐅♢ = 𝐑♢𝐔♢, where

𝐅♢ = 1
√

cosh 𝛼

[

cosh 𝛼 sinh 𝛼
0 1

]

, 𝐑♢ = 1
√

cosh 𝛼

[

cosh(𝛼∕2) sinh(𝛼∕2)
− sinh(𝛼∕2) cosh(𝛼∕2)

]

,

(3)

and 𝛼 = 2 ln 𝜆. Here we also introduced

𝐔♢ = 𝜳𝜦1∕2𝜳 𝑇 =
⎡

⎢

⎢

⎣

√

2
2

√

2
2

−
√

2
2

√

2
2

⎤

⎥

⎥

⎦

[

1
𝜆 0
0 𝜆

]

⎡

⎢

⎢

⎣

√

2
2 −

√

2
2

√

2
2

√

2
2

⎤

⎥

⎥

⎦

(4)

the stretch tensor, 𝜳 is the orthogonal matrix whose columns are the
principal directions and 𝜦 is the diagonal matrix with the principal
stretches squared 𝜆𝑖 as eigenvalues (Thiel et al., 2019).

Along the rectangular path 𝐅 the principal directions are the refer-
ence vectors 𝐞01 and 𝐞02, therefore:

𝐅 = 𝐔 =

[

1
𝜆 0
0 𝜆

]

=

[

cosh( 𝛼2 ) − sinh( 𝛼2 ) 0
0 cosh( 𝛼2 ) + sinh( 𝛼2 )

]

. (5)

The individual elements are then elongated along the vertical direction
𝐞02 and shortened along the horizontal direction 𝐞01.

In Fig. 4(a), we show the rhombic and the rectangular pure shear
loading paths superimposed on the energy surface of a square crystal.
One can see that the rhombic path is located inside the energy valley
and can be then considered as ‘soft’. Instead, the rectangular path goes
against a steep energy hill and is therefore ‘hard’. The corresponding
one-dimensional energy landscapes are illustrated in Fig. 2(b).

Triangular lattice. We now consider as the reference state, where the
loading path begins, the triangular lattice 𝐓. Its generating basis is
given by the two vectors 𝐞▵1 = 𝛾 {1, 0}𝑇 and 𝐞▵2 = 𝛾

{

1∕2,
√

3∕2
}𝑇

, with
𝛾 = 4

√

4∕3. The simple shear paths are now characterized by the families
of deformation gradients

�̄�(𝛼, 𝜃) = 𝐅(𝛼, 𝜃)𝐇, (6)

where 𝐇 is the matrix whose columns are the basis vectors 𝐞▵𝑖 , 𝐅(𝛼, 𝜃) is
defined in Eq. (2) for simple shears (we recover closed-pack directions
for 𝜃 = 0, 𝜋∕3, 2𝜋∕3). Note that with this parametrization, the values
of 𝛼 for which the lattice invariant shears for triangular symmetry are
recovered are not an integers, but instead 𝛼 = 𝑛𝛾2 where 𝑛 is integer.
The energy profile along these paths �̄�(𝛼, 𝜃) is shown in Fig. 3(b),
see Salman et al. (2021) for more details.

Here we focus instead on pure shear loading paths originating in
triangular reference state 𝐓 and corresponding to the boundaries of the

̄

6

minimal periodicity domain 𝐃. Along one of these paths, 𝐅♢, we obtain
lattices with rhombic symmetry where both diagonals of the rhombus
are longer than the side; the other path, �̄�◊, corresponds to the case
of rhombi with one of the diagonals smaller than the side (Conti and
Zanzotto, 2004). We remark that the path �̄�♢ originating in 𝐓 describes
the same deformation as the path 𝐅♢ originating in 𝐒. In the case
of triangular lattice, the principal directions are rotated by 𝜋∕6 with
respect to the reference axes of the square lattice, therefore, in analogy
with (4) one can write

�̄�♢ = �̄�𝜦1∕2�̄� 𝑇 =
⎡

⎢

⎢

⎣

cosh( 𝛼2 ) −
1
2 sinh(

𝛼
2 ) −

√

3
2 sinh( 𝛼2 )

−
√

3
2 sinh( 𝛼2 ) cosh( 𝛼2 ) +

1
2 sinh(

𝛼
2 )

⎤

⎥

⎥

⎦

.

Among all such deformations the one which preserves the angle be-
tween 𝐞▵1 and the horizontal direction is �̄�♢ = 𝐑(𝜒)�̄�♢, with: 𝜒 =
Atan(

√

3∕2∗(tanh(𝛼∕2)∕(1 − 0.5tanh(𝛼∕2)) This deformation is then ap-
plied to the triangular basis 𝐞▵𝑖 . Note that along the loading path 𝐅♢,
the crystal is driven through a very shallow energy valley extending
from the (triangular) energy minimum 𝐓 towards the mountain pass
represented by the (square) saddle 𝐒 and then further to another energy
(square) minimum at 𝛼 = 2 arcsinh(𝛾2∕2) (see Fig. 5). We remark that,
along the ‘soft’ pure shear path �̄�♢, the energy barrier, which has its
maximum at 𝐒 (with 𝛼 = arccosh(𝛾2)), is lower than the one along
the simple shear path 𝐅𝜋∕3, the one which is habitually selected as the
natural ‘plastic mechanism’.

The second rhombic loading path �̄�◊ is obtained by applying the
pure shear deformation 𝐅 to the lattice defined by the basis vectors 𝐞▵𝑖 .
Along the path �̄�◊ which is much ‘harder’ than the path 𝐅♢, the energy
grows very rapidly, without ever passing through any other minimum,
see Fig. 5.

Stability limits. With each loading path we can associate an effective
stability (yield) limit obtained under the assumption that the state is
homogeneous and the discretization length scale is vanishingly small. In
other words, we imply here a continuum description of an instability of
a perfect crystal deformed in a hard device with the affine deformation
�̃�(𝛼) applied on the boundary. We then search for the critical value of
the loading parameter 𝛼𝑐 at which the homogeneous state ceases to be
stable.

To identify the bifurcation point we need to solve an incremental
problem defined by the tangential elastic moduli 𝑖𝐾𝑗𝐿 = 𝜕2𝜙

𝜕𝐹𝑖𝐾 𝜕𝐹𝑗𝐿
. It

is known that the homogeneous configuration remains incrementally
stable in the above sense as long as the Legendre-Hadamard (strong
ellipticity condition) 𝑄𝑖𝑗 (𝐍)𝑙𝑖𝑙𝑗 > 0 holds (Ogden, 1997), where we
introduced the acoustic tensor 𝑄𝑖𝑗 (𝐍) = 𝑖𝐾𝑗𝐿𝑁𝐾𝑁𝐿 and 𝐍 and 𝐥 are
vectors, in the reference and deformed configurations, respectively.
The critical value of the loading parameter can be found from the
condition det𝑄(𝐍) = 0, e.g. Borja (2001). In what follows we use
an Eulerian version of this bifurcation condition det 𝐪(𝐧) = 0, where

−𝑇
𝑞𝑖𝑘 = 𝐚𝑖𝑗𝑘𝑙𝑛𝑗𝑛𝑙, 𝐚𝑖𝑗𝑘𝑙 = 𝑖𝐾𝑗𝐿𝐹𝑘𝐾𝐹𝑙𝐿 and 𝐧 = 𝐅 𝐍. The Eulerian
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Fig. 5. (a) Loading path �̄�𝜋∕3 (dashed white), �̄�◊ (dashed gray) and �̄�♢ (gray). The latter two correspond to the boundary of 𝐷 and describe the deformation of the triangular
lattice towards different rhombic configurations. (b) Energy landscape along the illustrated paths. The low energy path �̄�♢ spans the bottom of the energy barrier and crosses the
high symmetry point 𝐒.
Fig. 6. (a) Stability (yielding) limits for the square crystal (in black). The two loading
paths corresponding to simple shear 𝐅0 (dashed white) and rhombic pure shear 𝐅♢

(gray) cross the stability region in similar configurations. (b) Stability region for the
triangular symmetry crystal (black). Here the difference of strain configurations at the
limit of stability is larger if we compare the loading paths corresponding to simple
shear (dashed white) and pure shear (gray).

vectors 𝐧 and 𝐥 characterize the incipient unstability mode (Rice, 1976).
For instance, if 𝐧 is approximately perpendicular to 𝐥, in the post-
bifurcational regime one can expect the formation of (lattice size) shear
bands along the plane with normal 𝐧 and with slip direction 𝐥 (Van Vliet
et al., 2003). Further development may lead to the nucleation inside the
individual bands of incipient dislocation pairs (slip embryos in 2D or
dislocation loops in 3D) whose Burgers vector is aligned with 𝐥 or to
the collective process resulting in activation of a micro-twin laminate
with the twinning plane oriented along 𝐧.

Using the proposed approximate (continuum) stability condition we
can delineate in the configurational space of metric tensors 𝐂 a region
around the reference state where the continuous homogeneous system
can be stable and interpret it as an effective ‘yield surface’. To this end
we need to consider a sufficiently broad family of loading paths, for
instance, the family of simple shear trajectories with the full range of
values of the shearing angles 𝜃, plus the two limiting loading paths
along the boundary of the periodicity domain 𝐃 representing pure
shears (the paths 𝐅 and 𝐅♢ for the square lattice, and �̄�♢ and �̄�◊ for
he triangular lattice). Along each of these paths we computed the first
alue of the loading parameter 𝛼 = 𝛼𝑐 where the Legendre-Hadamard
ondition is violated for some non-trivial 𝐧. This produced an effective
yield surface’ which we indicated by black lines in our Figs. 6(a) and
(b) for square and triangular lattices, respectively.

We now illustrate the nature of the instability modes along the
pecial pure shear paths. If the potentially unstable orientation 𝐧 is
arametrized by the angle 𝜉 as 𝐧 = {cos 𝜉, sin 𝜉} it is of interest to
tudy the 𝜉 dependence of the parameter det 𝐪(𝐧) at different values
f 𝛼 and in our Figs. 7 and 8, we show such graphs for 𝛼 = 0 and
= 𝛼𝑐 for all four pure shear loading paths discussed above. In the

nset located to the right of each of these plots we represented the
irections 𝐧⟂ indicating the orientation of the unstable (slip) plane
is a vis the basis vectors of the deformed crystal at the onset of
nstability (along with the values of 𝜉). We note that for the rectangular
7

path 𝐅 for the square and �̄�◊ for the triangular lattices the unstable
mode is perfectly aligned with the horizontal plane (𝐧⟂ is aligned with
the vertical directions). The polarization vectors 𝐥 were found to be
approximately perpendicular to 𝐧 for all of the investigated loading
directions.

We recall that the simple shear type loading paths were discussed
in detail in Salman et al. (2021) where we showed that for square
lattices the instability along the (‘soft’) simple shear direction 𝐹𝜃=0,𝛼
produces two almost simultaneous instability modes with the resulting
activation of two crystallographic slip systems. We have seen that such
modes are also simultaneous in the case of square lattices subjected to
the (‘soft’) pure shear loading 𝐅♢. Moreover, the analysis of the (‘soft’)
path �̄�♢ for triangular lattices shows the analogous effect (which is not
apparent along the simple shears). Along the generic (‘hard’) shearing
directions (implying both pure and simple shears), there is only one
unstable mode 𝐧 which reflects the activation of a single slip system.

4. Numerical experiments

Dislocation cores. To interpret the obtained data in experiments involv-
ing large number of dislocations, it is important to be able to identify
and resolve the structure of individual dislocation cores. That is why
we begin with consideration of an isolated dislocation trapped by the
discreteness of the lattice in the center of a sufficiently large unloaded
crystal.

As we have already mentioned, dislocations can appear in MTM
when different variants of the same lattice (different phases) are present
simultaneously. Consider, for instance, the coexistence in the square
lattice of the reference phase 𝐒 = 𝐅(𝜃 = 0, 𝛼 = 0) and the phase
𝐒10 = 𝐅(𝜃 = 0, 𝛼 = 1) which is different from the reference phase by
an elementary lattice invariant shear. A single dislocation is obtained
in the configuration where a semi-infinite single layer of elements in
phase 𝐒10 is embedded in an infinite lattice of elements in phase 𝐒, see
Fig. 9(a). Far away from the terminal point of the sheared (slipped)
layer of elements, which represents the dislocation core, the lattices are
perfectly compatible because all such elements lie in the bottoms of the
corresponding energy wells. Elements in the core region lie outside the
energy wells and have therefore nonzero elastic energy.

To obtain in a numerical experiment an isolated dislocation we
used a square domain (with 200 × 200 finite element nodes) and
applied on its boundary the displacement field reproducing antici-
pated far field continuum asymptotics (Volterra dislocation, Jaswon
and El-Damanawi (1991)), 𝑢𝑥 = 𝑏

2𝜋

[

arctan 𝑦
𝑥 + 𝑥𝑦

2(1−𝜈)(𝑥2+𝑦2)

]

and 𝑢𝑦 =
𝑏
2𝜋

[

1−2𝜈
4(1−𝜈) ln(𝑥

2 + 𝑦2) + 𝑥2−𝑦2

4(1−𝜈)(𝑥2+𝑦2)

]

. The configuration of the nodes was

then allowed to relax till the local minimum of the energy was reached.
As a result of such relaxation an isolated dislocation core was formed
in the middle of the domain whose different representations (energy,
stress, deformation) are shown in Fig. 9(a) for the case of square lattice

and in Fig. 9(b) for the case of triangular lattice. In Figs. 9 (a–4,b–4)
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Fig. 7. The function det (𝐅(𝛼),𝐧(𝜉)) is illustrated for 𝛼 = 0.001 and 𝛼 = 𝛼𝑐 for the two deformation paths considered in the case of the square crystal, that is 𝐅♢ (a) and 𝐅 (b).
Fig. 8. The function det (𝐅(𝛼),𝐧(𝜉)) is illustrated for 𝛼 = 0.001 and 𝛼 = 𝛼𝑐 for two deformation paths considered in the case of the triangular crystal, that is �̄�♢ (a) and �̄�◊ (b).
ig. 9. (a) Dislocation structure in the case of square lattice: (1) energy near the core, (2) Cauchy stress 𝜎𝑥𝑦, (3) a detail of the elements triangulation, (4) elements strain
rojection on 𝐂 space, color bar shows the energy level both in (a) and (b). (b) Dislocation structure for the triangular symmetry crystal. Pictures are analogous to (a).
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e show the corresponding core structures in the configurational space
f metric tensor.

From the deformed configuration of the elastic elements shown in
ig. 9(a–3), one can see the sheared layer to the left of the (square)
islocation core representing the (square) energy well 𝐒10 while the ele-
ents in the same layer but located on the right side of the dislocation

ore are in reference (square) well 𝐒. Similarly, we see in Fig. 9(b–
) that the (triangular) dislocation core can be viewed as a domain
oundary separating the coexisting elements of the two neighboring
triangular) energy wells 𝐓1

0 and 𝐓. The presence of these energy wells
ecomes even more clear looking at the values of the components of
he metric tensors 𝐶11, 𝐶12, 𝐶22 at the elastic elements which allows
ne to represent the structure of a core as a (in reality, somewhat
lurred) trajectory in the configuration space, see our Fig. 9(a–4) and
8

s

ig. 9(b–4). While the initial and the final points in such trajectories
re located at the bottoms of the corresponding energy wells, the
rajectories themselves represent a mountain pass type connections
etween the wells. In the case of square crystals such trajectory ensures
hat the maximal elevation is minimal but apparently, this is not the
ase for triangular crystals. This suggests that even as for both square
nd triangular lattices the transition takes place close to the bottoms
f the energy valleys, the fine structure of the barriers is manifestly
ymmetry dependent.

Thus, in the case of the square lattice, the trajectory describing
dislocation core appear to be composed of two separate segments

shown in gray in Fig. 9(a–4) representing pure shears of the type
♢ studied in the previous section. Each of them connects the corre-
ponding square wells (the reference well 𝐒 and the equivalent well
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𝐒10 = 𝐅0(𝛼 = 1) reachable by an elementary lattice invariant shear) with
he shallow local minimum (almost a monkey saddle for our choice
f the potential, see Baggio et al. (2019)) describing the triangular
hexagonal) lattice 𝐓. Here the configuration 𝐓, whose presence in the
ore structure is also suggested by the configuration of the elements
hown in Fig. 9 (1c), plays here the role of a stacking fault while
he pure shears can be interpreted as the analogs of Shockley partials,
ee for instance (Kamimura et al., 2018; Bulatov and Kaxiras, 1997;
ohammed et al., 2022). Note that the naively favored simple shear

rajectory 𝐅0 (shown in white in Fig. 9 (1-d)) delivers, as we have seen
efore, a slightly higher barrier and is therefore avoided by the solution
f the energy minimization problem.

The structure of the dislocation core in triangular lattices is dif-
erent. Thus, the corresponding mountain pass type trajectory in the
onfigurational space (shown in white in Fig. 9(b–4)) follows the
imple shear path �̄�0. An alternative trajectory consisting of two pure
hear segments and passing through the square energy configuration 𝐒
shown in gray in Fig. 9(b–4)) is not chosen by the system despite being
haracterized by a lower energy barrier (see Fig. 5).

ollective nucleation of dislocations. Now, instead of the specially de-
igned non-affine boundary conditions ensuring the emergence of a
ingle dislocation, we consider generic affine loading paths and study
he symmetry breaking decomposition of a homogeneous state. More
pecifically, we assume that the system is driven quasi-statically and
herefore evolves through a sequence of equilibrium configurations.
n the absence of pre-existing defects (pristine crystal), such evolution
s elastic till the corresponding elastic branch of equilibria ceases to
xist. At the point of instability the dissipative branch-switching event,
ccompanied by a macroscopic stress drop takes place. The instability
akes the form of a system size avalanche leading to collective nu-
leation of a large number of dislocation and a global slip-induced
eorganization of the crystal lattice.

Consider, for instance, the case of a square domain 𝛺 with 𝑁 =
100 × 100 nodes and assume that the applied affine deformation is
a homogeneous simple shear �̃�(𝛼, 𝜃) with fixed orientation 𝜃, and
he shear amplitude 𝛼 playing the role of the loading parameter. By
hanging this parameter in increments of 10−4, we can advance the

displacement field 𝐮(𝛼, 𝜃) = (�̃�(𝛼, 𝜃)−I)𝐱 for all nodes on the boundary of
the body 𝜕𝛺 till the first instability occurs signaling the homogeneous
dislocation nucleation. The incremental solution algorithm allowing
one to see the unfolding of the avalanche in the fast computational
time is detailed in the flowchart shown in Appendix A. In Salman
et al. (2021) we showed that the resulting (post-avalanche) dislocation
pattern depends on the orientation of the applied simple shear with
a strong difference between the dislocational configurations obtained
in the cases of soft and hard loading directions. In the present paper,
we illustrate results obtained along the pure shear loading protocols.
We use periodic boundary conditions and load the system starting
from a stable reference configuration till the point of instability close
to the theoretically predicted elastic instability, see Figs. 10(a) and
10(b). Results obtained along the same loading paths but with the fixed
boundary conditions are comparable in terms of observed collective
dislocation mechanisms, however, since they tend to display a stronger
influence of the boundaries, we are not discussing them in detail.

We now turn to the results of the numerical experiments obtained
for the pure shear loading protocols. These loading paths are of par-
ticular interest since they include the ‘softest’ and the ‘hardest’ loading
directions which correspond to the ‘shortest’ and the ‘longest’ distance
to instability’, respectively. These loading paths are also highly sym-
metric which suggests that the post avalanche dislocation patterns may
have some particular features. As we have already seen, among the
two pure shear loading directions, one is always directed towards the
energy maximum and can be expected to produce regular micro-twin
9

microstructures. Another one is aiming directly at the mountain pass
where the corresponding saddle point may foment the generation of
disorder.

Square lattices. We start with the case of a square lattice loaded along
the ‘soft’ rhombic loading path 𝐅♢. The fragment of the post-instability
pattern, is shown in Fig. 11(a); the colors in this image representing the
physical space indicate the level of the Cauchy stress 𝜎𝑥𝑦. The observed
simultaneous activation of both available slip systems is compatible
with the emergence of two unstable modes in the linear analysis which
suggests dislocation nucleation along the planes with two types of
normals 𝐧. We note the concurrent initiation of the horizontal and
vertical slip systems has been already observed in Salman et al. (2021)
for the case of the simple shear loading path 𝐅𝜃=0. This is not surprising
since the two paths corresponding to simple and pure shear cross the
stability boundary in configurations which are very close to each other.

The obtained dislocation pattern can be understood better if we
represent it in the configurational space of metric tensors, see our
in Fig. 11(c). In the homogeneous elastic state all configurational
points were in the same location which depended parametrically on
the loading parameter 𝛼. After the effective yield surface was reached
the configurational points spread over the configurational space with
most of them concentrating in the three equivalent energy wells cor-
responding to the reference square lattice 𝐒, and the equivalent square
lattices 𝐒10 and 𝐒−1𝜋∕2 which differ from the reference lattice by lattice
invariant shears along the two perpendicular slip directions. Since the
corresponding states have zero energy, such a localization indicates the
formation of unloaded square lattice patches (grains) which differ only
by rotation. The points outside the energy wells are mostly located
inside the energy valleys connecting the reference lattice 𝐒 with equiv-
alent configurations 𝐒10 and 𝐒−1𝜋∕2, and corresponding to the horizontal
and vertical dislocation core structures. Those structures are not exactly
built as the pairs of pure shear partials studied above because they
form grain boundaries (dislocation walls) where dislocation interaction
is strong.

We remark that the observed coupling between the slip systems
has not been postulated phenomenologically, as it is usually done
in conventional continuum theories of crystal plasticity, but emerges
directly from the postulated global symmetry of the energy landscape.
We illustrate this point in our Fig. 12 where we show the zoom in on
the schematic energy landscape in the configurational space around the
reference energy well 𝐒. This figure emphasizes the presence of the
valleys which represent the classical ‘plastic mechanisms’ and direct the
flow of configurational points away from the energetically expensive
purely elastic deformation. It shows that an exit from the narrow
stability neighborhood of the point 𝐒 (elastic domain) leads to the
flow of the configurational points towards the degenerate saddle re-
gions corresponding to the triangular lattice with the higher symmetry
than the symmetry of the reference state; we note that the triangular
lattice automatically corresponds to a critical point due to the global
symmetry of the energy landscape.

To illustrate this point, suppose that the system is driven along
the rhombic loading path 𝐅♢. It is then forced directly towards the

ountain pass around the point 𝐓 where the system is confronted with
(binary) choice between moving either towards the (square) well 𝐒10

or the (square) well 𝐒−1𝜋∕2 or, as in real numerical experiments, moving
in both directions simultaneously while activating in this way both slip
systems (here we are not talking about the configurational points that
simply relax into the reference state). In the case of a less symmetric
loading path, like for instance, the simple shear path 𝐅𝜃=0, the choice
will be slightly biased with both slip systems still available due to the
superior symmetry of the saddle region. It is clear that as the system
is loaded beyond the first avalanche, a succession of similar binary
choices enhances the complexity of the developing pattern even further.

We now discuss the ‘‘hard’’ loading path 𝐅 corresponding to driving
through the imposed on the boundary affine rectangular pure shear. We
recall that in this case the square elements of the reference lattice are
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Fig. 10. Energy-strain relations obtained in numerical experiments for a crystal with square symmetry: (a) and for a crystal of triangular symmetry (b). Simulated domains are
formed by 𝑁 ×𝑁 nodes with 𝑁 = 100, loaded with affine boundary conditions. Red stars display the critical parameters calculated analytically.
Fig. 11. (a) Post-instability pattern for the rhombic path 𝐅♢, colors show the level of
the Cauchy stress 𝜎𝑥𝑦. (b) Inset highlights the presence of both vertical and horizontal
dislocations. (c) Distribution of 𝐂𝑖 points in configuration space show the dominant
presence of the three wells 𝐒, 𝐒10 and 𝐒−1𝜋∕2. The elements on the low energy valleys
connecting wells corresponds to dislocation cores.

Fig. 12. Schematic representation of the saddle-like structure of the triangular phases
in the square symmetry crystal. When the reference square configuration (1) is loaded
along the energy valley, the systems encounters the triangular phase (a) and here splits
along two different slip system, thus involving two additional wells (2) and (3). This
splitting mechanism presents every time a square phase is loaded towards a triangular
one.

deformed elastically into rectangles with progressively higher energy
cost. As we have also seen before, the instability of the ensuing rect-
angular lattice leads to the formation of the sheared layers oriented
perpendicularly to the long axis of the rectangles which is a horizontal
direction and with their shear amplitude aligned with the vertical
direction. The direction of the shear presents a binary choice between
the (square) energy wells 𝐒10 = 𝐅(𝜃 = 0, 𝛼 = 1) and 𝐒−10 = 𝐅(𝜃 = 0, 𝛼 =
−1) which suggests micro-twinning mechanism of instability.

The post avalanche configuration obtained in our numerical ex-
periment is illustrated in Fig. 13. The analysis of the physical state
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reveals the system size pattern where patches of the original square
lattice structure appear to be rotated at 𝜋∕4. The dislocation rich high
energy defects serve again as the boundaries separating these patches,
see Fig. 13(a). The deformed configuration of the elements inside
the grains shows that the apparent rotation is produced by the fine
lamination of the (almost) unloaded states from the energy wells 𝐒10
and 𝐒−10 , see Fig. 13(b). The implied two-well redistribution is clearly
visible in the configurational space, shown in Fig. 13(c), where we
see that these two wells are almost equally populated with almost no
elements flipping back into the original energy well 𝐒. This type of
accommodation through inelastic rotation can be easily understood if
we observe that the two sheared state configurations constituting the
micro-twin laminate, 𝐅 = 𝐑(𝜋∕4)𝐒01 and 𝐆 = 𝐑(−𝜋∕4)𝐒0−1 satisfy the
compatibility condition (Pitteri and Zanzotto, 2002) 𝐅 = 𝐈 + (𝐚⊗ 𝐧)𝐆,
where 𝐚𝑇 = (0, 2) and 𝐧𝑇 = (1, 0), see Fig. 14(a). Note that the normal to
the twinning plane 𝐧 coincides with the instability direction predicted
by our approximate stability analysis. For details see our Appendix B.

In Fig. 14(b) we show the distribution of the configurational points
immediately following the onset of instability, as the avalanche is
only unfolding. It suggests that a highly inhomogeneous configuration
precedes the development of the micro-laminates disguised as uni-
formly rotated grains. The eventual equilibration is achieved through
the advancement of a dynamic front. Inside such a transition front the
apparent rotation of the lattice is achieved through transverse motion
of dislocations which nucleate inside the computational domain but
ultimately annihilate on the boundary (Baggio et al., 2021).

Triangular lattices. Consider now the ‘soft’ pure shear loading protocol
�̄�♢ applied to a triangular lattice. In Fig. 15(a) we show a fragment
of the post avalanche pattern in the physical space; the corresponding
distribution of the configurational points is presented in Fig. 15(c).
As in the case of ‘hard’ pure shear loading of a square crystal, here
we again see the emergence of slip on two slip systems (out of three
available in general). We recall that also according to the linear stability
analysis two slip directions are supposed to be activated simultane-
ously. Interestingly, and differently from the case of square symmetry,
in our numerical experiments involving triangular lattices loaded by
simple shears along the closest crystallographic directions to �̄�♢, for
instance �̄�𝜋∕3 or �̄�0, such double activation of two slip systems does
not take place (Salman et al., 2021). This is related to a structurally
different organization of the low energy valleys around the reference
states for square and triangular crystals and the resulting different
mismatch between the critical stability thresholds along simple and
pure shear loading paths.

To illustrate this point we first note that in the case of triangular
lattices, the loading paths �̄�𝜋∕3 and �̄�0 intersect the boundary of the
elastic (stability) region in the configurational points that are rather
distant from the point where such crossing takes place for the pure
shear path �̄� while in the case of square lattices all three paths cross
♢
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Fig. 13. (a) Post-instability pattern for the rectangular path 𝐅 , colors indicate the level of the Cauchy stress 𝜎𝑥𝑦. (a) The insets allow one to visualize the 𝜋∕4 rotated structure,
the triangulation reveals the shearing mechanism behind such apparent rotation. (c) Distribution of 𝐂𝑖 points in configuration space show the splitting of the system between the
wells 𝐑𝜋∕4𝐒10 and 𝐑−𝜋∕4𝐒−10 .
Fig. 14. (a) The twinning mechanism behind the apparent rotation. The instability develops with a redistribution of the elements between the energy wells 𝐑𝜋∕4𝐒10 and 𝐑−𝜋∕4𝐒−10 .
(b) A snapshot of the developing instability, showing the early evolution of the system towards the two equivalent wells.
Fig. 15. (a) Post-instability pattern observed on the rhombic path �̄�♢, colors indicate the level of the Cauchy stress 𝜎𝑥𝑦. The inset shows a detail of the triangulation revealing
the activation of two slip systems. (b) Distribution of 𝐂𝑖 points in configuration space show that the majority of points lies in the low energy valleys connecting 𝐓 with 𝐓−1

0 and
𝐓−1
𝜋∕3. Since these two configurations differs by a rigid rotation only, the paths are overlapping.
the stability boundary at almost the same point (compare Figs. 5 and
4). In other words, the triangular lattice, driven along the path �̄�♢,
becomes unstable in the middle of the energy valley, quite late vis a vis
the instability under the simple shear protocols �̄�0 and �̄�𝜋∕3. The fact
that this happens close to the saddle S facilitates the coupling between
the slip systems oriented at the angles 𝜃 = 𝜋∕3 and 𝜃 = 0.

Note next that while the simple shear loading paths �̄�𝜋∕3(𝛼) and
�̄� (−𝛼) are distinct, they intersect not only at 𝛼 = 0 (at the reference
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0

energy well 𝐓) but also at 𝛼 = 𝛾2 (at the equivalent energy well 𝐓−1
𝜋∕3,

where the pure shear loading path �̄�♢ leads). The fact that the two
simple shear paths are ultimately getting closer to the main driving
direction contributes to the activation of both slip systems.

While activation of the two slip systems is clearly visible in physical
space, see Fig. 15(a), it is less apparent from the spreading of the cloud
of configurational points in the space of metric tensors, see Fig. 15(b)
where we show that at the saddle 𝐒 about half of the elements flip back
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Fig. 16. (a) Schematic representation of the saddle-like structure of the square phases in the triangular symmetry crystal. An extra dimension (here showed with vertical lines)
needs to be included to observe rotated wells along the same orbit, that in these case intervene when considering the shears aligned with the crystallographic planes (oriented). Here
we consider the reference triangular phase (1), loaded towards the square phase (a). The system ends up activating two slip system whose corresponding wells are distinguished
by a rigid rotation. (b) Pure shear (Eq. (7)) and simple shears �̄�𝜋∕3(𝛼 = 𝛾2), �̄�0(𝛼 = −𝛾2) leads to formation of different patterns comprised of energy wells distinguished solely by
a rigid rotation; (c) The symmetric rotations disguising two simple shears as one pure shear.
Fig. 17. Post-instability pattern for the rhombic path �̄�♢, observed with fixed boundary conditions.
to the original well 𝐒 while another half advances to the new well 𝐓−1
𝜋∕3.

However, the two states �̄�𝜋∕3(𝛼 = 𝛾2) and �̄�0(𝛼 = −𝛾2), which occupy
the same point 𝐓−1

𝜋∕3 in our conventional configurational space of metric
tensors, differ by a rigid rotation.

To explain this point we recall that even though the two config-
urations may belong to the same energy well, they may correspond
to different points of the orbit of this well and formed by rotations
which leave the metric tensor unchanged (Pitteri and Zanzotto, 2002).
In Fig. 16 we illustrate by a scheme, a likely mechanism of the simul-
taneous activation of the two slip systems. While the horizontal plane
in this scheme represents our conventional configurational space of
metric tensors (see also the inset to the left of the scheme), the vertical
direction mimics a one-parameter space of rigid rotations which we
neglected in all previous considerations. When the triangular lattice
𝐓, marked as (1), evolving along the energy valley, reaches the saddle
describing the square lattice 𝐒, marked as (a), two rotations of the same
amplitude but of different signs start to develop as the system continues
to evolve along the energy valley down from the saddle 𝐒 towards the
energy well 𝐓−1

𝜋∕3. They fully mature as symmetric slips along the close
packed directions 𝜃 = 𝜋∕3 and 𝜃 = 0.

In Fig. 17 we show, for comparison, the post-avalanche pattern in
the same setting but with fixed affine boundary conditions. While it has
the same elementary local dislocation arrangement as in the case of the
periodic boundary conditions, the global organization is largely shaped
by the influence of the boundaries. This and other finite size effects will
be considered in more detail in a separate publication.

Finally, consider a triangular lattice driven using the ‘hard’ loading
protocol �̄� representing rhombic pure shear. In this case the system
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◊

is moved away from the energy well 𝐓 along the steep energy hill
acquiring progressively increasing elastic energy. As in the case of the
‘hard’ pure shear loading of a square lattice, the eventual instability of
the homogeneous configuration of the elastically deformed triangular
lattice can be expected to resolve into a symmetric (micro-twin) mix-
ture of the two triangular lattices corresponding to the energy wells
𝐓−1
2𝜋∕3 and 𝐓1

𝜋∕3.

The results of our numerical experiment are reported in Fig. 18. We
first show in Fig. 18(a–b) the initial (elastic) stage of the instability
when the system still remains in the vicinity of the reference state
𝐓 while developing periodic modulation oriented in accordance with
the predictions of the theoretical study of the linear elastic instability.
While such modulation does not involve the anticipated activation of
the two symmetry related energy wells, the increasingly pronounced
periodic patterning resembles a somewhat blurred micro-twin structure
involving a mixture of the energy wells 𝐓−1

2𝜋∕3 and 𝐓1
𝜋∕3, see Fig. 18(a).

These two wells are in fact compatible and can in principle mix
(laminate) to produce a rotation of the original triangular lattice. The
corresponding twinning equation is analyzed in Appendix B.

However, under further loading, this highly ordered inhomogeneous
configuration does not evolve into an organized micro-twin laminate
as in the case of similar loading protocol for square crystals. Instead,
at the advanced stage of the avalanche, some elements flip back to the
reference energy well 𝐓 and the incipient periodic pattern breaks down
with a massive nucleation of dislocations of the two types: connecting
either the wells 𝐓 and 𝐓−1

2𝜋∕3 or the wells 𝐓 and 𝐓1
𝜋∕3. During this

breakdown process we observe sharp drop in stress and energy as
the two slip systems are activated simultaneously. The avalanche ends
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Fig. 18. (a) The emerging inhomogeneous configuration at the point of instability, characterized by a pattern of weakly rotated triangular lattices; the corresponding distribution
in configuration space is illustrated in (b). Below: the post-avalanche structure takes the form of a double dislocation nucleation along crystallographic planes 𝜋∕3 and 2𝜋∕3. In
(c) we show the pattern in the physical space, along with an inset of the triangulation, while in (d) we show the distribution of 𝐂𝑖 among finite elements in configuration space.
Fig. 19. Post-avalanche pattern for a triangular lattice deformed along the simple shear loading path with 𝜃 = 54 degrees, see Eq. (6), which shows variously oriented dislocation-free
grains.
with a formation of a complex arrangement of self-locked dislocations,
see Fig. 18(c). The final configuration in the space of metric tensors
is represented by the three symmetric energy wells almost equally
populated.

The observed differences in the character of the collective dis-
location nucleation phenomenon along the ‘hard’ loading paths in
triangular and square lattices are probably related to the higher symme-
try of the former. Thus, in triangular lattices due to the more ‘compact’
structure of the effective yield surface, the instability of a homogeneous
states takes place at lower levels of elastic energy which is then less
available for the restructuring of the lattice. Therefore, instead of
micro-twinning, aimed at the reduction of the energy globally, the
system minimizes the energy locally by producing an intricate network
of self-jammed dislocational entanglements. In other words the break-
down of metastability simply does not release enough energy to access
the micro-twinned configuration, which requires major rearrangement.

Interestingly, our numerical experiments have shown that using
other specially designed loading protocol, the local micro-twinning can
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be achieved, see Fig. 19. Here one can see that the overall pseudo-
rigid rotation inside a grain can be reached by complex micro-twinning
which involves coexistence of the three unloaded triangular lattices
corresponding to the bottoms of the energy wells, 𝐓, 𝐓−1

2𝜋∕3 and 𝐓1
𝜋∕3,

which are separated by semi-coherent grain boundaries oriented at
either zero or 60 degrees, in accordance with the theoretical prediction
made in our Appendix B.

5. Conclusions

In this paper we have presented some insights on homogeneous
nucleation of dislocations in 2D pure crystals by emphasizing the collec-
tive nature of this phenomenon. The new understanding became possi-
ble due to the use of the mesoscopic tensorial model (MTM) of crystal
plasticity which combines the advantages of pseudo-macroscopic de-
scription of plastic flows in terms of stresses and strains with the
ability to capture short range interaction of dislocations and even
resolve the symmetry-sensitive aspects of the structure of their cores.
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In contrast to some other mesoscopic approaches, the MTM does not
require any dislocation-specific phenomenological entries and relies
almost exclusively on the global symmetry of the lattice. The implied
symmetry goes beyond the conventional point group and accounts in a
geometrically exact way of lattice invariant shears.

The phenomenon of the homogeneous nucleation of dislocations
presents a convenient background for testing the access of MTM to
the crucial mesoscopic features of crystal plasticity. Traditionally, such
nucleation in 2D was modeled as a localized event resulting in the for-
mation of a topologically neutral pair of dislocations of opposite signs.
Here we showed that in the absence of defects and inhomogenities, the
dislocation nucleation in pristine simple crystals unfolds as a system
size avalanche. Due to the dominance of long range elastic interactions,
it emerges as a collective phenomenon, involving a large number of
dislocations, and leads to the formations of intricate patterns of global
nature. We also showed that some peculiarities of such patterns depend
sensitively on the crystallographic symmetry of the lattice.

To highlight the importance of crystal symmetry in the process
of homogeneous nucleation of dislocations we considered two main
classes of simple lattices amenable to modeling in 2D: the lower sym-
metry square lattice and the higher symmetry triangular lattice. The
possibility of defining general loading protocols allowed us to compare
for both types of lattices the two archetypal loading paths: along the
maximally ‘soft’ direction and along the maximally ‘hard’ direction.

Driving in the ‘soft’ direction revealed a non-trivial coupling be-
tween several slip systems allowing the crystal to accommodate the
applied loading by forming a relatively regular patterns of dislocation
walls. The important role in such coupling is played by the metastable
phases: triangular lattice 𝐓 during the plasticity of square crystal 𝐒 and
vice versa. While in the case of plasticity of square crystal the implied
branching of the energy valleys at the location of the triangular lattice
𝐓 is immediately apparent, the situation is less simple in the case of
plasticity of triangular crystals where the branching at the location of
the square lattice 𝐒 is between the different points of the orbit of the
same lattice 𝐓1

𝜋∕3 ≅ 𝐓−1
0 .

Instead, driving in a ‘hard’ direction, produces in crystals with lower
symmetry a regular pattern of mutually misoriented patches (or grains)
where plastic deformation takes the form of micro-twinning disguised
as rigid rotation (Baggio et al., 2021). In this case, the collective
nucleation of dislocation in square crystals ultimately resulting in a
formation of laminates, proceeds through the propagation of a front.
The latter involves the transverse motion of individual dislocations
which are finally expelled to the boundary of the crystal leaving behind
a fully unloaded but inelastically rotated original lattice. Such perfectly
organized pattern fails to develop in triangular crystal, where it is
replaced by a more complex network of jammed dislocation self-locks.
Apparently, due to the higher symmetry of the crystal in this case,
the dislocation generating instability takes place at the lower levels of
stress which prevents global rearrangement replacing it with more local
self-organization of individual slips.

Our exploratory study shows the strength of the MTM in dealing
with the micro-structural aspects of crystal plasticity. This model can
be developed with no phenomenology if the periodic potential is con-
structed by ab initio methods. The natural future target of the model
is the study of the mechanical fluctuations accompanying plastic yield.
To be realistic the model has to be also moved from 2D to 3D where it
should be able to reproduce the experimentally observed peculiarities
of plastic fluctuations in FCC, BCC and HCP crystals.
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Appendix A. Numerical algorithm

1: Generation of finite element mesh of the body 𝛺 and identification of boundary nodes
on the boundary of the body 𝜕𝛺.

2: Initialization of the displacement vector 𝐮 = 𝟎 for all nodes 𝑎.
3: Set loading through the displacement 𝐮(𝛼) = (�̃�(𝛼)− I)𝐱 for all nodes 𝑎 on the boundary

of the body 𝜕𝛺, where �̃�(𝛼) is the applied deformation gradient with amplitude 𝛼.
4: Start the iterative L-FBGS minimization algorithm:
5: Construct a deformation gradient 𝐅 in each finite element.
6: Construct a metric tensor 𝐂 = 𝐅𝑇 𝐅 in each finite element.
7: Perform Lagrange reduction to calculate the reduced metric tensor 𝐂𝐷 and the 𝐦

matrix in each finite element.
8: Calculate the first Piola–Kirchhoff stress tensor.
9: Obtain nodal forces.

10: Obtain the total strain–energy.
11: Obtain the new displacement vector 𝐮𝐭 at iteration 𝑡 such that 𝑊 𝑡 < 𝑊 𝑡−1

12: Ends minimization at iteration 𝑡 when 𝑊 𝑡 −𝑊 𝑡−1 < 𝑡𝑜𝑙
13: Start Newton algorithm with the displacement vector 𝐮𝐭 obtained after the termination of

L-FBGS minimization algorithm
14: Construct a deformation gradient 𝐅 in each finite element.
15: Construct a metric tensor 𝐂 = 𝐅𝑇 𝐅 in each finite element.
16: Perform Lagrange reduction to calculate the reduced metric tensor 𝐂𝐷 and the 𝐦

matrix in each finite element.
17: Calculate the tensor 𝐀.
18: Calculate the stiffness matrix 𝐊 and the residual forces 𝐑.
19: Perform a Newton step.
20: Obtain the new displacement vector 𝐮𝐭 at iteration 𝑡 such that the vector norm of

residual forces |𝐑𝑡| < |𝐑𝑡−1|.
21: Ends the Newton–Raphson at iteration 𝑡 when |𝐑𝑡| − |𝐑𝑡−1| < 𝑡𝑜𝑙
22: Increase the loading amplitude: 𝛼 → 𝛼 + 𝛿𝛼
23: Go to step 3

Appendix B. Twinning relations

Suppose that the constant deformation gradients 𝐆 and 𝐇 corre-
spond to two equivalent minima of the strain–energy 𝜙(𝐂). To generate
piece wise affine continuous deformation, across an invariant disconti-
nuity plane they must satisfy on such a plane the kinematic (Hadamard)
compatibility conditions (Pitteri and Zanzotto, 2002):

𝐑𝐇 = 𝐆 + 𝐚⊗ 𝐧∗ = 𝐆
(

𝐈 + 𝐚∗ ⊗ 𝐧∗
)

= (𝐈 + 𝐚⊗ 𝐧)𝐆 (7)

where 𝐑 ∈ 𝑆𝑂(2) is a rotation. The Eulerian vector 𝐚 (normal to
the discontinuity plane) and covector 𝐧 must satisfy 𝐚 ⋅ 𝐧 = 0; their
Lagrangian counterparts are 𝐚∗ = 𝐆−1𝐚 and 𝐧∗ = 𝐆𝑇 𝐧. If we as-
sume further that det𝐇 = det𝐆 = 1 and exclude reflections, the
deformation gradients satisfying (7) form a mechanical twin. If, in
addition, the rotation 𝐑 belongs to the point group of the lattice, such
twinning structure produces the undistorted zero energy configuration.
The resulting microtwinned laminates are sometimes referred to as
pseudotwins (Pitteri and Zanzotto, 2002).

The twinning Eq. (7) was studied extensively, see for instance (For-
claz, 1999). It was shown that (7) admits either no solutions or two

−𝑇 𝑇 −1
solutions. The two solutions exist when the matrix 𝐆 𝐇 𝐇𝐆 ≠ 𝐈
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and its ordered eigenvalues 𝜇1 < 𝜇2 are such that 𝜇1𝜇2 = 1. In that
case, the two solutions are given explicitly by the formulas:

𝐚 = 𝜌
⎛

⎜

⎜

⎝

√

𝜇2(1 − 𝜇1)
𝜇2 − 𝜇1

𝐯1 + 𝜅

√

𝜇1(𝜇2 − 1)
𝜇2 − 𝜇1

𝐯2
⎞

⎟

⎟

⎠

, (8)

= 1
𝜌

(
√

𝜇2 −
√

𝜇1
√

𝜇2 − 𝜇1

)

(

−
√

1 − 𝜇1𝐯1 + 𝜅
√

𝜇2 − 1𝐯2
)

, (9)

where �̂�1 and �̂�2 are the normalized eigenvectors of 𝐆−𝑇𝐇𝑇𝐇𝐆−1, 𝜌 > 0
is a constant ensuring that |𝐧| = 1 and 𝜅 = ±1. Once 𝐚 and 𝐧 are known,
the rotation 𝐑 can be obtained directly from (7).

First, we consider the compatibility of the two nearest wells reach-
able by deforming the original triangular phase using the deformation
gradients:

Case 1. 𝐇 =
(

1 𝛾2

0 1

)

and 𝐆 =
(

1 −𝛾2

0 1

)

. They correspond to

the zero degree shear defined in Eq. (2) such that 𝐇 = 𝐅(𝛾2, 0) and
𝐆 = 𝐅(−𝛾2, 0).

Case 2.𝐇 =
(

1 𝛾2

0 1

)

and 𝐆 =

(

0.5
√

3∕6
−
√

3∕2 1.5

)

. The phase 𝐆

is accessible by deforming the original triangular phase by 𝐆 =
𝐅(−𝛾2, 𝜋∕3).

Case 3.𝐇 =

(

0.5
√

3∕6
−
√

3∕2 1.5

)

and 𝐆 =

(

0.5 −
√

3∕6
√

3∕2 1.5

)

. The

phase 𝐆 is accessible by deforming the original triangular phase by
𝐆 = 𝐅(−𝛾2, 2𝜋∕3).

Case 4.𝐇 =
(

1 −𝛾2

0 1

)

and 𝐆 =

(

0.5 −
√

3∕6
√

3∕2 1.5

)

.

We found that for each of the cases described above, the twinning
equation admits solutions summarized below for each case:

Case 1.Solution corresponding to 𝜅 = 1 is given by

𝐚𝑇 = {−1.74574, 1.51186} 𝐧𝑇 = {0.654654, 0.755929}, (10)

and the corresponding rotation angle is 98.2132 degrees. For 𝜅 = −1,
the solution is different

𝐚𝑇 = {−2.3094, 0} 𝐧𝑇 = {0,−1}. (11)

We found that 𝐑 = 1.
Case 2. Solution corresponding to 𝜅 = 1 is given by

𝐚𝑇 = {0.436436, 2.26779} 𝐧𝑇 = {0.981981,−0.188982}, (12)

and the corresponding rotation angle is 38.2132 degrees. For 𝜅 = −1,
the solution is

𝐚𝑇 = {−1.1547, 2.} 𝐧𝑇 = {−0.866025,−0.5}. (13)

The corresponding rotation angle is 60 degrees.
Case 3.Solution corresponding to 𝜅 = 1 is given by

𝐚𝑇 = {1.1547005, 2} 𝐧𝑇 = {0.8660256,−0.5}, (14)

The corresponding rotation angle is ±120 degrees. The solution corre-
sponding to 𝜅 = −1 is

𝐚𝑇 = {−0.436436, 2.26779} 𝐧𝑇 = {−0.9819805,−0.188982}, (15)

The corresponding rotation angle is 21.7868 degrees.
Case 4.Solution corresponding to 𝜅 = 1 is given by

𝐚𝑇 = {1.1547005, 2} 𝐧𝑇 = {0.866025,−0.5}, (16)

The corresponding rotation angle is 60 degrees. The solution corre-
sponding to 𝜅 = −1 is

𝐚𝑇 = {−0.436436, 2.26779, } 𝐧𝑇 = {−0.9819805,−0.188982}, (17)
15

the corresponding rotation angle is 38.2132 degrees.
The results given above suggest that micro-twinning is possible in
riangular lattices since there are several cases for which the rotation

belongs to the point group of the triangular lattice. However, as
pposed to the case of square lattice, we did not observe any micro-
winning patterns in our numerical experiments in triangular lattices.
ne possible explanation is the strong misalignment, in the case of

riangular lattices between the orientation of the macro-modulations and
he lattice vectors when the critical loading is approached. Instead,
n the case of square lattices we observe lattice scale modulations
orresponding to the wave vectors at the boundary of the Brillouin
one present already in the original unstable mode, which is a perfect
rrangement to generate a micro-laminate, see Salman et al. (2021) for
detailed explanation on developing instability modes.

Second, we study the compatibility of the two nearest wells with
he original triangular lattice that we take as identity 𝐆 = 1. We have

gain 4 cases to consider (i) 𝐇 =
(

1 𝛾2

0 1

)

, (ii) 𝐇 =
(

1 −𝛾2

0 1

)

, (iii)

=

(

0.5
√

3∕6
−
√

3∕2 1.5

)

, (iv) 𝐇 =

(

0.5 −
√

3∕6
√

3∕2 1.5

)

.

Case 1. Solution corresponding to 𝜅 = 1 is given by

𝐚𝑇 = {0.57735, 1.} 𝐧𝑇 = {−0.866025, 0.5}, (18)

and the corresponding rotation angle is 60 degrees. For 𝜅 = −1, the
solution is given by

𝐚𝑇 = {1.1547, 0} 𝐧𝑇 = {0.,−1}. (19)

We found that 𝐑 = 1.
Case 2. Solution corresponding to 𝜅 = 1 is given by

𝐚𝑇 = {−0.57735, 1.} 𝐧𝑇 = {0.866025,−0.5}, (20)

and the corresponding rotation angle is 60 degrees. For 𝜅 = −1, the
solution is given by

𝐚𝑇 = {−1.1547, 0} 𝐧𝑇 = {0.,−1}. (21)

We obtain 𝐑 = 1.
Case 3. Solution corresponding to 𝜅 = 1 is given by

𝐚𝑇 = {0.57735, 1} 𝐧𝑇 = {0.8660256,−0.5}, (22)

We obtain 𝐑 = 1. The solution corresponding to 𝜅 = −1 is

𝐚𝑇 = {−0.57735, 1} 𝐧𝑇 = {−0.8660256,−0.5}, (23)

The corresponding rotation angle is 60 degrees.
Case 4. Solution corresponding to 𝜅 = 1 is given by

𝐚𝑇 = {0.57735, 1} 𝐧𝑇 = {0.866025,−0.5}, (24)

The corresponding rotation angle is 60 degrees. The solution corre-
sponding to 𝜅 = −1 is

𝐚𝑇 = {−0.57735, 1} 𝐧𝑇 = {−0.866025,−0.5}, (25)

the corresponding rotation is 𝐑 = 1.
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