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I. PRELIMINARIES

Our subsequent derivations rely on the following ele-
mentary formula

∇(∫

t

τ(x)
ϕ(x , s)ds) =

∫

t

τ(x)
∇ϕ(x , s)ds − ϕ(x , τ(x))∇τ(x)

where ϕ(x , t) is a smooth scalar function and ∇ is the
gradient operator. Here ∇τ(x) = V −1(x)n(x) where
V (x) is the normal velocity of the accreting surface and
n(x) the outer normal. By taking ϕ(x , t) = w(x , t) ⋅ a
with a an arbitrary constant vector, we obtain

∇(∫

t

τ(x)
w(x , s)ds) =

∫

t

τ(x)
∇w(x , s)ds −w(x , τ(x))⊗∇τ(x)

where the tensor product defines through (a ⊗ b)c =

c(a ⋅ b) for arbitrary vectors (a ,b,c). Next we recall
the following identities

divw = tr∇w , (∇w −∇wT
)a = curlu × a ,

and the properties of an arbitrary smooth second order
tensor A:

divA ⋅ a = div(ATa) (curlA)a = (curlAT
)a

where (curlA)ij = eipqAjq,p. We will also need the fol-
lowing identity

(a ×w) × b = (w ⊗ a − a ⊗w)b.

By taking w(x , t) =A(x , t)Ta we then get

div(∫

t

τ(x)
A(x , s)ds) =

∫

t

τ(x)
divA(x , s)ds −A(x , τ(x))∇τ(x).
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Furthermore,

curl(∫
t

τ(x)
A(x , s)ds) =

∫

t

τ(x)
curlA(x , s)ds − (∇τ(x)×)AT

(x , τ(x)).

Note that we made use of the notation w× for the skew
tensor with axial vector w , which implies that (w×)a ≡

w × a .

II. CURVATURE AND INCOMPATIBILITY

The strain incompatibility ε is the linear counterpart of
the Riemann-Christoffel curvature of the reference met-
ric. For small strains, the metric of the reference state
can be written as gα = I + 2α ε, where I is the identity
matrix, ε is the elastic strain and α > 0 a smal parameter.
In the limit α → 0 the curvature tensor associated with
gα can be written as

Rαijkl = αeijseklrηsr + o(α)

where eijk is the Ricci alternator, see for instance [1].

III. RESIDUAL STRESSES AND
INCOMPATIBILITY

Strain incompatibility is the source of residual stresses.
Denoting the latter by T, we can write the system of
equations :

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

divT = 0 B
curl curlC−1T = η B
Tn = n ∂B.

The residual stresses depend not only on incompatibil-
ity η but also on elastic constants and the shape of the
body B. The strain incompatibility η may have diffuse
and singular components. The global effects of the latter
are characterized through the Burgers and Frank vectors,
which are discussed below.

IV. BURGERS AND FRANK VECTORS

Here we provide additional details regarding the Burg-
ers and Frank vectors and show how these vectors can be
computed from a given elastic strain distribution ε(x).
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First of all we recall that the regular part of the in-
compatibility can be extracted from the elastic strain by
computing ηc = curlcurlε. The symmetric tensor field ηc

necessarily satisfies divηc = 0.

To characterize the global (topological) component of
incompatibility, which we associate with the singular
term ηs, we start with the special case ηc = 0 .

Consider a cut along a surface S terminating on a sin-
gular “defect line” and an arbitrary closed curve γ around
this defect line passing through a point p on S . Then
a classical argument [3] shows that the relative displace-
ment at p can be written in the form

JuK(p) = B +Ω × p,

where

B = ∮
γ
(ε + y × curlε)dy

and

Ω = ∮
γ

curlεdy

are, respectively, the Burgers and the Frank vectors. Us-
ing the singular part of the incompatibility ηs, we may
alternatively define the Burgers and Frank vectors as

B = ∫
D
y × ηs

Tn da

and

Ω = ∫
D
ηs

Tn da,

where D is an arbitrarily oriented disk centeblue at the
dislocation line. From these expressions one can recover
the distributional representation for ηs(x) in terms of B
and Ω, see ref.[35] of the main text for details.

Observe that when ηc = 0 , the relative displacements
across S are rigid. For this reason, if Ω ≠ 0 , one can find
a point p∗ such that JuK(p) = Ω×(p−p∗). Instead, if Ω =

0 , then JuK(p) ≡ B. In both cases there are only three
independent components that fully characterize JuK and
this is consistent with the fact that singular and regular
parts of the incompatibility have only three independent
components each.

When ηc ≠ 0 and the domain is simply connected we
observe that

lim
h→0
∫
Dh

y × ηc
Tn dA = lim

h→0
∫
Dh

ηc
Tn dA = 0 .

Denoting by η = ηc +ηs the total incompatibility, we get

B = lim
h→0
∫
Dh

y × ηTn dA

and

Ω = lim
h→0
∫
Dh

ηTn dA,

where now Dh is an asymptotically shrinking disk with
diameter h and orientation n . These last two definitions
can be equivalently rewritten as

B = lim
h→0
∫
γh

(ε + y × curlε)dy

Ω = lim
h→0
∫
γh

(curlε)dy .

Observe that the only difference with the case ηc = 0 is
that here we use an asymptotically shrinking curve γh
around the defect line, whereas when ηc = 0 this curve
was arbitrary.

Since for non-simply connected domains we can always
assume that ηc = 0 inside the “holes” carrying the singu-
larities of incompatibility, we can also write

B = ∮
γ+i

(ε + y × curlε)dy

Ω = ∮
γ+i

curlεdy

where the curve γ+i is a curve tracing the surface of the
”hole” from the side of the body.

V. INCREMENTAL EQUILIBRIUM

Here we provide an alternative derivation of the con-
dition on incremental stress (Eq. (3) in the main text),
that in the main text was obtained by specialisation of
the Hadamard compatibility condition. By making use of
the identities derived above, together with the definition

σ(x , t) = σ̊a(x) + p(x) + ∫

t

τ(x)
σ̇(x , s)ds,

we obtain that the equilibrium equation for t ≥ τ(x) can
be rewritten as

0 = divσ(x , t) = ∫
t

τ(x)
divσ̇(x , s)ds

+ div(σ̊a(x) + p(x)) − σ̇(x , τ(x))∇τ(x).

For t→ τ(x) this requirement gives a condition which is
equivalent to Eq (3) of the main text (see also ref.[27] of
the main text),

σ̇(x , τ(x))n(x) = ∣∇τ(x)∣
−1div(σ̊a(x) + p(x)).
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Since the remaining integral must vanish for all t ≥ τ(x),
we obtain the incremental bulk condition

divσ̇(x , t) = 0

for all t.

VI. INCREMENTAL INCOMPATIBILITY

We start with the expression

ε(x , t) = C−1σ(x , t) = ε̊(x) + ∫

t

τ(x)
ε̇(x , s)ds

where we have set ε̊(x) = C−1σ̊(x) and where ε(x , s) =
C−1σ̇(x , t). Then,

curl(∫
t

τ(x)
ε̇(x , s)ds) =

∫

t

τ(x)
curlε̇(x , s)ds −∇τ(x) × ε̇T(x , τ(x)).

and

curlcurl(∫
t

τ(x)
ε̇(x , s)ds) = ∫

t

τ(x)
curlcurlε̇(x , s)ds

−curl [∇τ(x) × ε̇(x , τ(x))]

−∇τ(x) × [curlε̇(x , t)]
T
t=τ(x) .

Since incremental elastic strains are assumed compatible,
the term curlcurlε̇(x , s) vanishes and by making use of
the additive structure of ε(x , t) we obtain Eq. (4) in the
main text. The derivation above can be also given in
components if we observe that

(curlcurlε)ij = eiklejmnεln,km

where eijk is the Levi-Civita symbol. Then by using

εln(x , t) = ε̊ln(x) + ∫

t

τ(x)
ε̇ln(x , s)ds

and

eiklejmnε̇ln,km = 0,

we obtain the component-version of the surface compat-
ibility Eq. (4)

eiklejmn [̊εln,km(x) − ε̇ln,k(x , τ(x))

− (ε̇ln(x , τ(x))τ,k(x)),m] = ηpij . (1)

VII. POLAR SYMMETRY

In polar symmetry and plane strain, the requirement
that two solids have the same regular and singular contri-
butions to incompatibility is equivalent to a single scalar

condition. Suppose that polar coordinates x = (r, θ, z)
are associated with the local basis {e(θ),ν(θ),k} which
includes radial, hoop and axial vectors. We obtain that

curlε(x) = ϕ(r)k ⊗ ν(θ),

where we have set ϕ = εθ
′ + (εθ − εr)/r. The regular part

of the incompatibility reads

ηc = ηck ⊗ k

with ηc(r) = (ϕ(r) r)′/r. Therefore the two states
ε1 and ε2 have the same continuous incompatibility if
(ϕ1(r) r)

′ = (ϕ2(r) r)
′ for all r. Now observe that by

taking γz, an arbitrary circle of radius z, we can write

∮
γz

(curlε)dy = 2πzϕ(z)k .

So for a hollow disk with internal radius ri, the condition
Ω1 = Ω2 implies ϕ1(ri) ≡ ϕ2(ri). Hence , to ensure that
ηc1(r) = η

c
2(r) we must require that ϕ1(r) ≡ ϕ2(r) for all

r .

VIII. FEM SIMULATION

We have used the open source FreeFem++ [2]. Resid-
ual stresses and displacements in sliced bodies were ob-
tained by using the weak formulation of the equilibrium
equations:

∫
R
Cε ⋅ sym∇v = 0 (2)

where ε = sym∇u − εpl, u is the displacement and εpl is
the inelastic strain. We denoted by v a test displacement
field.

Denote the radial and hoop components of stress εpl

by (γr, γθ) and the corresponding components of strain
ε by (εr, εθ). Then u′ = εr + γr and u/r = εθ + γθ. Since
in the case of polar symmetry the incompatibility is fully
controlled by

ϕ = εθ
′
+ (εθ − εr)/r = −(γθ

′
+ (γθ − γr)/r),

we can set γθ = 0 so that γr = rϕ. Any distribution
of inelastic strains with the same ϕ produces identical
residual stresses in the body. For the target condition of
uniform hoop stress, we use

ϕ(r) =
2µ + λ

4µ(µ + λ)

p rirf

r2(rf − ri)
.

whereas for the target ηcp = 0 we use

ϕ = c/r

with c an arbitrary constant. To emphasize the effect
we amplified our infinitesimal displacements by assum-
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ing that the Young modulus is E = 0.2p where p is the
pressure in physiological conditions, and assumed that
ν = 0.33.

IX. EXPERIMENTS ON NATURAL AND
MANUFACTURED ARTERIES

FIG. 1.

In figure Fig.1 we report a comparison between real hu-
man arteries and manufactured ones. Insets A,B, taken

from Ref.[30] in the manuscript, refer to arteries that
are manufactured through the wind-rolling of sheets of
mesenchymal cells. Insets C,D, taken from Ref.[51] in
the manuscript, refer to real human arteries. The com-
parison clearly shows that wind-rolling reproduces the
inherently layered structure of real arteries.

FIG. 2.

In Fig.2 we show the opening angles of the media
and of the adventitia layers, taken from Ref.[51] of the
manuscript. The former has an higher opening angle rel-
ative to the latter, which is consistent with the FEM
results shown in Fig.3 of the manuscript.
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