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Geometrically frustrated solids with a non-Euclidean reference metric are ubiquitous in biology and are
becoming increasingly relevant in technological applications. Often they acquire a targeted configuration of
incompatibility through the surface accretion of mass as in tree growth or dam construction. We use the
mechanics of incompatible surface growth to show that geometrical frustration developing during
deposition can be fine-tuned to ensure a particular behavior of the system in physiological (or working)
conditions. As an illustration, we obtain an explicit 3D printing protocol for arteries, which guarantees
stress uniformity under inhomogeneous loading, and for explosive plants, allowing a complete release of
residual elastic energy with a single cut. Interestingly, in both cases reaching the physiological target
requires the incompatibility to have a topological (global) component.
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Externally unloaded elastic solids can be still endoge-
nously prestressed by distributed self-equilibrated force
couples. In living organisms such preconditioning is a way
of achieving specific targets in physiological regimes [1];
for instance, vegetable leafs require residual stresses to
open [2] while arteries need a preload to ensure transmural
uniformity of the hoop stress [3]. Residual stresses are
equally important in engineering applications, where pre-
loading is used either for reinforcement or to delay the
onset of failure [4,5]. Furthermore, challenging new appli-
cations, like the design of programmable biomimetic
materials, depend crucially on our ability to create complex
patterns of residual stresses [6–10].
In this Letter we address the question of how a particular

distribution of residual stresses can be produced in a solid
as a result of the surface accretion of mass, a central process
in both natural growth and 3D printing.
The source of residual stresses in elastic solids is the

incompatibility of the reference configuration, which pre-
vents its isometric embedding into the Euclidean space. A
reference (natural) state is characterized by a metric tensor
and in Euclidean solids this metric is flat [11,12]. In “non-
Euclidean solids,” a term apparently coined by Poincaré
[13], the reference metric is curved, and the associated
geometrical frustration manifests itself through residual
stresses [14].
A reference curvature can be “embedded” into a solid by

using rather well understood techniques of differential
swelling, inhomogeneous thermal expansion, bulk growth,
and remodeling [1,15–18]. Geometrical frustration can also
emerge as a result of surface accretion, as in tree growth,
roll winding, and dam construction [19–23]. In the case of
surface growth, the relation between the physics of dep-
osition and the resulting incompatibility is implicit and it is
not clear which accretion protocol leads to a desired
distribution of residual stresses.

Surface growth is often modeled in a holonomic
format of elastically coherent phase transitions, which take
place without the generation of incompatibility [24,25].
A more general, nonholonomic approach should allow for
the incompatibility to be acquired at the moment of the
creation of a new continuum of particles, see for instance
Refs. [26–28]. In this Letter we consider a general inverse
problem of this type and view the deposition stress as a
tensorial control parameter.We find an explicit link between
the implemented deposition strategy and the resulting
incompatibility. The obtained relations not only reveal the
mechanisms of biological adaptation associatedwith surface
growth, but can also guide the additive manufacturing of
programmable metamaterials.
To illustrate the general theory, we study in detail the

process of artificial 3D printing of arteries. Presently, the
circumferential wrapping of sheets of living cells is used to
reproduce their natural layered structure [29–31]. However,
in physiological conditions the resulting transmural stress
distribution is far from realistic [32,33]. Instead, our
approach allows one to reach the target physiological state
precisely, and we show that the proposed strategy is
compatible with available manufacturing technologies.
As another illustration, we design a growth protocol
ensuring that a single cut in a hollow cylinder results in
a complete release of the residually stored elastic energy.
This prototypical problem is relevant for the understanding
of explosive seed dispersal and other functions of plant
actuators [34–36]. Quite remarkably, we find that in both
biological examples the crucial role is played by a global
contribution to incompatibility, usually associated with
topological defects in crystals (disclinations) [37].
Consider a body Bp that in physiological (or working)

conditions is subjected to tractions sp applied on its
boundary ωp. The symmetric physiological stress field
σpðxÞ must satisfy the equilibrium conditions
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divσp ¼ 0 in Bp; σpn ¼ sp on ωp; ð1Þ

where n is the outward normal. Since the generic problem
of this kind is not statically determinate, in the absence of
additional equations the stress remains underdetermined. If
the deformation is Euclidean the problem can be closed by
supplementing Eq. (1) with relations expressing the stress
in terms of the gradient of the displacement. This leads to a
distribution of stresses that can be altered only by changing
the shape of the body or by varying the elastic properties of
the material. An alternative way to control the stress state
of the body and its deformed shape, apparently favored by
biological systems, is to give up the compatibility and
employ inelastic deformations.
Suppose (for simplicity) that Hooke’s law still holds for

incremental deformations and define the (linear) elastic
strain ϵp ¼ C−1σp, where C is the elasticity tensor. The
signature of the non-Euclidean character of the stress
is the nonzero incompatibility ηp ¼ curlcurlϵp, the linear
counterpart of the reference Riemann curvature, which
satisfies the Bianchi identities divηp ¼ 0. If a target
incompatibility ηp is prescribed, its three independent
components remain unconstrained by Eq. (1) and can be
used to “engineer” a particular physiological state of stress.
Embedding a strain incompatibility can be viewed as a way
of “programming” the material, making it “information
rich” [38,39]. The ultimate performance of such materials
will of course also depend on the loads and the shape
of the body, e.g., Ref. [10], while the targets may be as
diverse as microscopic stress channeling and macroscopic
multistability.
Note that ηp should be understood in the sense of

distributions [40], because the target incompatibility
may contain both diffuse and singular contributions.
Furthermore, singular defect lines may have a global
effect if they carry topological charges characterized by
the nonzero Burgers Bpðx0Þ ¼ limh→0

R
Dh

y × ηTpnda and

Frank Ωpðx0Þ ¼ limh→0

R
Dh

ηTpnda vectors [16,41–43],
where y is the position vector of points of an asymptotically
shrinking oriented disk Dh of diameter h, enclosing the
singular point xo [47]. Since the associated residual stresses
cannot be removed by cutting singular lines out of the body,
in non–simply connected bodies such topological charges
may be located outside the domain Bp.
To model a nonholonomically growing body we intro-

duce a sequence of (incremental) configurations BðtÞ. The
timelike parameter t changes in the interval (ti, tf), denoting
the beginning and the end of the accretion process. In
particular, BðtfÞ ¼ Bp. We denote by τðxÞ the instant when
the accreting surfaceωðtÞ, whose evolution is assumed to be
known, passes through a (Lagrangian) point x.
Equilibrium must hold at each stage of growth, so in the

absence of body forces (a simplifying assumption) we must
have divσ ¼ 0 in BðtÞ. Consider surface growth as a

moving boundary problem. Suppose that on the advancing
(nonmaterial) surface ωðtÞ

⟦σ⟧≡ σðx; tÞ − σ
∘ðxÞ ¼ 0; ð2Þ

where the deposition stress σ
∘ðxÞ is prescribed by the

attachment protocol. This tensor can be decomposed into

a sum of two (rank-2) contributions: σ∘ðxÞ ¼ pðxÞ þ σ
∘
aðxÞ,

see Fig. 1. While the “passive” contribution p ¼ s ⊗ nþ
n ⊗ s − ðs · nÞn ⊗ n is fully defined by the applied

tractions s ¼ σn, the “active” surface stress σ∘ a, satisfying
σ
∘
an ¼ σ

∘T
an ¼ 0, carries three independent degrees of free-

dom that can be used to “implant incompatibility” in the
upcoming layers.

The breakdown of σ∘ into active and passive contributions
is somewhat arbitrary, because in natural and technological
conditions the three components of pmay also play the role
of active agents. In some cases the implied freedom
disappears: during coherent structural transformations the

whole stress σ∘ is determined by the evolution laws of the
interface [25,48]; for solidification, it is natural to assume

that the active term adjusts to ensure that σ∘ is hydrostatic
[49]; for surface growth in plants and in some additive
manufacturing processes, the adhering layer can be treated
as a prestressed elastic membrane, whose state of defor-
mation is controlled by the requirement of equilibrium
under suitable anchoring and adhesion conditions [50,51].
Here, we neglect the potential constraints imposed by the
deposition mechanism and we treat the independent com-

ponents of σ∘ a as free control parameters.
At t ≥ τðxÞ the stress tensor in the growing body can be

written as σðx; tÞ ¼ σ
∘ðxÞ þ R

t
τðxÞ _σðx; sÞds and the incre-

mental equilibrium requires that div _σ ¼ 0 in BðtÞ. To
obtain the boundary conditions for this equation we
note that in view of Eq. (2) ⟦∇σ⟧ ¼ λ ⊗ N, where both
the gradient and the normal are in 4D (space-time) [52],
while λ is a second order tensor in 3D (space) [53].
One consequence of such Hadamard condition is that
⟦ _σ⟧n ¼ −V⟦divσ⟧, where V ¼ j∇τj−1 is the normal veloc-
ity of ωðtÞ. Specialization to our case gives

_σðx; tÞn ¼ j∇τj−1div(σa∘ ðxÞ þ pðxÞ); ð3Þ

FIG. 1. A sketch of the deposition surface ωðtÞ of the body
BðtÞ, showing an infinitesimal element subjected to external
tractions s (three components) and controlled by active surface

stresses σ∘ a (three components).
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which is the desired boundary condition, first derived
apparently in Ref. [27] by a different method, see
also Ref. [43].
Next, we assume that inelastic phenomena leading to the

accumulation of incompatibilities take place only at the
instant of deposition, whereas away from the accreting
surface the incremental behavior is linearly elastic. If we
neglect the effect of prestress on the incremental behavior
[54], we can write _σ ¼ C_ϵ, where _ϵ ¼ ð∇ _uþ∇ _uTÞ=2 and
_u is the incremental displacement. Now, we can solve a
sequence of incremental problems and compute the total
elastic strain ϵðx; tÞ ¼ C−1σðx; tÞ, which is generally
incompatible.
If we now require that the final incompatibility

ηðx; tfÞ ¼ curlcurlϵðx; tfÞ equals its target physiological
value ηpðxÞ, we obtain a constraint on the instantaneous

incompatibility of the arriving material η
∘ ¼ curlcurlðC−1σ

∘Þ
in the form

η
∘ −∇τ × ½curl_ϵ�Tω − curl½∇τ × _ϵω� ¼ ηp in BðtfÞ: ð4Þ
Here, we used the notation AωðxÞ ≔ Aðx; τðxÞÞ, see
Ref. [43] for details. Since _ϵðx; tÞ in Eq. (4) implicitly

depends on σ
∘
aðxÞ through the solution of the incremental

problem, we now have a nonlocal relation between the

three independent controls of σa
∘ and the three independent

targets in ηp. In the cases when these relations should be
understood in the sense of distributions, we implicitly
require that in each singular point x0, Bðx0; tfÞ ¼ Bpðx0Þ
and Ωðx0; tfÞ ¼ Ωpðx0Þ. Equation (4), which is the main
result of this Letter, defines the deposition strategy that
ensures the attainment of a desired stress distribution in
physiological conditions.
As an illustration, consider the process of layered

manufacturing of an artery [29,31]. For simplicity, the
artery will be modeled as a hollow, infinitely long cylinder
loaded in plane strain. This is equivalent to replacing a
cylinder by a disk which makes the problem two dimen-
sional and fully explicit. We assume that the deposition
starts on a rigid mandrel of radius ri and that the disk grows
outwards until the final (physiological) radius rf is reached.
It is convenient to use as a timelike parameter R ¼ RðtÞ,
representing the current radius of the accreting surface
(line), so that τðRÞ≡ R. Intermediate configurations of the
artery are then represented by ri ≤ r ≤ R ≤ rf. See Fig. 2
for the “macroscopic” rendering of this process: our
“microscopic” formulation corresponds to the limit when
the thickness of the attached layers h → 0.
If the elastic solid is isotropic and the deposition strategy

respects polar symmetry, the incremental displacement
reduces to its radial component _uðr; RÞ. In this case the
incremental radial and hoop strains are _εr ¼ ∂r _u and
_εθ ¼ _u=r, respectively, where the superposed dot denotes
∂=∂R. The incremental stress rates _σr=θ¼2μ_εr=θþλð_εrþ _εθÞ,

where λ and μ are the Lamé moduli, must satisfy the
equilibrium equation ∂r _σr þ ð _σr − _σθÞ=r ¼ 0.
Observe that the applied tractions have only a radial

component sðRÞ, and that the surface component of the
deposition stress is fully characterized by its hoop compo-

nent σ
∘
aθðRÞ ∼ ft=h, see Fig. 2. Then, (3)2 reduces to

_σrðR;RÞ¼gðRÞ, where gðRÞ ¼ s0ðRÞ þ ½sðRÞ− σ
∘
aθðRÞ�=R.

Assuming that displacements are fixed on the rigid man-
drel, _uðri; RÞ ¼ 0, we obtain an explicit solution of the
incremental problem,

_uðr; RÞ ¼ R2gðRÞ
μr2i þ ðμþ λÞR2

r2 − r2i
2r

: ð5Þ

To specify the deposition protocol σ∘aθðrÞ we need to
satisfy Eq. (4) and match the target topological constraints
imposed through Bp and Ωp. In view of our symmetry
assumptions, the strain incompatibility tensor reduces to
η ¼ ηðrÞk ⊗ k, where the unit vector k is aligned with the
cylinder axis, η ¼ ε00θ þ ð2ε0θ − ε0rÞ=r and 0 ¼ ∂=∂r.
Equation (4) reduces to η

∘ðRÞ − ½R_εθðR;RÞ�0=R ¼ ηpðRÞ
and the conditions on a potential line singularity at
r ¼ 0 take the form Bp ¼ 0 and Ωp ¼ 2πφðriÞrik. Here,
we introduce the function φðrÞ ¼ ε0θ þ ðεθ − εrÞ=r, see
Ref. [43] for additional details. Since η ¼ ðφrÞ0=r, we

can recast Eq. (4) in the form φ
∘ ðRÞ − _εθðR;RÞ ¼ φpðRÞ,

where φ∘ ðrÞ refers to the arriving material and φpðrÞ to the
physiological target state, while _εθðr; RÞ is calculated from
Eq. (5). Note that if φpðriÞ ≠ 0, the target incompatibility
has a nonzero topological (global) component.
If we now assume for determinacy that sðRÞ ¼ 0 and

σ
∘
aθðriÞ ¼ 0, we can express the function φ

∘ ðRÞ in terms of
φpðrÞ. This gives the desired deposition strategy securing
the attainment of a generic incompatibility:

σ
∘
aθðRÞ ¼

4μðμþ λÞ R R
ri
½μr2i þ ðμþ λÞr2�φpðrÞdr

ð2μþ λÞ½μr2i þ ðμþ λÞR2� : ð6Þ

For arteries, the physiological state is characterized by a
finite internal pressurep acting on r ¼ ri and amuch smaller

FIG. 2. A sketch of the winding process during artificial
manufacturing of an artery, showing the deposition of a layer of
thicknesshsubjectedtoapassiveforcefn andanactiveforceft.Our
microscopic formulation corresponds to the limit h → 0, ft → 0,
whileft=h remains finite. Inset: the cross sectionof an arterygrown
by winding layers of mesenchymal cells (courtesy of Ref. [30]).
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external pressure acting on r ¼ rf, which we assume to be
equal to zero. Under these conditions, stresses in a purely
elastic tube would be transmurally inhomogeneous (Fig. 3),
which is incompatible with experiments [55] pointing
towards homogeneity of the hoop stress [3]. To find the
physiologically justified incompatibility that guarantees that
σpθ

0 ¼ 0, we combine this target condition with the equilib-
rium equation σpr 0 þ ðσpr − σpθ Þ=r ¼ 0 and obtain that σpr ¼
−pðrf − rÞri=½rðrf − riÞ� and σpθ ¼ pri=ðrf − riÞ. We can
now compute the function φpðrÞ and substitute it into
Eq. (6). The resulting deposition strategy

σ
∘
aθðRÞ
p

¼ rirfðR − riÞ½μri þ ðμþ λÞR�
ðrf − riÞR½μr2i þ ðμþ λÞR2� ð7Þ

is illustrated in Fig. 3.
Note that the singular component of the incompatibility

does not vanish since φpðriÞ ¼ pð2μþ λÞrf=½4μðμþ λÞ
ðrf − riÞri�; the physiological conditions then require the
presence of a “ghost” wedge disclination (or its diffuse
analog) aligned with the axis of the artery. Since the
nonsingular part of the incompatibility is also different
from zero, the residual stresses cannot be relaxed by a
single longitudinal cut turning the cylinder into a simply
connected domain. This is consistent with experiments on
arteries [55], showing that the internal layer (media) has a
greater opening angle than the external layer (adventitia),
see the figures in Ref. [43]. Such behavior is also
reproduced by our finite element method (FEM) simula-
tions (Fig. 3) for a disk manufactured following the
proposed strategy, see Ref. [43] for details on the numerics.
As a second illustration, consider a rather different

physiological target that may be relevant for explosive
plants [34]. Keeping the same geometry as in the case of
arteries, we demand that the distribution of incompatibility
is such that the stored elastic energy due to residual stresses

is fully released with a single global cut. This requirement
will be met if we grow a hollow tube with ηp ¼ 0 in the
bulk and nonzero Ωp. To this end we must choose
φpðrÞ ¼ c=r, with c a constant characterizing the magni-
tude of the stored or released energy. The resulting singular
incompatibility field can be interpreted as a Volterra wedge
disclination with an opening angle Ωp ¼ 2πc [37,40,43]. If
we now substitute this incompatibility into Eq. (6), we
obtain that the deposition strategy

σ
∘
aθðRÞ
c

¼ −
2μðλþ μÞ
λþ 2μ

ðμþ λÞðr2i − R2Þ þ 2r2i μ logðri=RÞ
μr2i þ ðμþ λÞR2

:

ð8Þ
It is illustrated in Fig. 4, where we also show by FEM
simulation that a single longitudinal slicing of a prestressed
cylinder with this (purely singular) incompatibility indeed
leads to a complete release of the residual stresses, and that
subsequent orthogonal slicing does not produce additional
relaxation.
To illustrate yet another type of protocols where both

tensorial components of the deposition stress, pðxÞ and

σ
∘
aðxÞ, play an active role, we assume that the newly

arriving continuum particles are hydrostatically pre-
stressed, with the control parameter π representing neg-
ative pressure. In the same geometrical setting as above we

get πðRÞ ¼ sðRÞ ¼ σ
∘
aθðRÞ and, following an almost iden-

tical line of reasoning, we obtain that under such boundary
or deposition conditions the strain distribution character-
ized by a generic function φpðRÞ can be reached if we use
the protocol

πðRÞ ¼ 2ðμþ λÞ
r2i ð2μþ λÞ

Z
R

ri

½μr2i þ ðμþ λÞr2�φpðrÞdr: ð9Þ

Clearly both targets considered above, hoop stress uni-
formity and a complete release of energy with a single cut,

FIG. 3. Left: deposition strategy guaranteeing transmural uni-
formity of the hoop stress in physiological conditions. The inset
shows a FEM simulation illustrating the stress norm (yellow ¼ 0,
magenta ¼ max) and the displacement field resulting from
cutting the disk along the dashed lines [43]. Right: purely elastic
(σer , σeθ) versus growth induced (inelastic) (σpr , σpθ ) stress
distributions when an internal pressure p ¼ 1.

FIG. 4. Left: deposition strategy guaranteeing that the stored
elastic energy is completely released by a single cut. The inset
shows a FEM simulation of the displacements field resulting from
cutting the disk along the dashed lines. The stresses are everywhere
zero after the first cut [43]. Right: stresses in the disk before and
after the radial cut; cE ¼ 1, where E ¼ 4μðλþ μÞ=ð2μþ λÞ is the
2D Young modulus.
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can be achieved in this framework as well. An important
example of such hydrostatic “printing” is crystallisation in
a closed container, where the inhomogeneity of the
deposition pressure is ensured by the finite compressibility
of the melt, e.g., Ref. [49].
In conclusion, we outlined a new theoretical framework

for controlled incompatible surface growth and obtained
explicit relations that can be used to guide additive
manufacturing. Acquiring an ability to generate complex
patterns of residual stresses is a crucial step in both
biological evolution and the design of biomimetic meta-
materials. The proposed surface deposition strategy prom-
ises to bring a combination of an unprecedented level of
control, together with the ability to handle arbitrarily
complex geometries. Future studies are needed to tailor
our general theory to specific deposition technologies [56],
to extend it to finite strains [57], and to develop an energetic
framework coupling the velocity of the accretion front with
the corresponding driving forces [58].
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