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Abstract. Recently acoustic signature of dislocation avalanches in HCP materials was found to be long
tailed in size and energy, suggesting critical dynamics. Moreover, the intermittent plastic response was
found to be generic for micro- and nano-sized systems independently of their crystallographic symmetry.
These rather remarkable discoveries are reviewed in this paper in the perspective of the recent studies
performed in our group. We discuss the physical origin and the scaling properties of plastic fluctuations
and address the nature of their dependence on crystalline symmetry, system size, and disorder content. A
particular emphasis is placed on the formation of dislocation structures, and on our ability to temper plastic
fluctuations by alloying. We also discuss the “smaller is wilder” size effect that culminates in a paradoxical
crack-free brittle behavior of very small, initially dislocation free crystals. We argue that the implied transition
between different rheological behaviors is regulated by the ratio of length scales R = L/l , where L is the
system size and l is the internal length. We link this size effect with size dependence of strength (“smaller
is stronger”) and the size-induced switch between different hardening mechanisms. We show that the task of
taming the intermittency of plastic flow at ultra-small scales can be accomplished by generating tailored
quenched disorder which allows one to control micro- and nano-forming and opens new perspectives
in micro-metallurgy and structural engineering of miniature load-carrying elements. These insights were
beyond the reach of conventional theoretical approaches that do not explicitly account for the stochastic
nature of collective dislocation dynamics.

Résumé. Malgré une étude précurseur de Becker et Orowan en 1932 sur le Zinc, l’analyse des fluctuations
dans la dynamique de la déformation plastique des matériaux cristallins a été pendant longtemps négligée,
probablement du fait que dans la plupart des matériaux métalliques d’intérêt industriel ces fluctuations
sont indétectables en termes de comportement mécanique aux échelles macroscopiques. La situation a
changé drastiquement il y a une vingtaine d’années lorsque, d’une part, l’enregistrement des signatures
acoustiques des avalanches de dislocations dans certains matériaux hexagonaux a montré que ces dernières
pouvaient être distribuées en loi de puissance, suggérant une dynamique critique, et d’autre part il a été
observé que la plasticité des systèmes de taille micro- et nano-métrique devenait intermittente pour la
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plupart des matériaux non-alliés. Dans cet article, nous discutons, sur la base de récents travaux et dans le
cadre de la physique statistique, de la nature et des propriétés statistiques et d’échelle de ces fluctuations
plastiques en fonction de la symétrie cristalline, de la taille du système considéré, ainsi que du désordre
interne, qu’il soit émergent (structures de dislocations) ou ajusté par des techniques d’alliage. On met ainsi
en lumière des effets de taille très prononcés sur la stochasticité de la déformation plastique, un rapport
d’échelle R = L/l entre la taille finie du système L et une échelle interne l jouant un rôle majeur pour
expliquer ces transitions de comportement. On discute également le lien avec d’autres effets d’échelle, sur
le seuil d’écoulement plastique ou la nature des mécanismes de durcissement, et on montre comment les
techniques d’alliage peuvent réduire ces instabilités plastiques. Ceci ouvre la voie vers une métallurgie et des
pratiques d’ingénierie aux échelles sous-microniques tenant compte du caractère stochastique intrinsèque
de la plasticité à ces échelles, et tentant de le supprimer ou de l’atténuer.

Keywords. Plasticity, Dislocations, Statistical physics, Avalanches, Critical phenomena.
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1. Introduction

Beyond the qualitative pioneering study of Becker and Orowan [1], the fluctuating nature of crys-
tal plasticity has been largely overlooked for a long time, not in the least, because for most ma-
terials of engineering interest these fluctuations remained almost undetectable and considered
as negligible comparing to the macroscopic response at bulk scales. The situation changed only
when new technology opened a way to precision measurement of acoustic emissions accompa-
nying plastic deformation. First, the acoustic signature of dislocation avalanches in HCP materi-
als was found to be long tailed in size and energy, suggesting critical dynamics [2, 3]. Second, the
intermittent plastic response was found to be generic for micro- and nano-sized systems inde-
pendently of their crystallographic symmetry (e.g. [4, 5]).

1.1. Continuum mechanics versus discrete approaches

Following major discoveries during the “miraculous year” of 1934, lattice dislocations have
been universally accepted as the main carriers of plastic deformation in crystalline solids [6–
10]. The initially proposed dislocation theory was intrinsically discrete: plastic deformation
was understood as resulting from the “quantized” activity of topological defects. An alternative
concept of dislocations as singularities of continuum deformation fields has been developed
much earlier and by that time was well established inside solid mechanics [11–13]. The singularity
centered understanding of dislocations was not undermined by the new inherently discrete
theory, for instance, the continuum theory of dislocations is still actively used in seismology [14].
However, it is by now universally accepted that none of these approaches is universal and that
the type of description should depend on the scale of coarse-graining. In particular, it has been
rigorously shown that the “quantized” lattice dislocations take the form of elastic singularities
when the Burgers length scale is small comparing to length scales imposed by the loading [15,16].

The subsequent progress in crystalline plasticity was based on the advances in our under-
standing of the structure of the cores of individual topological defects, in quantifying their short
range interaction, and more recently in finding correlations in their collective dynamics. The
continuum mechanical approaches to dislocation-driven plasticity were developed in parallel to
lattice-based theories, starting from the pioneering works of Nye [17] and Kröner [18] who built
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the foundations of a field theory linking continuum displacement field to dislocation density ten-
sor. For recent developments along these lines see [19–23].

Comparing to meso-scale modelling approaches, explicitly accounting for individual disloca-
tions (or dislocation segments) and their interactions [24,25], and to fully microscopic molecular
dynamics simulations [26, 27], the conventional phenomenological continuum models of crys-
tal plasticity offer the roughest description in the sense that they capture only the main effects
of plastic yielding. They achieve the goal of representing complex geometries and loading con-
ditions by drastically reducing the number of degrees of freedom. The implied spatial coarse-
graining and temporal averaging is based on the identification of small internal length and time
scales and relies on formal homogenization techniques allowing one to link the continuum vari-
ables with their lattice counterparts.

However, such a program has never been actually implemented rigorously in its full complex-
ity and the existing continuum approaches to crystal plasticity remain largely phenomenologi-
cal. Already the very idea of a pure continuum theory has several fundamental shortcomings. In
particular:

(i) Identifying the appropriate internal length scale l remains an unsolved problem. In met-
als with multiple slip systems, such as FCC, it is known that dislocation patterns emerge sponta-
neously [28, 29]. These patterns may or may not be associated with a well-defined characteristic
scale lp [30]. In cases they do, lp may represent a typical cell size or a spacing between persis-
tent slip bands [31] and is generally of the order of a few µm in FCC materials. It would then be
inversely proportional to the yield stress due to the similitude relation (see more below) [25, 32].
When such a scale can be unambiguously defined, it may be tempting to identify the homog-
enization scale l with lp . With all this said, the determination of lp , as well as the check of the
correctness of the similitude relation, remain fully empirical. Moreover, in crystalline structures
characterized by a strong plastic anisotropy, such as HCP crystals, the implied dislocation pat-
terns with a well-defined characteristic size do not form at all [33], which leaves the question of
the averaging scale completely open.

(ii) There has been an increasing evidence of the existence of temporal fluctuations in crys-
talline plasticity induced by cooperative motions of dislocations. The intermittent dynamics was
qualitatively recognized in HCP crystals long ago [1], however, it has not been analyzed quanti-
tatively till the turn of this century [2, 3]. This became a bigger issue when it was realized that,
upon decreasing the system size below few µm—noticeably, the same order of magnitude as the
characteristic scale lp —, plastic deformation becomes jerky independently of crystal symme-
try [4, 34, 35]. It raised major concerns regarding manufacturing and reliable utilization of ultra-
small machinery [36, 37]. By construction, the phenomenological continuum models and field
theories are unable to deal with such fluctuations, unless stochastic closures are implemented
implicitly [38, 39].

(iii) By construction, the continuum dislocation density tensor only accounts for dislocations
generating a net plastic distortion at a given scale l , the so-called “geometrically necessary dis-
locations (GND)”. It, therefore, ignores the “statistically stored” dislocations (SSD) with zero net
Burgers vector [13]. This is a strong limitation as SSD are tightly linked to hardening. In princi-
ple, this problem can be “resolved” through a decomposition of the dislocation density tensor
into contributions from different slip systems combined with a very high spatial resolution, well
below the average dislocation mean-free path [40]. At that resolution any dislocation becomes
geometrically necessary, however, it would completely eliminate the advantage of a continuum
description [41]. Instead, the continuum descriptions fully focused on the internal elastic fields
associated with GND can hardly deal with dislocation nucleation and other processes involv-
ing short-range interactions such as multiplication, annihilation, or the formation of junctions.
There are, however, recent developments in this direction that are promising [41].

C. R. Physique, 2021, 22, n S3, 1-37
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Some macroscopic plastic instabilities and jerky plastic flows in alloys have been linked to dy-
namic strain aging related to the diffusion of solutes towards dislocation cores and the unpinning
of dislocations from these point defects [42–44]. This interesting but somewhat specific problem
has been thoroughly analyzed elsewhere, often from an augmented continuum framework with-
out reference to lattice dislocations [45]. We leave it outside the scope of the present paper fo-
cusing on pure crystals, or systems containing passive quenched disorder. In such systems, in-
termittent fluctuations have a completely different origin and remained so far beyond reach for
continuum theories.

It has to be also mentioned that unlike elasticity, plasticity is a dissipative process generating
heat and producing irreversible deformations. This implies that a purely mechanical description
in terms of interacting purely elastic defects, either discrete or continuous, is inadequate, and ar-
gues instead for a thermodynamical approach [46]. However, it is immediately clear that weakly
nonequilibrium thermodynamics, which has been successful in describing linear viscoelasticity
and heat conduction, would not be sufficient because plasticity involves threshold type nonlin-
earity and is therefore non linearizable. Even though the fully adequate, strongly nonequilibrium
statistical mechanics has not been developed yet, the attempts to model plasticity directly in sta-
tistical mechanics terms by viewing crystal as an ensemble of interacting, out of equilibrium de-
fects has been made repeatedly since the early days of dislocation theory, see the review in [47].

The elusive character of the initial hopes to use equilibrium statistical mechanics was however
soon realized. If point interactions within a gas are weak, dislocations, represented by line seg-
ments, interact strongly both at short-range (direct entanglements and depinning) and at long
range (transmitted by elastic fields). The combination of threshold type interaction and the ex-
tended nature of the interacting defects gives rise in a driven system to a rich repertoire of dy-
namic behaviors characterized by cooperative effects and self-organization. The emerging scal-
ing laws are thus just a signature of the underlying highly correlated collective dynamics. More-
over, dislocations are defects with an energy much higher than the energy of thermal fluctua-
tions, which can hardly affect them. Therefore, a driven system undergoing plastic deformation
remains at room temperature far from thermal equilibrium [25]. Instead of thermalization, com-
plex metastable out-of-equilibrium dislocation patterns emerge and intermittently store and dis-
sipate the energy constantly delivered by the loading device. One can say that the energy effec-
tively flows through the system, arriving at macro scale and dissipating at the scale of dislocation
cores. The emerging downscale energy cascade is probably as complex as in the case of turbulent
flows with power law scaling similarly emerging in the intermediate “inertial” range.

Despite these impediments, there have been recent attempts to build a thermodynamic
theory of crystalline plasticity by assuming only partial thermalization involving large but limited
number of degrees of freedom. Such approaches have been successful in rationalizing some of
the phenomenology of dislocation patterning and came up with an original understanding of
strain-hardening which relies on first principles type arguments [47–49]. Theories of this type
were particularly effective in dealing with elevated temperatures and nonzero loading rates in
crystals with significantly inhibited long range dislocation interactions. In such systems, the
role of elasticity is weak, and the correlations resulting from self-organization of defects are
suppressed. This allows for at least partial thermodynamic equilibrium to be achieved. Despite
these successes, it is probably safe to say that a broadly applicable thermodynamic theory of
plasticity has not been yet developed.

1.2. The goals of this review

Our aim here is to discuss in some detail recent advances in the characterization and mod-
elling of plastic fluctuations in space, time and energy domains. We discuss why plastic flow
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in crystals often occur through intermittent slip avalanches that are power-law distributed and
in this sense scale-free [2, 3]. While the presence of such highly correlated fluctuations clearly
suggests the critical character of collective dislocation dynamics, the nature of the underlying
self-organization mechanism is still highly debated [5, 50, 51]. The literature devoted to plastic
intermittency, dislocation avalanches, and the associated criticality is steadily growing and an
exhaustive review of the subject is far beyond the scope of this paper. The early work was re-
viewed in [52] and more recent comprehensive discussions can be found in [53–61]. The goal
of this review is to address only the subjects in whose development some of us have played an
active role.

As we have already mentioned, the discussion will be centered around the physical origin of
the scaling behavior. Along the way, we will also address the nature of the dependence of the
critical exponents on crystalline symmetry, system size, and disorder content. We only touch
upon such important emergent behaviors as the formation of dislocation structures and system
size events.

The recent discovery that the reported scaling in crystal plasticity is not universal, and that
the measured power law scaling exponents depend on lattice structure, crystal orientation in the
loading machine, the size of the crystal, its purity, and the presence or the absence of harden-
ing [33, 62–64, 64–66], reveal rich and complex physics of the underlying self-organization pro-
cess that still remains largely unexplored [67]. Without attempting to make a comprehensive ex-
ploration of the elemental plasticity mechanisms, we concentrate on the recent work addressing:
(i) experimental tracking of plastic fluctuations either directly from stress–strain records [64, 68],
or from acoustic emission (AE) in bulk materials [62, 66, 69]; (ii) numerical simulations based on
the minimal automaton model of plastic flow in crystals proposed in [67,70]; (iii) stochastic mod-
eling of mesoscale crystal plasticity introducing rheological closure relations with multiplicative
noise [62]. Our various comments on the recent progress in the field are therefore highly biased
by our own experimental and computational work and are presented in the perspective of the
studies performed in our group.

We begin by summarizing the current understanding of the nature of scaling in pure materials.
In particular we raise the question why and how the associated exponents depend on crystal
symmetry and system size. We then explain how the transition from mild (Gaussian-like) to
wild (power law distributed) fluctuations is controlled by an internal length scale l and use the
obtained understanding to build a connection with plastic hardening. Our next subject is the
“smaller is wilder” size effect that culminates in a paradoxical crack-free brittle behavior of very
small, initially dislocation-free crystals. We show that the implied transition between ductile and
brittle rheological behaviors is regulated by the ratio of length scales R = L/l , where L is the
system size. We link this relatively new size effect with some other well-studied phenomena like
the size dependence of strength (“smaller is stronger”) and the size-induced transition between
different hardening mechanisms.

After gaining an insight regarding plastic fluctuations in pure crystals, we broaden the scope
of our discussion to include alloys, and show that, in submicron samples, altering the alloying-
induced quenched disorder may serve as a proxy for the variation of the system size. We show
that the transitions in the statistical structure of these fluctuations induced by the ratio between
the external size and a disorder-dependent internal scale can be rationalized within a simple
numerical model allowing to obtain quantitative relations between the system size and the
scaling exponents.

We then turn to one of the main technological challenges in nanoscience which is to tame
the intermittency of plastic flows at sub-micron scales. We show that this task can be accom-
plished by introducing tailored quenched disorder, i.e. from alloying, which allows one to control
micro- and nano-scale forming. This understanding opens new perspectives in nanometallurgy
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aiming not only at improving mean properties (e.g. strength) but also at tempering associated
deleterious variability of the response.

To conclude, we reiterate that the problems posed by the emerging science of structural engi-
neering of sub-micron load-carrying elements cannot be solved by using conventional methods
of continuum plasticity and equilibrium statistical mechanics. New methods are needed, tak-
ing explicitly into account the out of equilibrium, highly correlated nature of collective disloca-
tion dynamics. These methods are only now being developed and our review should be viewed
as a step in the direction of clarifying and sharpening some of the most important underlying
questions.

2. Pure materials

2.1. Historical background

The first reported evidence of intermittent plasticity dates back to the pioneering study of Becker
and Orowan, who observed during the deformation of Zinc crystal rods a succession of sudden
strain jumps of vastly different sizes [1]. It is worth stressing that these experimental results likely
played a substantial role in elaborating dislocation theory by Orowan two years later [6,56]. Forty
years after Becker and Orowan, plastic bursts were observed again in Zinc crystals, still directly on
stress–strain curves [71]. As we are going to explain below, it is not incidental that all these initial
obsevations of jerky plastic flow were made on HCP crystals characterized by a strong plastic
anisotropy.

Outside these pioneering observations, the intermittency of plastic deformation was only
episodically addressed until the late 90’s. In classical continuum theory, it was implicitly assumed
that the inevitable fluctuations resulting from discrete dislocation motions average out and
become invisible at engineering scales. These fluctuations were believed to be associated with
a particular mesoscopic scale that is much smaller than the scale of the observations. They were
also perceived as roughly Gaussian or mild in the terminology of Mandelbrot.

However, experimental investigations of plastic fluctuations continued to challenge this pic-
ture. In the late 60’s, a new generation of experiments was performed using indirect monitoring
tools which switched attention from stress–strain curves to acoustic emission (AE) accompany-
ing plastic flow. Several authors reported acoustic bursts during plastic deformation in materi-
als with different crystal symmetries, and interpreted them as a signature of slip events result-
ing from cooperative dislocation motions [72, 73]. In FCC metals, such burst-like AE activity was
scarce, with maximum intensity at plastic yield but fading away rapidly as the material strain-
hardened. It was also superimposed on the so-called continuous AE [74, 75]. This slow evolving
background “noise” was interpreted as resulting from the cumulative effect of numerous, small
and uncorrelated dislocation motions, in full contrast with the cooperative motions giving rise to
discrete AE bursts. The AE source model that was used to link the characteristics of the recorded
AE signals to local dislocation motions is detailed elsewhere [62,76]. Very generally, this model as-
sumes that for discrete AE signal, the radiated acoustic energy EAE integrated over the waveform
duration is proportional to the mechanical energy dissipated by the plastic event at the source.
For continuous AE, the acoustic power dEAE/dt is taken as a proxy of the plastic strain-rate.

Now, nearly 50 years after these historical studies, it is rather striking to discover how many
modern issues related to plastic fluctuations have been already implicitly identified at that time.
Those include the role of crystal symmetry, the influence of strain hardening, and the possible
coexistence of large cooperative motions (dislocation avalanches) with small uncorrelated mo-
tions. However, these early studies neither provided the quantitative analysis of fluctuations nor
did they offer a framework for the interpretation of the observed intermittency.
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A few decades later, the whole subject was reactivated when AE was finally carefully recorded
during the plastic deformation of ice single crystals, and the obtained time series were statistically
post-processed [2, 3]. Subjected to uniaxial compression, this HCP material with a particularly
strong plastic anisotropy [77], unexpectedly revealed a fully intermittent AE signal characterized
by a succession of bursts that were power-law distributed in energies. The obtained data could
be fit using a relation for the probability density P (EAE) ∼ E−κE

AE . The value of the exponent κE was
found to be somewhat close to the mean-field value 1.5 [5, 78, 79] and independent of either the
applied stress or the temperature [2, 3].

Using the same material, it was further shown that the dislocation avalanches are clustered
in time. More precisely, it was demonstrated that the larger the energy of an avalanche, the
larger, in average, is the avalanche occurrence frequency immediately after that avalanche.
These observations were interpreted as an evidence of “aftershocks” triggered by the main
stress redistribution [80]. Spatial clustering, i.e. a fractal structure of avalanche distribution, was
detected as well. Moreover, spatial and temporal distributions of avalanches were found to be
linked. More precisely, aftershocks turned out to be triggered in the vicinity of their “mainshock”,
which is a consequence of stress transfer decay with the distance from the mother avalanche [81].
All these observations were later confirmed on other HCP materials such as Zinc or Cadmium,
with the exponent κE taking values close to that observed for ice [82].

The obtained results argue that in HCP crystals the collective dynamics of dislocations
self-organizes towards criticality. Consistently with earlier observations of jerky stress–strain
curves [1, 71], plastic deformation in such materials takes the form of well-separated avalanches.
The statistics of these avalanches was found to be of power-law type and their maximum size was
constrained only by the size of the system. In Mandelbrot’s terms this means that the fluctuations
are wild suggesting that quasi-statically driven HCP crystals are inherently critical.

Intermittent, power-law distributed plastic fluctuations were also identified from both AE
measurements and high-resolution extensometry in a FCC material, copper, at least in the early
stages of deformation [83]. However, compared to avalanches in HCP materials, the detected
plastic bursts in copper were much more sporadic, which confirmed observations made in
earlier studies [74, 75]. The scarcity of avalanches could not be truly quantified at that time
and its conceptual importance was understood only recently [62], see more about this below.
Aftershock triggering, signing interactions between avalanches, is however also observed in FCC
materials [84].

Overall, the AE measurements in both HCP and FCC crystals appear to be arguing for a scale-
free, critical character of crystalline plasticity. We recall that this is at odds with the classical para-
digm of dislocation-mediated plasticity as a smooth flow resulting from small, uncorrelated and
fundamentally similar increments and that was also the picture emerging from the observations
on bulk BCC materials. All this naturally raises the question whether these two conflicting pic-
tures can be reconciled. A related question is whether the critical nature of crystalline plasticity,
at least in HCP and FCC crystals, is universal and is characterized by a set of critical exponents
that are independent of the particular material and its purity, of the size and shape of the sample
and of the loading conditions.

In what follows, we try to answer these questions addressing separately the role of crystal
symmetry, the system size L and the quenched microstructural disorder. We will not address
the role of grain boundaries (GB) because this question has received so far only very limited
attention. There are, however, experimental and numerical studies showing that GBs can hinder
the development of dislocation avalanches, although a spatially correlated plastic activity can
spread in polycrystals over much larger distances [33, 85–87]. In other words, we consider single
crystals only, ranging from ∼ cm to ∼ nm external sizes, but do not address the role of grain size
on strength [88] or plastic intermittency [89] in nanocrystalline polycrystals.

C. R. Physique, 2021, 22, n S3, 1-37
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2.2. From subcritical to supercritical plasticity

Over the last years, the growing interest towards manufacturing devices at micro- to nano-
scales challenged the classical, size-independent approaches of material engineering and called
for new approaches to mechanical characterization of materials at such small sizes [52, 54].
Compression tests from a flatbed indenter on µm to sub-µm pillars became a standard tool
for such characterization [4, 53, 90]. Other methodologies have been proposed to explore even
smaller (few tens of nm) systems, such as tensile tests on nanowires [91] or compression of
nanoparticles [92, 93].

The first outcome of these studies was a discovery of a dramatic size effect on strength τy

which is usually defined as the shear stress reached at some arbitrarily specified amount of
plastic deformation [90]. This “smaller is stronger” phenomenon is usually expressed through
a scaling τy ∼ L−α, with α an empirical exponent varying for metals in the range 0.2–1 [54, 94,
95]. The conventional interpretation of this size effect is the increased role of free surfaces in
small systems. The associated mechanisms are known as source truncation [96] or dislocation
starvation [97]. In initially dislocation-free nanoparticles, yield stresses close to the theoretical
shear strength have been reported and linked to a size-specific particular dislocation nucleation
mechanism [92].

Besides the size effect on strength, compression tests on micropillars of FCC [4] and BCC
materials [34,98] revealed stress–strain curves with an anomalous presence of intermittent strain
bursts. These bursts were shown to be power-law distributed with the probability distribution
P (s) ∼ s−κ where s is the burst size.

This observation was in contrast with the scarcity of such plastic bursts at bulk scales, and
the association of these materials with a smooth macroscopic response, a dominance of multi-
slip and a presence of a single scale in dislocation patterning. It suggests that there is a distinct
fluctuation-related size effect which was coined as “smaller is wilder” [62]. A wealth of experi-
mental work confirms the emergence of intermittent plastic bursts in sufficiently small crystals
of both pure materials and alloys. The ubiquity of power-law distributed plastic bursts at small L
triggered an intense debate regarding the physical nature of this phenomenon [5, 50, 63, 99].

In this section we consider pure materials with different crystalline structures with the goal of
exhibiting the rich landscape of plastic fluctuations and showing how it evolves with the system
size. The effect of extrinsic disorder (alloying) will be studied in following sections.

Figure 1 shows experimental results: in (a) the true stress–true strain relations, and in (b)
the cumulative distributions of displacement burst sizes X (in nm). In (c) we illustrate the
deformation morphology for compression tests for µm to sub-µm pillars of a high-purity BCC
material, Mo [67]. In these experiments, the loading configuration was designed to ensure that
twinning was absent, i.e. plasticity was accommodated by dislocations only. A size effect on the
yield stress is apparent on Figure 1(a). The plastic displacement jumps along the compression
axis were extracted from the force-displacement raw data using a methodology detailed in [64].
An avalanche was defined as a plastic process characterized by a dissipation rate much greater
than the imposed loading rate. The size s of the dislocation avalanche can be linked to the
plastic jump X , which is assumed to scale with the cumulative distance covered by all mobile
dislocations during the avalanche [100]. The distributions presented on Figure 1(b) contain
results from at least four samples of the same size L.

Figure 1(b) illustrates the “smaller is wilder” size effect. For the larger pillars (L = 1500 nm),
the relatively smooth mechanical response (Figure 1(a)) produces a distribution of plastic fluc-
tuations which clearly has nothing to do with power law, instead revealing a characteristic size
X0 (see more below) and corresponding to a sub-critical regime. At an intermediate sample size
L = 1000 nm, the nature of plastic fluctuations changes drastically, with a power law distribution

C. R. Physique, 2021, 22, n S3, 1-37



Jérôme Weiss et al. 9

Figure 1. From mild to supercritical fluctuations in Mo micropillars. (a) Stress–strain
curves (shear). (b) Cumulative distributions of plastic displacements X detected over the
entire loading. The events marked in violet correspond to supercritical events, while those
marked in green are dragon-kings, system-spanning events. Dashed line represent the fits
of the data with (2). (c)–(e) SEM images of (c) 500 nm, (d) 1000 nm and (e) 1500 nm [112]-
oriented micropillars after compression. The marked slip traces indicate the locally single-
slip nature of the plastic flow in 500 nm and 1000 nm pillars. Adapted with permission
from [67]. Copyrighted by American Physical Society.

of avalanche sizes, P (> X ) ∼ X −(κ−1) emerging over three orders of magnitude, without detectable
lower or upper cut-offs, and with κ ' 2.0. A robust maximum likelihood methodology has been
used in all our analyses to estimate such exponents as well as to detect possible lower or upper
cut-offs [101]. The power law statistics in this range of crystal sizes characterizes a scale-free, crit-
ical dynamics, reminiscent of what was observed in several other studies (e.g. [3, 5, 52]).

As we decrease further the system size to 500 nm, the nature of plastic fluctuations changes
again, producing a regime characterized by the presence of large scale outliers coexisting with a
power-law range at small scales. The appearance of “dragon-kings” can be interpreted as a tran-
sition towards a supercritical dynamics [102]. The largest of the outliers correspond to system-
spanning avalanches resulting in a global “failure” of the pillar; one such system size avalanche is
marked by an arrow on Figure 1(a). Note that the corresponding mechanical response is brittle-
like, with only few inelastic events preceding the major collapse. This is similar to the previously
studied behavior of compressed nanoparticles in the diameter range 200–800 nm. They show an
extreme case of brittleness with a unique system-spanning dislocation avalanche preceded by
a purely elastic response [92, 103]. However, a quantitative comparison of our BCC pillars (Mo),
fabricated from a bulk sample containing pre-existing dislocations, and such FCC (Au and Ni)
nanoparticles, fabricated from solid-state dewetting and initially dislocation-free, has to be done
with caution.

C. R. Physique, 2021, 22, n S3, 1-37



10 Jérôme Weiss et al.

All these observations argue for a rich spectrum of mechanical behaviors depending on
the crystal size L: from a smooth, ductile-like response associated with non-scale-free (mild)
fluctuations in “large” crystals, to a purely brittle behavior characterized by a single dragon-king
event in “small” crystals. In this context, the critical scale-free dynamics, observed in our Mo
pillars for L = 1000 nm, appears as an intermediate regime underlying a brittle-to-ductile (BD)
transition which can be then associated with a particular range of system sizes.

Interestingly, a brittle-to-ductile (BD) transition is usually discussed in the context of fracture,
with dislocation nucleation at crack tip indicating the emergence of ductility [104, 105]. The
results presented above argue for a BD transition “without a crack”, i.e. in terms of collective
behavior of dislocations characterized by a particular scale-free structure of plastic fluctuations.
In this case, rather paradoxically, the nucleation of individual dislocations is associated with a
brittle regime [93].

2.3. The concept of wildness

In the setting discussed above, the evolution from super- to sub-criticality over a range of system
sizes occurs in a BCC material. In fact, a similar dependence of the plastic fluctuations on
system size L has been also observed in FCC materials. As already noted, initially dislocation-free
FCC nanoparticles do exhibit brittleness, even though a supercritical regime has not (yet) been
observed for FIB-fabricated FCC pillars. The latter may be related to the difficulty of fabricating
dislocation-free crystals due to the easiness for Ga+ ions to penetrate light FCC crystals, which
generates FIB-induced defects (small dislocation loops) near the surface [106, 107].

However, a recent study [108] showed that such FIB-induced dislocation loops in Al mi-
cropillars can be eliminated by thermal annealing, which makes the stress–strain response more
brittle-like. Unfortunately, the associated statistics of strain burst sizes has not been analysed.
While our observations on BCC crystals argue for a sharp transition from a critical dynamics at
L ∼ µm to a more ductile behavior at larger system sizes [34, 64], similar transition seems to be
more gradual for FCC materials. Figure 2 illustrates this effect for pure Al. While the size effect on
strength is still apparent (Figure 2(a)), slip burst distributions are characterized by a power law
tail over a wider L-range (∼500–3500 nm) than for Mo, with κ≈ 1.6–1.7, closer to the mean-field
value 1.5 (Figure 2(b)). At larger system sizes, say L = 6 µm, a larger exponent emerges, in as-
sociation with a smoother mechanical response. These observations may be viewed as another
argument supporting the idea of non-universal character of the exponent κ.

One can show that all the distributions shown in Figure 2(b) are well described by the generic
formula

P (X ) = X κ−1
0

Γ(κ−1)X κ
e−X0/X (1)

P (> X ) = 1−
Γ

(
κ−1, X0

X

)
Γ(κ−1)

, (2)

where Γ(a, x) is the incomplete gamma function, and the exponential term represents a lower
cut-off to power law statistics occurring around X = X0. These expressions characterize the
presence of wild (scale free, power-law distributed) fluctuations at large scales X À X0, coexisting
with mild fluctuations associated with a characteristic size X0 at small scales. Equations (1)–
(2) received a theoretical support from a simple mean-field stochastic model of dislocation
dynamics [62], which we will discuss in some detail later in the paper (see Section 5.2).

Note that for pillar sizes L ≥ 1µm, see Figure 2(b), the lower cut-off X0 is not an experimentally
imposed threshold. In particular, it increases for the largest Al pillars. This will become even more
apparent when we consider alloys (see Section 3). However, it is clear that a large range of mild

C. R. Physique, 2021, 22, n S3, 1-37



Jérôme Weiss et al. 11

Figure 2. From mild to wild fluctuations in Al micropillars. (a) Stress–strain curves (shear).
(b) Cumulative distributions of plastic displacements X detected over the entire loading.
The solid lines represent the fit of the data with (2), and the corresponding lower cut-off
values X0 are, from top to bottom: 0.64, 0.73, 0.61 and 1.02 nm. (c)–(e) SEM images of
(c) 500 nm, (d) 2000 nm and (e) 6000 nm micropillars after compression. Multislip is only
observed for the largest micropillars (6 µm). Adapted with permission from [64].

fluctuations, with sizes X < X0, remain undetected by our methodology [64]. This is particularly
the case for L = 500 nm Al pillars and L = 1 µm Mo pillars, where the lower cut-off is hardly
discernible on our data.

In addition, we did not find any statistical evidence of an upper cut-off limiting the power law
range in our Al data, independently of L. In particular, for the 1500 nm Mo pillars (Figure 1(b)),
Equation (2) with a large κ value fits well the data. In that case, however, the generic form given
above can be hardly differentiated from a log-normal distribution. In any case, all this means that
the observed sub-critical regime is strongly dominated by mild fluctuations.

The relative contribution of mild versus wild fluctuations to the total plastic strain can be rea-
sonably estimated. We call Xmin, the value, close to X0, above which fluctuations can be consid-
ered as being power-law distributed, i.e. wild, and write K = e−X0/Xmin . Then, the probabilistic
weight of the wild part of the distribution (1), measuring the amount of plastic strain accommo-
dated through scale-free avalanches, which we call wildness, and denote by W , can be written as
(see also Section 5.2) [62]:

W (κ,K ) = 1− Γ(κ−1, ln(1/K ))

Γ(κ−1)
. (3)

The most striking point here is the link between the wildness W and the power law exponent κ,
with large W being associated with smaller values of exponents. Experimentally, κ as well as the
lower bound Xmin can be estimated using the maximum-likelihood methodology [64, 101], and
X0 found from a best-fit of (2). The plastic strain dissipated through scale-free avalanches can
be independently calculated by accumulating all the strain bursts above Xmin, then comparing
the associated strain to the total plastic strain in order to estimate W [64]. We will show later in
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Section 3 that (3) is consistent with experimental data for a surprisingly broad range of materials,
including pure metals and alloys.

Here we only mention that FCC materials are characterized by an extended BD transition
taking place with increasing system size. A new finding is that this transition is associated
with a progressive evolution of wildness and exponent κ. We recall that in such bulk materials
macroscopic plasticity is mostly smooth (“ductile”) with only scarce bursts detected by AE (see
Section 2.1). At the macroscopic scales a proxy of wildness can be estimated from WAE, by
summing the energies of the detected bursts and comparing with the total emitted acoustic
energy (both continuous and discrete, see Section 2.1) [33,62]. In bulk FCC materials, WAE rapidly
decreases to a few % or less as strain hardening takes place and a dislocation substructure
forms [62, 69]. This is particularly visible under cyclic loading where dislocation avalanches
become exceptionally rare already after few cycles [66] (see Section 4).

Despite the achieved understanding, the issue remains with BCC materials exhibiting a
sharper BD transition than FCC materials. The origin of this difference will be discussed in the
next section.

2.4. External versus internal length scales

The results presented above show clear evidence of the strong effect of the system size on plastic
fluctuations. The quantitative role of such an external scale can be studied if we present it
as a ratio of two length scales, R = L/l , where l represents some judiciously chosen internal
length scale. The resulting nondimensional parameter will then control the collective dislocation
dynamics [64].

In case of the Mo pillar experiments illustrated in Figure 1, the initial dislocation density before
loading was measured giving ρ = 1.6×1012 m−2. This implies that the mean dislocation spacing
is ld = 1/

p
ρ ≈ 790 nm. We can interpret the length ld , which is naturally present in all pure

materials, as an internal scale.
With this interpretation at hand, we note that supercriticality is observed for L < ld meaning

R < 1 and subcriticality for L > ld or R > 1. This is not incidental, and illustrates the role of the
mutual interactions between dislocations (short-range and long-range) in setting the internal
dynamics.

Indeed, for R < 1, preexisting (and mostly locked) dislocations, serving as potential obstacles
in ensuing dislocation dynamics, are almost absent. Therefore the work of the loading device
is dissipated through a collective nucleation and correlated motion of unlocked dislocations. In
particular, such lack of inhibition leads to the emergence of super-critical instabilities.

Instead, for R À 1, moving dislocations necessarily encounter a considerable number of dif-
ferent obstacles, in particular, forest dislocations. In this context, cross-slip as well as short-
range interactions are promoted, frustrating the development of system-size correlated dislo-
cation avalanches. Hence, mild fluctuations and a ductile-like behavior ensue. In BCC materials
large lattice friction will likely play a role as well in inhibiting large avalanches (see more on this
below).

Over an intermediate range, R ∼ 1, i.e. for L ∼ ld , we observe that while the pillars are not
initially dislocation-free, short and long-ranged (elastic) interactions are nicely balanced, which
apparently creates the right environment for self-organization to a scale-free, critical avalanche
dynamics. The deformation morphologies shown on Figure 1(c)–(e) support this interpretation:
at small pillar sizes, plastic deformation is highly anisotropic with a clear domination of a single
slip plane, while at large pillar sizes, the plastic flow is more diffuse and isotropic as the result of
the dominating multislip deformation.
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A natural way to define the internal length scale l in the general case is to write [25, 64, 109]:

l =Gb/τpin, (4)

where G is the shear modulus and b the Burgers’s vector. The new parameter τpin is the effective
pinning strength of the existing obstacles inhibiting dislocation motion. We can write

τpin = τl +τ f + (τs +τp ), (5)

where τl is the lattice friction, τ f = α f Gb
p
ρ f is the pinning strength of forest dislocations

(with constant α f < 1). The two other terms, τs and τp , corresponding to extrinsic disorder
and describing the effects of solutes and precipitates, respectively, will be discussed in Section 3
devoted to alloys. Given this definition, the internal scale l corresponds to the distance at which
the dislocation/dislocation elastic interaction stress (scaling as Gb/l ) becomes comparable to the
dislocation/obstacle interaction stress τpin.

Experimentally, τpin can be in principle obtained from the yield strength under tension of bulk
samples [64]. However, caution is necessary when we deal with small scales. Consider e.g. BCC
materials below an athermal transition temperature Ta . Then the lattice friction experienced by
screw dislocations is large as the result of their compact core structure [110]. This implies the
necessity to overcome large barriers through thermal activation. Our tests on Mo, performed at
room temperature, belong to this range, as Ta ≈ 465 K in this material [25]. In FCC materials,
where lattice friction is small, independently of the temperature, one can expect a smaller value of
τl than in the case of BCC. This would lead to a larger value of the internal scale l and will increase
the L-range over which large fluctuations are expected. To confirm this conjecture we compare
in Figure 3 the data for Mo (BCC), Al (FCC) and Mg (HCP) pillars of the same size (3500 nm). In
particular, the Mo pillars display a much smoother mechanical response and a larger exponent
κ≈ 4.0. Given this scenario, one would expect the difference between FCC and BCC to disappear
for T > Ta , when the role of thermal activation in the dynamics of screw dislocation disappears.
This assertion is supported by the results reported in Abad et al. [111], where stronger plastic
intermittency in BCC materials at higher temperatures was observed. At these temperatures
lattice friction apparently no longer inhibits large scale self-organization and the nature of the
internal scale l changes.

Another factor biasing the competition between short-range and long-range interac-
tions is the damping of dislocation motion: if strong enough, it can inhibit fast dislocation
avalanches [112]. Consistently with this observation, plastic intermittency is suppressed in mi-
cropillars deformed at strain-rates (≥1 s−1) that are larger than the internal relaxation rate limited
by lattice friction [113]. The damping related effects should not, however, depend on the system
size L, which excludes its role in the critical to super-critical transition observed in BCC micropil-
lars even at low T (Figure 1). Here it is appropriate to refer to recent DDD simulations which
suggest that at low T < Ta and relatively large system sizes, strain fluctuations are controlled by
the slow (thermally activated) screw dislocation motion, hence avalanches can be damped [112].
Instead, at sub-µm sizes, the external stress imposed on samples enhance the athermal mobility
of screw dislocations to the level of edge dislocations, making irrelevant the thermally activated
motion. In particular, the DDD simulations show a reduced sensitivity of strength to temperature
as the size of BCC micropillars diminishes [114]. This implies that the damping mentioned above
is suppressed, which allows the initiation and propagation of strain bursts [112]. To summarise,
switching from long- to short-ranged interactions and variable role of damping may be the
factors explaining the sharper BD transition observed in BCC compared to FCC metals.

Questions, of course, remain regarding the interpretation of the internal scale l as defined by
(4). In BCC materials, dislocation patterning and cell formation are not observed below a certain
value of applied strain, which strongly increases with decreasing temperature. This is related to
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Figure 3. The effect of lattice structure on plastic fluctuations. (a) A comparison of stress–
strain curves for 3500 nm pillars of three different materials, Mg (HCP), Al (FCC) and
Mo (BCC). The stresses have been normalized by G , the shear modulus of each material.
(b) Corresponding cumulative distributions of plastic displacements X over the entire
loading. The solid lines represent the fit of the data with (2), and the corresponding lower
cut-off values X0 are 0.50 nm (Mg), 1.02 nm (Al) and 2.07 nm (Mo). (c)–(e) SEM images of
(c) Al, (d) Mg and (e) Mo micropillars after compression. Single slip is observed for Al and
Mg, while isotropic deformation is observed for Mo.

the temperature dependence of lattice friction and the limited ability of screw dislocations to
cross-slip at low temperatures [25, 115]. In this case, we can define ld = 1/

p
ρ f , which means

that we link the internal scale with the dislocation mean free path. However, the relation between
l and ld over a large range of conditions is not simple. On the one hand, increasing the lattice
friction enlarges τpin, hence lowers l . On the other hand, the constant α f in Taylor’s relation,
τ f =α f Gb

p
ρ f , is smaller than 1.

In FCC materials, lattice friction plays a minor role, and the link between ld and a dislocation
mean free path is less direct (e.g. [116]). Indeed, dislocation patterning emerges naturally in these
materials and the corresponding characteristic scale lp (e.g. cell size) appears as a natural mean
free path. The “similitude principle” then states [25, 32]

τpin

G
= k

b

lp
, (6)

which, combined with (4), relates lp to our internal length scale

lp = k
Gb

τpin
= kl , (7)

where k is a dimensionless constant; a comparison of experimental data for different materials
suggests that k ' 7.5 [25].
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Similar reasoning can also help to rationalize the effect of crystal symmetry on plastic inter-
mittency and the associated dislocation morphologies. We have already discussed above the sys-
tematic differences between FCC and BCC crystals. Figure 3 shows the results for HCP materi-
als. We deal here with 3500 nm pillars of Mg. The observed mechanical response is extremely
jerky, represented by a succession of plastic avalanches, which are power-law distributed in size
with κ ' 1.5. These observations for micropillars are entirely consistent with the recorded be-
havior of HCP bulk materials, where plastic jerkiness has been noticed long ago. It was seen di-
rectly on stress strain curves obtained for thin rods [1, 71], and was later quantified based on AE
measurements for general samples [3, 33, 62, 82]. All these studies revealed a high degree of wild-
ness WAE ' 1 independently of which HCP single crystals were studied (ice, Zn, Cd). The asso-
ciated exponent for the distribution of AE energies was found to be very close to the mean field
value 1.5.

These observations suggest an absence of the size-induced BD transition for HCP materials.
Apparently, they remain in a critical state starting from the system size of a few µm and all the
way to bulk scales. To rationalize these observations within our framework, we recall that the
mentioned HCP materials are characterized by a very strong plastic anisotropy: gliding in such
materials takes place preferentially along the basal planes whatever the system size. Another
characteristic feature is a low Peierls stress and the associated lack of lattice friction. In other
words, our parameter τl in such materials is anomalously small [25,33]. Plastic anisotropy implies
an absence of forest hardening, which means that τ f is also negligible. Altogether this means that
τpin is sufficiently small for l to be comparable to L. Then long-ranged elastic interactions fully
control the collective dynamics and nothing prevents self organization of dislocations towards a
critical state along the whole range of system sizes. The above arguments can explain the absence
of a ductile/subcritical regime. The possibility of a super-critical regime in these materials is also
very small because it requires an initially dislocation-free environment, which can be achieved
only if the system size is decreased well below few µm.

The plastic anisotropy of Mg pillars is apparent in Figure 3(d) showing a single slip morphol-
ogy. In fact, a strong correlation between plastic anisotropy and criticality should be kept in mind.
As we have seen whatever the material and its crystal symmetry, either critical or supercritical
regimes strongly correlate with slip anisotropy (see Figures 1(c, d), 2(c, d), 3(c, d)). Instead, ductile
behavior can be associated with homogeneous deformation resulting from isotropization due to
multislip (e.g. Figures 1(e) and 3(e)). In other words, there is a strong link between the dominance
of short-range interactions, multislip and ductility (or subcriticality). In contradistinction, initial
purity, dominant long-ranged interactions and extreme slip anisotropy, correlate with brittleness
(or supercriticality). In these systems, however, supercriticality easily turns into a scale free be-
havior over the whole range of observable in the presence of a non-vanishing initial dislocation
density.

In the next section we show how the above arguments transform in the context of plastic flows
in alloys (see below) [64].

3. Alloys

The introduction of impurities has been used for millennia in classical metallurgy to harden
bulk materials (e.g. [117]). Following this logic, the “smaller is stronger” size effect occurring in
pure metals at µm and sub-µm scales, also appears beneficial. However, as we detailed above,
such effect at small scale is accompanied by a detrimental “smaller is wilder” effect. The latter
is culminating in brittleness at nanoscale (see above), which may compromise the forming
processes and endanger the load-carrying capacity in various engineering/industrial processes
taking place in such samples [37, 118]. A key challenge is therefore to develop new metallurgical
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procedures to mitigate the associated plastic instabilities and reduce/suppress their detrimental
effects, while preserving all the advantages related to high strength.

Studies revealed a much weaker size effect on strength in alloys compared with pure materials.
This was interpreted as the fingerprint of a tailored internal length scale, which also suggested
the possibility of the reduction of plastic intermittency [119–121]. The framework proposed
in Section 2.4, and particularly our equations (4) and (5), can be used to rationalize these
observations.

Indeed, the observations suggest an increase of the mean-field pinning strength τpin as the
addition of solutes (τs ) or precipitates (τp ) should reduce the scale l . Since the latter controls the
transition from a long-ranged to a short-range controlled dynamics, alloying expands the range
of system sizes L over which plastic fluctuations remain mild.

Our own experiments on micropillars of Al alloys also confirmed the correctness of this
interpretation [64]. Micropillars containing either clusters of Sc solutes (so-called Al–Sc cluster
alloy), Al3Sc precipitates (Al–Sc precipitate alloy), and θ′-Al2Cu plate-like precipitates (Al–Cu–
Sn alloy) were tested. They are characterized by an increasing pinning strength τpin that can be
estimated from tensile tests at bulk scale. Figure 4(a) clearly shows that such alloying can strongly
reduce wild, unwelcome plastic fluctuations, while preserving a strengthening effect. At the level
of an individual alloy, the “smaller is wilder” effect is still present (Figure 4(b)). Therefore, even if it
has been shown that alloying can weaken or even suppress the size effect on strength [119,120], an
effect on plastic fluctuations remains. However, in alloys this effect is definitively shifted towards
smaller system sizes comparing to pure materials.

The distributions of displacement burst sizes X in the studied alloys were shown to be of
mixed character, very well described by the generic expressions (1)–(2). The associated exponent
κ and the characteristic size X0 increase with increasing sample size L and pinning strength τpin

(Figure 4(c)). We did not detect any signs of super-criticality over the analysed L-range, which is
not surprising, given that the associated transition towards pure brittleness is not observed in our
pure Al samples either, down to L = 500 nm.

In Section 2, we argued that the ratio of length scales R = L/l is the key controlling factor of the
wild-to-mild transition. We also concluded that there exists a universal (material-independent)
relationship between wildness W and the corresponding exponent κ (3). Figure 5 shows the
remarkable precision of these predictions.

When plotted as a function of the system size itself, the values of wildness parameter get
shifted towards smaller L when we increase the pinning strength of extrinsic disorder (Fig-
ure 5(a)). However, a normalization of L by the internal scale l = Gb/τpin collapses the data for
pure Al and for the different alloys of Al on the same curve. It shows that a wild-to-mild transition
indeed takes place around R ∼ 1 (Figure 5(b)). This prediction was also checked for the other ma-
terials tested, in particular, for Mo (BCC metal), which confirmed its generality. Figure 5(c), com-
piling W and κ values obtained for sample sizes ranging from sub-µm to bulk scales (in case of
ice), various pure materials with different crystal symmetries, as well as different FCC (Al) alloys,
illustrates the robustness of (3). The obtained agreement with observations indicates a sound
basis of the underlying theoretical ideas. While the individual scaling exponents turn out to be
nonuniversal [62, 67], the ensuing dependence of exponents on wildness appear to be universal.
The theoretical ideas behind the proposed framework, which justify such a generalized notion of
universality, will be discussed in Section 5.

Here, we also mention that that the correlation between the anisotropy of the deformation
morphology and the wildness, observed in pure materials, is also recovered in alloys (Figure 4(d)).
In particular, the extrinsic factors which contribute to isotropy and promote multi-slip, also de-
creases the wildness [64]. These results suggest that wild plastic intermittency, implying un-
welcome large fluctuations, can be systematically subdued from a tailored set of homogeniz-
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Figure 4. Taming plastic fluctuations from alloying: the case of Al–Sc alloys. (a) Stress–
strain curves for pure Al and Al alloys. (b) Stress–strain curves for Al–Sc cluster pillars of
different diameters. (c) Corresponding cumulative distributions of plastic displacements
X over the entire loading. The solid lines represent the fit of the data with (2), and the
corresponding lower cut-off values X0 are 1.91 nm (500 nm pillar), 3.16 nm (1 µm pillar),
4.11 nm (2 µm pillar), and 11.2 (3.5 µm pillar). (d) SEM images of a 500 nm pillar (left) and a
3500 nm pillar (right). Single slip is observed for the small pillar, and multislip for the large
one. Adapted with permission from [64].

ing defects, at least in FCC materials. The possibility of extending these wildness suppression
techniques to other crystalline structures, and, in particular to HCP materials displaying plastic
jerkiness even at macroscales [1, 33, 71], remains to be explored.

In the studied FCC alloys, τpin, and therefore the internal scale l , are largely controlled by the
extrinsic disorder terms τs and τp . These parameters depend on both the pinning strength of
individual obstacles and their average spacingλ. In the studied samples the spacingλwas always
smaller than l , sometimes (Al–Sc cluster alloy) by more than an order of magnitude. Therefore,
λ is not an appropriate normalization scale to reveal the underlying wild-to-mild universality. In
all cases, λ was also much smaller than L, justifying our approximate formula for τpin. One can
wonder what would happen when λ ∼ L, i.e. when dislocations can potentially cross over the
system without meeting an obstacle. Will this eliminate the beneficial effect of alloying and open
the way towards supercriticality and brittleness?

While these questions remain essentially open, we can refer to our recent work on Al–Cu alloys
with much larger θ′-Al2Cu plate-like precipitates, i.e. of diameter dp commensurate with the size
of the micropillars [68]. In that case, our simplified picture breaks down. In particular, comparing
to alloys with much smaller obstacle sizes but a similar τpin (deduced from tensile test at bulk
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Figure 5. The universal character of the wild-to-mild transition. (a) Wildness W as a
function of pillar diameter L for pure Al and various Al-alloys with increasing pinning
strength. (b) Wildness W as a function of the dimensionless ratio R = L/l for different
pure materials and alloys, where l was computed from (4) using τpin values estimated from
tensile tests at bulk scales, except for Mg for which the lattice resistance of basal slip was
used, i.e. τpin = τl = 0.5 MPa. (c) The universal relationship between wildness W and the
exponent κ.

scales), the ensuing plastic flows are much wilder. A sharp decrease of wildness was observed over
an intermediate range of system size, when dp ' L and the precipitates cut the entire micropillar.
Despite the implied modification of the pinning picture, the statistic of plastic fluctuations in
these alloys remained consistent with the proposed W versus κ relationship (3), which should be
viewed as another manifestation of its universal character.

4. Wildness versus strength

In the discussion above, we assumed that in pure materials with low lattice friction, the parameter
τpin is mainly controlled by forest dislocations. More specifically, we argued that the term τ f ∼
Gb

p
ρ f must be tightly linked to Taylor’s forest hardening. This idea is supported by the extreme

wildness of pure divalent HCP metals (Mg, Zn, Cd) and ice, even at macroscopic scales [1, 3, 33,
71, 82]. It is illustrated in Figure 5(c), where we see that κ ' 1.5 and W ' 1. We recall that in
such materials, plastic deformation is strongly anisotropic, with preferential glide along the basal
plane and a correspondingly very small Peierls stress τl [25,33,122]. The strong plastic anisotropy
implies an absence of forest hardening, i.e. a possibility to completely neglect τ f . In fact, both
effects conspire to ensure a large value of l and therefore a wild behavior over an extended range
of system sizes.

Note, however, that other HCP metals, such as Ti and Zr, preferentially glide along prismatic
planes. They also exhibit a considerable temperature-dependent lattice friction for screw dislo-
cations below an athermal transition temperature [25]. The impact of these and other specific
features of some HCP materials on the jerkiness of plastic flow remains to be fully explored. Note
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Figure 6. Cyclic strain-controlled tension-compression test (εmin/εmax = −1; ∆ε = 0.95%)
on an annealed Al sample. The cyclic stress response (csr-curve) is shown as a black line
on panel (b), showing an initial hardening stage over the first ∼30 cycles. The AE burst rate
(number of discrete bursts per cycle) is shown on panel (a), while the wildness proxy WAE

is shown on panel (b) with red closed circles. (c) Cumulative probability distributions of
AE burst energies at different stages of cyclic deformation and hardening. Adapted with
permission from [66]. Copyrighted by American Physical Society.

that prismatic glide in Ti, unlike Zr, proceeds through a locking-unlocking mechanism related to
the relative stability of the dislocation core, therefore appears intrinsically jerky [123]. However,
the link between this intrinsic jerkiness and the one mainly discussed here, i.e. resulting from a
collective dynamics, is still an open question.

On the other hand, FCC metals are the paradigmatic forest-hardening materials. Here one
can expect a strong link between dislocation patterning, hardening rate, and plastic fluctuations
and for pure Al [66] and Cu [69] the implied interrelationships were recently analyzed at bulk
scales. Cyclic loading was imposed and plastic bursts were tracked with wildness estimated
from AE. As illustrated in Figure 6, in Al, both the number of detected AE bursts per cycle
and the wildness measure WAE are correlated with hardening. More specifically, in these cyclic
strain-controlled tension-compression tests, the initial cyclic hardening stage, lasting about 30
cycles, is accompanied by a strong decrease of the burst activity (Figure 6(a)) and the drop
of WAE (Figure 6(b)). Instead, the exponent of the power law tail of AE energy distribution
progressively increases (Figure 6(c)). This is consistent with our theoretical predictions, as strain
hardening and the associated increase of τ f suggest the decrease of l which makes plastic flow
milder. The results shown on Figure 6 were obtained for annealed Al samples. Measurements
performed on non-annealed samples with a larger initial forest dislocation density revealed a
similar trend, however with a much smaller initial (1st cycle) wildness WAE, still in agreement
with our picture [66].

Cyclic stress-controlled tests performed on pure Cu, combined with electron back-scattered
diffraction (EBSD) and rotational-electron channeling contrast imaging (R-ECCI) observations,
shed additional light on the relationship between dislocation patterning and plastic fluctua-
tions [69]. These tests involved several cyclic steps with increasing stress amplitudes, which were
performed on a same sample. During a single step with fixed stress amplitude, the evolution of
plastic fluctuations was fully consistent with what we described above for Al, including strain
hardening and progressive formation of a dislocation substructure accompanied with a decrease
of wildness. A correlation was observed between the dislocation mean-free path lp , estimated
from R-ECCI at the end of each cyclic step, and the value deduced from the continuous AE. The
latter was interpreted as resulting from the cumulative effect of numerous uncorrelated disloca-
tion motions over sweeping areas A ∼ l 2

p .
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However, it was noticed that upon increasing the stress amplitude, the previously built dislo-
cation patterns are destroyed while new ones are rebuilt. Such major restructuring takes place
over just few loading cycles. The associated destabilization occurred, at least partly, through dis-
location avalanches that propagated much further than the scale lp generated at the previous
stage. In addition, in all the cyclic experiments mentioned above, rare AE bursts were recorded
even during the stage of hardening saturation presumably associated with very stable dislocation
substructures. This suggests an ultimately metastable character of these patterns, making them
susceptible to episodic large rearrangements spanning over scales much larger than lp [62, 66].

Based on the results obtained in a continuum model of plasticity [65] and the associated
simulations in the framework of discrete dislocation dynamics (DDD) [36], it was proposed that
strain hardening introduces an upper cut-off s∗ to the distribution of dislocation avalanche sizes.
It would then write P (s) ∼ s−κ f (s/s∗), with f (x) a cut-off function rapidly decaying for x > 1.
The prediction was that s∗ is inversely proportional to the system size L (finite-size effect) and
to the hardening coefficient. This conclusion can justify the decrease of the energy released in
plastic avalanches as the material strain-hardens. However, it does not explain the concurrent
proliferation of mild fluctuations associated with a degeneration of the lower size tail of the power
law avalanche distribution. In fact, the effect of hardening on this lower cut-off avalanche scale
(X0 in (1)) remains an open question.

In the considerations presented above, strain hardening in FCC bulk materials was analyzed in
the conditions where Taylor’s forest hardening was the most relevant mechanism. However, upon
decreasing the system size below few µm, a breakdown of this size-independent mechanism can
be envisaged. It can be expected to be replaced by source-dominated mechanisms responsible for
the “smaller is stronger” size effect [124]. In this case, the usual weak bulk dislocation sources are
almost absent and much higher stresses are required, in average, to activate the much stronger,
surface controlled sources [97]. In such regimes, where isolated breakthrough events dominate,
an increasing scatter of strength measurements can be also expected.

This transition from bulk to surface sources can be linked to the transition from short-
range controlled (allowing forest hardening) to long-range controlled (through distant surfaces)
dynamics. Moreover, both transitions can be now interpreted in terms of our dimensionless ratio
R = L/l [125], which was shown to regulate the apparently unrelated mild-to-wild transition.

In this perspective, one can anticipate a relation between the disappearance of forest hard-
ening, the emergence of a size effect on strength, and the new “smaller is wilder” size effect. The
analysis of compression tests on Al and Al-alloys micropillars allowed us to actually establish such
a relation [64].

More specifically, we compared the strain hardening rate (SHR) of our pillars,Θpillar, with those
for the same material at bulk scales, Θbulk. We observed a ratio Θpillar/Θbulk ' 1, i.e. a persistence
of Taylor’s hardening, down to R ' 5, but much larger and more scattered values at smaller system
sizes (Figure 7). Characteristically, the associated transition took place concomitantly with the
mild-to-wild transition (Figure 5). The observed correspondence extends also to alloys where
extrinsic disorder shifts the transition from forest to source exhaustion hardening towards smaller
system sizes. Since the effect of disorder is the same on the mild-to-wild transition, one can
argue for the close relation between the underlying transition. The disappearance (or at least
the weakening) of size effect on yield stress in alloys in the µm system size range [119,120] is also
fully consistent with this scenario.

Finally, we mention that with decreasing the system size further, another relation between the
fluctuations and the size effects on strength apparently emerges. Thus, in Au (FCC) nanoparticles
with L ' 400 nm, a saturation of the size effect on plastic yield was observed together with
a brittle-like behavior (supercritical in our terms; see Section 2.2). These observations were
interpreted in terms of a transition from source-exhaustion/truncation hardening mechanism
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Figure 7. The hardening transition in FCC (Al and Al alloys) micropillars. The normal-
ized strain-hardening rate Θpillar/Θbulk is shown a function of the dimensionless ratio R.
A transition from forest hardening to source-exhaustion hardening is observed around
R ' 5, whatever the material, in excellent agreement with the mild-to wild transition in
Figure 5(b). Adapted with permission from [64].

of plastic flow to a homogeneous dislocation nucleation mechanism [126]. Not surprisingly, in
such regimes the yield strength was found to approach the theoretical strength of the material.

5. Modelling

The discussion above highlighted a rich landscape of plastic behaviors in crystalline materials,
with the mechanical responses and the associated fluctuations depending on crystal symmetry,
system size, and disorder (either quenched: solutes, precipitates, . . ., or emergent: forest disloca-
tions, dislocation patterns, . . .). To rationalize these observations we consider below two types of
modelling approaches: mesoscopic and mean field.

5.1. Mesoscopic model

We have shown above that the dimensionless ratio R = L/l appears as the key controlling
parameter, encompassing the external size effect (“smaller is wilder”) as well as the disorder
through the internal scale l ∼ 1/τpin [67]. Below, we show how the effects of system size and
disorder can be analyzed in a single setting using a minimal model of crystal plasticity. The main
idea behind this model is the reduction of the plastic flow problem to a computationally effective
integer-valued discrete automaton. Despite the simplicity of the ensuing dynamical system, one
can account in this way for both short-range and long-range elastic interactions, including
dislocation nucleation and immobilization. It also allows one to accumulate sufficient statistics,
since one can deal in this way with millions of mesoscopic elements and tens of thousands of
dislocations.

The 2D version of this model was first introduced in [70, 127], and here we simply recall its
main characteristics following [67]. The model assumes that the displacement field is scalar and
that the flow is of single-slip nature. Hence, forest dislocations cannot be considered directly.
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However, we recall that the plastic flow of sufficiently small micro-pillars is mainly single-slip
independently of the underlying crystal symmetry. Even in the case of multi-slip orientation,
due to a limited number of available dislocation sources within the confined volume, the first
activated slip plane dominates and prevents other slip planes from getting involved. In this
situation, the usual frustration leading to hardening can be avoided considering the absence of
dislocation cross-slip and easy annihilation at a free surface. While any adequate crystal plasticity
model would effectively reduce to our constrained single-slip theory in a sufficiently small
system, it should, of course, allow for multi-slip flow to take over at larger sample sizes. In fact,
a fully tensorial 2D model has been recently proposed, which allows the modelling of different
crystal symmetries and multislip configurations [128], however at a much higher computational
cost.

In the framework of the scalar model we essentially imply that the sample is oriented for a
single slip along the only available slip direction. The crystal is modeled as an N × N square
lattice with the mesoscopic spacing normalized to unity. The deformation of the crystal is given
by the displacements of the vertices of the mesoscopic elements, ~ui , j = (ux

i , j ,uy
i , j ), where i , j =

1,2, . . . , N .
In view of the single slip assumption we can set uy

i , j ≡ 0. We can then introduce the notation
ui , j ≡ ux

i , j . In the presence of a kinematic constraint the strain tensor can be reduced to two
fields: a longitudinal strain, ζi , j = ui+1, j −ui , j , which is a linear, non-order parameter variable,
and a shear strain ξi , j = ui , j+1 −ui , j , which is a nonlinear, order parameter type variable, given
that plastic slip originates from multi-well nature of lattice potential.

We write the dimensionless energy of the system in the form [70] Φ = ∑
i , j f (ζi , j ,ξi , j ), where

f (ζ,ξ) = (K /2)ζ2 + f0(ξ) is the energy of a single (meso-scopic) element. To account for the lattice
periodicity we assume that f0(ξ) = f0(ξ+n), where n ∈ Z is an integer-valued slip. Moreover, for
analytical transparency we assume that the periodic energy density f0 is piece-wise quadratic
f0(ξi , j ) = (1/2)(ξi , j −di , j (ξ))2. Here the plastic slip d is represented by an integer nearest to ξ so
that di , j (ξ) = dξi , j e. The obtained model depends on a single dimensionless parameter K which
mimics the ratios of elastic constants (C11 −C12)/(4C44) or C11/C66. It describes the coupling
between mesoscopic elements that carry different values of ξ. In the limits K → 0,∞ we obtain
solvable 1D models with mean field type interaction [127, 129]. At K 6= 0 the model reproduces
Eshelby-type propagator and therefore captures crucial effects of long range interactions induced
by elastic compatibility, see more about this below. In our numerical experiments we assumed
that K = 2 which represents a typical value for metallic crystals.

The model can be reduced to a discrete automaton because the elastic problem ∂Φ/∂ui , j = 0
can be solved analytically if the integer-valued field d is known [70]. The associated equilibrium
equations in the bulk, written in terms of the displacement field ui , j , read

K (ui+1, j +ui−1, j −2ui , j )+ (ui , j+1 +ui , j−1 −2ui , j )− (di , j −di , j−1) = 0. (8)

The whole system can be written in matrix form Mu = b, where M is a pentadiagonal matrix and
b is a vector of size N ×N incorporating the boundary conditions and the field d . The problem
then reduces to a simple matrix inversion.

We assume periodic boundary conditions in the horizontal direction u1, j = uN+1, j . A hard
device type loading is applied through the boundary condition in the vertical direction ui ,N+1 =
ui ,1 +γ, where γ is the control parameter. Periodicity is assumed to allow for the fully explicit
inversion of the matrix M. Indeed, we can then use the spectral approach based on the Fourier
transform x̂(q) = N−2 ∑

ab xa,be−iqr with r = (a,b) and q = (2πk/N ,2πl/N ). In Fourier space the
solution of our linear problem is straightforward and we can obtain an explicit representation for
the equilibrium shear strain

ξ̂(q) = γδ(q)+ L̂(q)d̂(q), (9)
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where we recall that γ = 〈ξ〉 is the measure of the imposed affine deformation. Here the sign-
indefinite Eshelby-type kernel with r−2 far field asymptotics takes the form

L̂(q) = sin2(qy /2)

K sin2(qx /2)+ sin2(qy /2)
. (10)

Its dipolar structure reflects the scalar nature of our model; the more conventional quadruple
structure of the stress propagator is a feature of isotropic elasticity, while here we deal with the
extremely anisotropic limit [130, 131].

Since we now know how to update the elastic fields, we can formulate the quasi-static athermal
dynamics in the form of a discrete automaton for the integer-valued field d . We start with the
unloaded (γ = 0) and dislocation-free state (di , j ≡ 0). We then advance the loading parameter γ
and compute (predict) the elastic field ui , j while keeping the field di , j fixed. The knowledge of
the shear strain field ξi , j allows us to update (correct) the plastic strain field using the relation
d = ξ; the update takes place when the boundary of the energy well is reached by at least one
of the mesoscopic elements. Then an avalanche occurs while we use synchronous dynamics for
the updates of di , j . We repeat the prediction-correction steps at a given γ till the corrections stop
changing the field di , j and the system stabilizes in a new equilibrium state. As the stress in this
state is globally below the threshold and we can start a new search for the increment of δγ that
destabilizes at least one unit. As soon as such an element with di , j 6= ξ is obtained we apply our
relaxation protocol again, initiating another avalanche. When avalanche finishes, the variation of
γ resumes.

In (10), two types of quenched disorder can be introduced [67]. The nonlocal disorder field
h mimics the effect of elastically incompatible impurities such as solutes. The local disorder g
can be viewed as resulting from lattice-compatible obstacles with only a local effect on plastic
slip such as e.g. locked dislocation multipoles whose long-ranged fields are screened. The energy
density accounting for both types of disorder takes the more symmetric form [70, 127]:

f (ξi , j ,ζi , j ) = K

2
ζ2

i , j +
1

2
(ξi , j −di , j (ξ))2 −hi , j ζi , j − gi , jξi , j . (11)

Both disorder fields, h and g , can be assumed as drawn independently in each lattice cell from
Gaussian distributions ps (r ) = (2πδ2

s )−1/2 exp(−r 2/(2δ2
s )), where s = (g ,h). The specificity of the

disorder gi , j , representing essentially a residual plastic strain, is that it can be simply combined in
the energy density with the actual plastic strain di , j . For instance, to account for g in the Fourier
representation of the elastic solution, it sufficient to replace the field d̂(q) by the sum ĝ (q)+ d̂(q).
We can then write

ξ̂(q) = γδ(q)+ L̂(q)[d̂(q)+ ĝ (q)]+ L̂h(q)ĥ(q), (12)

where

L̂h(q) =
sin(qx /2)sin(qy /2)

(
cos

(
qx−qy

2

)
− isin

(
qx−qy

2

))
K sin2(qx /2)+ sin2(qy /2)

(13)

is a distorted Eshelby propagator (10) maintaining, however, its sign-indefiniteness and the decay
rate 1/r 2.

Below we first show some of our simulation results for the case of nonlocal disorder h. In all
numerical experiments we considered initially dislocation-free systems (d ≡ 0), and the statistical
results were averaged over at least 100 realizations of the disorder. Figure 8 shows the average
mechanical response of our system under simple shear as well as the evolution of the yield strain
γy as a function of the disorder variance δh = δ under the assumption that δg = 0. For weak
disorder, δ ≤ 0.3 (regime A on Figure 8), mimicking initially dislocation free, almost pure and
small crystals, yielding is brittle-like, with an abrupt stress drop and a strong strain localization
along a shear band which concentrates the dislocations [67] (panel (A) on Figure 8). This regime
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Figure 8. The effect of disorder on average stress–strain curves in simple shear simulations
(N = 1024). The inset shows the yield strain γy , with the grey strip marking the extended BD
transition. Panels A–D show zooms on the corresponding post-yield dislocation configura-
tions. Adapted with permission from [67]. Copyrighted by American Physical Society.

Figure 9. Cumulative probability distributions of preyield avalanche energies at δ = 0.28
(a), δ = 0.32 (b) and δ = 0.7 (c). Averaging was performed over 100 realizations of the dis-
order. Insets show stress–strain curves for a particular realization of the disorder. Adapted
with permission from [67]. Copyrighted by American Physical Society.

is reminiscent of the brittle behavior of nanoparticles prepared from solid-state dewetting, i.e.
initially dislocation free [93, 103, 126], or of our smallest Mo pillars (Figure 1).
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Upon increasing the disorder, the first-order transition eventually terminates at a critical point
located around δ ' 0.42 (regime C), in a way similar to what has been identified in amorphous
plasticity [132]. In this regime, the plastic slip field di , j is scale-invariant, characterized by a
turbulent-like multifractal pattern [67], qualitatively consistent with the spatial fractal pattern
of plastic bursts observed from AE in a bulk ice crystal [81]. At even larger disorder, δ ≥ 0.5
(regime D), yielding is gradual and the mechanical response is ductile, with both dislocations
(Figure 8 (panel D)) and slip uniformly distributed within the whole crystal [67].

The correspondence with experiments can be also established in terms of statistics of plastic
fluctuations. In our automaton model, the energy E released during an avalanche scales with
the cumulative distance covered by all the moving dislocations involved [67, 127], i.e. with the
displacement X as defined above. Hence, computed energy distributions P (E) and experimental
distributions P (X ) are directly comparable. At small disorder, the model captures the coexistence
of dragon-king outliers with power-law distributed smaller avalanches characterizing a super-
critical regime (Figure 9(a)), as observed in our 500 nm Mo pillars (Figure 1(a)). Upon increasingδ,
a critical regime emerges (Figure 9(b)), with a power law distribution of avalanches energies and
an exponent κ consistent with that observed for Mo pillars of intermediate sizes (Figure 1(b)).
At even larger disorder, scaling disappears and subcritical statistics are obtained (Figure 9(c)).
This general agreement with observations argues for the robustness of the different regimes
identified above, as well as the transitions between them, upon increasing the system size and/or
the disorder strength.

In fact, we argue that by varying the strength of quenched disorder one can differentiate
between sub-micron crystal sizes. Indeed, instead of L we should use a dimensionless parameter
R = L/l introduced earlier. If we assume that l ∼ Gb/σth identifies the threshold σth with the
pinning (immobilization) stress, we can recall that the distinctly brittle regime would correspond
to R ¿ 1, the strongly ductile regime, to R À 1, while dislocation interaction with obstacles
would become relevant at R ∼ 1. The threshold σth naturally depends on the presence of the
pinning obstacles and, in general [64], increases with the variance of quenched disorder imitating
such obstacles. More specifically, the decrease of σth can be achieved by making the disorder
more narrow which can be viewed as the way to eliminate particularly strong obstacles. In this
way, instead of increasing L we can decrease l , which should be as effective in moving from
the brittle regime, where R ¿ 1, to the ductile regime, where R À 1. In other words, instead
of exploring directly the dominance of surface effects one can exploit the indirect effect that
in smaller systems there are fewer strong obstacles that can serve, for instance, as dislocation
nucleation sites because the existing ones are compromised or even disabled by their closeness
to the surfaces.

It has to be mentioned, however, that our association of the variance of disorder with crystal
size is exclusively targeting systems without bulk criticality, as in the case of Mo crystals. One
can, in principle, manufacture small crystals with strong (dense) quenched disorder [64] or grow
almost pure large crystals with very weak (sparse) quenched disorder [33]. In general, both
quenched disorder and the crystal size would affect brittleness, even though to grow almost
defect free crystals (without solutes, precipitates and dislocations), is almost impossible except
in case of extremely small sizes (nano-particles).

In Figure 9 we showed stress-integrated distributions of plastic fluctuations collected over the
entire pre-yield loading. However, a detailed interpretation of the nature of these fluctuations
generally requires an analysis of stress-resolved distributions. As an example, a stress-tuned
criticality (e.g. depinning) would be characterized by P (E) ∼ E−τ f (E/Ec ), where f (x) rapidly
vanishes for x > 1 and Ec is an upper cut-off that diverges at a critical stress σc , such that
P (E) ∼ E−τ only at the critical point σ=σc . Note that in this case the stress-integrated exponent
κ differs from the stress-tuned exponent τ. It has been argued that the plasticity of micropillars
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could belong to such stress-tuned criticality [5, 78]. This interpretation is however disputed [50],
while the analysis of stress-resolved distributions might be difficult owing to a lack of statistics.
AE data collected on bulk samples furnish larger catalogs that instead argue against tuned
criticality [2, 3, 82], at least in HCP materials.

Taking advantage of the low numerical cost of our simulations, we performed a detailed
analysis of stress-resolved distributions for the released energies E in our scalar model on the
basis of extended statistics. Figure 10 shows the evolution of immediately pre- and post-yield
exponents, along with some examples of corresponding distributions. From these results as well
as additional analyses detailed elsewhere [67], different types of critical behavior can be identified
as a function of disorder strength δ mimicking also the system size (see above).

At very small disorder (δ ' 0.2), supercriticality and strong brittleness is characterized by
small and similar pre- and post-yield exponents, τ ' 1. This allows one to draw an analogy with
marginal stability of spin glasses [133]. In this case, homogeneously nucleated dislocations self-
organize under the influence of long-ranged elastic forces and the system undergoes a transition
from a stable (elastic) to a marginally stable (glassy) state.

Over an intermediate disorder range (0.25 < δ < 0.35), a gap opening is observed between
the pre- and post-yield exponents, and a characteristic peak is still observed in the post-yield
distribution (Figure 10(c)). A scaling collapse analysis reveals a tuned spinodal criticality in this
regime, with an upper cut-off Ec diverging as approaching the yield stress as Ec ∼ (σy −σ)−1/ν,
however with an exponent 1/ν ' 1.6 different from the mean-field depinning prediction 1/ν =
2 [79, 134] (Figure 10(d)). This suggest that tuned-criticality could be indeed relevant for the
plasticity at small system sizes [5]. We recall however that our modelled systems are initially
dislocation-free, which is hardly the case in micropillar experiments, at least for FCC light
materials (see Section 2.3). When performing cyclic loading at these levels of disorder with our
model, the post-yield stress drop as well as the associated super-critical avalanches disappear
from the first loading reversal, i.e. the distributions becomes critical [67]. This strongly suggests
that spinodal tuned-criticality is suppressed when reloading a dislocation-rich system. In other
words, a potentially brittle nanocrystal could be “trained” to become more ductile from gentle
cyclic loading, with potential applications in nano-engineering.

Note that the spinodal critical regime is only observed over a limited range of disorder. At
larger disorder (δ ∼ 0.42–0.46), the BD transition takes place, with the post-yield stress drop as
well the characteristic peak in the distribution disappearing, and pre- and post-yield collapsing
(Figure 10(a)). This second-order BD criticality is associated with a cut-off following a different
asymptotics, Ec ∼ exp(σ/σ0), where σ0 is a constant (Figure 10(e)), meaning that criticality is not
stress-tuned in this case [50]. Finally, upon increasing further the level of disorder beyond δ' 0.5,
“hardening” takes place almost from the onset of loading, plastic activity becomes homogeneous
and uncorrelated, and scaling is getting lost.

To summarize, our numerical studies, consistently with the experimental observations re-
ported above, reveal an extremely rich repertoire of plastic behaviors. An evolution from a typi-
cally brittle behavior (though without cracks) to a mostly ductile response can be conceptualized
as a complex three-stage crossover: a spin-glass-type marginality encountered for very small, al-
most disorder-free crystals, transitions to a spinodal stress-tuned criticality at an intermediate
level of disorder, then followed by a second-order BD transition at larger disorder (and/or size),
to finally a lack of scaling and a fully ductile behavior at very large disorder/scale. This scenario
shows some similarity with what has been recently proposed for amorphous plasticity [132, 135],
although crystalline plasticity appears even more intricate. In this framework, scaling laws and
exponents are non-universal.

We now briefly illustrate the interplay between our two types of disorder, “local” and “nonlo-
cal”. To avoid the dependence on the initial preparation we have now choose the setting of cyclic

C. R. Physique, 2021, 22, n S3, 1-37



Jérôme Weiss et al. 27

Figure 10. (a) Disorder dependence of the stress-resolved scaling exponent τ for immedi-
ately pre- and post-yield situations. The gray strip marks schematically the extended BD
transition. (b, c) Corresponding avalanche energy distributions. The scaling collapse of the
preyield distributions are shown (d) for δ= 0.30 (tuned spinodal criticality) and (e) δ= 0.46
(BD criticality). Adapted with permission from [67]. Copyrighted by American Physical
Society.

loading. Our numerical experiments, summarized in Figure 11(a), show that when a weak “lo-
cal” disorder δg = 0.3 is combined with a weak “nonlocal” disorder δh = 0.3, the overall me-
chanical response is ductile. The initial softening behavior, observed in crystals with δg = 0,
is replaced by the more conventional hardening behavior. At large strains the stress response
shows a robust yielding plateau independently of the configuration of disorder. The overall
response is reminiscent of the classical strain-hardening behavior exhibited by bulk FCC and BCC
materials [136].

From Figure 11(b) we see that even a weak “local” disorder is sufficient to suppress super-
criticality and to completely eliminate system-size events. This observation agrees with the idea
that such disorder generates local inhomogeneities which inhibit global response. However, the
increase of the cut-off size in the second cycle suggests that a correlated behavior, reminiscent
of disorder-induced self-organization towards classical criticality in RFIM (random field ising
model) [137, 138], can still take place.

In Figure 12 we show how the different configurations of “local” and “nonlocal” disorder
strengths affect the cycle-averaged (integrated) scaling exponents τin. When the “local” disorder
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Figure 11. (a) Strain–stress curves for the crystals subjected to six loading unloading cycles;
(b) avalanche distributions of cyclically loaded crystals for the first and the second cycles;
the first cycle is understood as the monotone loading path. Here δh = δ = 0.30, δg = 0.30.
Adapted with permission from [67]. Copyrighted by American Physical Society.

Figure 12. Effect of the “local” disorder δg on the (integrated) scaling exponent τin for
the case of cyclic loading. Adapted with permission from [67]. Copyrighted by American
Physical Society.

is weak, we recover the after-yield behavior studied above. At stronger “local” disorder, the
dependence of the exponent τin on the “nonlocal” disorder progressively diminishes. Given
that the statistics is mostly acquired during hardening-free yield, see Figure 11, one can expect
the stress resolved value of the exponent τ to be similar to the aggregate value τin [139]. In
this case the obtained exponent value suggests mean field criticality [137, 138]. In other words,
the abundance of “local” disorder apparently trivializes the scaling picture, erasing the non-
universality and promoting a universal response of the athermally driven infinite dimensional
RFIM dominating the response of amorphous solids [132, 140–142].

However, the overall agreement between our automaton model, which is based on some crude
assumptions, and experiments, is incomplete. Thus, in experiments, we encounter distributions
of avalanche sizes mixing a power law tail with a lower cut-off below which fluctuations are mild.
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This wild-to-mild coexistence and its unique signatures, such as the relationship between κ and
the wildness W (Figure 5(c)), are not recovered within this oversimplified model. The problem
is most probably in the the single-slip assumption that prevents the emergence of metastable
dislocation patterns. Another shortcoming is that disorder is prescribed as a single-scale field so
that, by construction, fluctuations at smaller scales are compromised.

5.2. Mean-field model

A simple mean field model can be used to rationalize at least some elements of the observed
bigger picture in terms of macroscopic parameters. In particular, it will allow us to explain the
coexistence of mild and wild fluctuations in crystalline plasticity.

Suppose that the stress-resolved evolution of the spatially averaged density of mobile disloca-
tions ρ is described by a stochastic kinetic equation [62]

ρ−1 dρ/dγ= aρ−1 − c +
p

2Dη(γ), (14)

where the local shear strain γ serves as a time-like parameter, c ≥ 0 characterizes the rate of
dislocation immobilization and the temperature-like parameter D represents the intensity of
the multiplicative mechanical noise with 〈η(γ)〉 = 0 and 〈η(γ1),η(γ2)〉 = δ(γ1 − γ2). In view of
the constant stress assumption, the route towards yielding in a stress-tuned regime cannot be
described in this way, however this model can be used to rationalize the universal dependence of
wildness on both material characteristics and sample size.

While the deterministic part of the model (the first two terms on the RHS of (14)) is quite
conventional, in this simplified framework the long-ranged stochastic interactions are described
through a multiplicative noise. The level of noise D quantifies the intensity of mechanical fluc-
tuations experienced by a meso-volume due to interactions with the rest of the system. A con-
cept of “mechanical temperature” has been also used in the modelling of athermal amorphous
plasticity [143]. Considering the Orowan’s relation dγ = ρbv dt , and assuming a constant dislo-
cation velocity v under constant stress, we can link the fluctuations of ρ with the experimentally
measured strain (or slip X ) fluctuations.

The stationary probability distribution in (14) is ps (ρ) ∼ e−a/(Dρ)ρ−α with the exponent α =
1+ c/D . This is exactly the same expression as our empirical equation (1) with κ−1 = c/D and
X0 ∼ a/D [62, 64]. Consequently, the wildness W is given by expression (3). Therefore, though
oversimplified, our mean field model predicts a relationship between the exponent κ and the
wildness W , which are linked through the characteristic size X0 which represents a material
constant. We reiterate that the existence of such universal relation between the structure of the
power law tail of avalanche distribution and the wildness parameter W is in full agreement with
the observed data for a large number of pure materials and alloys (Figure 5(c)).

In the framework of our automaton model we can interpret ρ as the density of mobile dislo-
cations during an avalanche at a given value of the loading γ. We can then write ρ(γ) = n(γ)/N 2,
where n(γ) is the number of dislocations moved during an avalanche. Our numerical experi-
ments suggest that the avalanche energy E is a disorder independent linear function of the total
distance traveled by mobile dislocations during an avalanche l̄ and that l̄ ∼ n. Therefore E ∼ ρ

and we can conclude that the exponent α in the mean field model should be indeed the same as
the exponent κ in the automaton model.

For single slip pure nano-crystals with weak disorder, dislocation immobilization can be
neglected, so c/D ¿ 1, and the stochastic evolution of ρ governed by (14) reduces in this case
to a geometric Brownian motion with α ∼ 1. In the automaton model we observe in the low-
disorder limit dislocation self-organization, governed exclusively by elastic long-range elastic
interactions [33, 50], and recover the same value of the exponent κ∼ 1. With increasing disorder,
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the immobilization rate c should increase leading to a higher value of κ, which is in qualitative
agreement with our numerical experiments.

The crossover from D-dominated brittle regimes (c < D with the stochastic term in (14)
controlling the dynamics) to c-dominated ductile regimes (c > D with the deterministic term
in (14) controlling the dynamics) can be expected where the mechanical agitation is balanced by
dislocation self-locking (c ∼ D). Using the relation α = κ, we can now link c/D and R = L/l . The
effective temperature D should depend only weakly on the system size L. It is defined instead by
the locking strength of defects, which means that it increases with l . At the same time, it is clear
that the rate of dislocation reactions (in particular our parameter c controlling immobilization)
increases with L [64]. Therefore, in either very small and/or very weakly disordered samples c < D .
Conversely, in either bigger or more disordered samples one can expect to reach the ductile phase
where c > D . We recall that all these trends were observed in our automaton model.

We can go a little further in the interpretation of the model parameters focusing now on the
role of the parameter a. In fact, the model has two characteristic densities ρc = a/c and ρD = a/D
or, in other words, two characteristics length scales lc = 1/

p
ρc and lD = 1/

p
ρD . The scale ratio

r = lc /lD = p
c/D = p

κ−1 is then the main dimensionless parameter of the mean field model
and it should then control the wildness W =W (κ) =W (r ), see (3). On the other hand, we argued,
and showed experimentally (Figure 5(b)) that W is controlled by the ratio R = L/l . By comparing
the functions W (r ) and W (R) we find that R ∼ r 2 because the relation κ− 1 = c/D ∼ L/l = R
has been verified experimentally [64]. This suggests c ∼ L and D ∼ l , i.e., for a given material, c
expresses an external size effect, while D accounts for an internal scale effect [64].

In particular, in HCP pure materials, such as ice or Mg, single-slip plasticity and the absence
of forest hardening implies a negligible immobilization of dislocation pairs, i.e. a small c value. In
addition, for the reasons already discussed in Section 2.4, the pinning strength τpin is small, which
we can now interpret as a large mechanical temperature D ∼ l ∼ 1/τpin [64]. This combination
gives a small κ, close to 1, and a large wildness, as observed (Figure 5(c)). On the reverse, for
hardened and/or alloyed large FCC metallic samples, we expect a small value of D as well as an
enhanced immobilization term resulting from the ubiquity of locks and junctions. All this means
large κ and a small W .

6. Conclusions

Dynamical fluctuations have been for a long time overlooked in the studies of crystalline plastic-
ity. An implicit assumption has been that such fluctuations average out when the phenomenon
is considered on “large enough” spatial and temporal scales. The situation has changed over re-
cent years driven by the efforts to progressively miniaturize various mechanical devices. As a re-
sult, the mechanical properties of metallic materials at micro- to nano-scales have become a ma-
jor concern in the material science community. If the classical metallurgical practices have been
developed to optimize strength, formability, and resistance to fatigue for samples at macroscopic
scales, similar questions have arisen in microscopic metallurgy dealing with sub-µm scales.

In this review we have presented a highly subjective outlook on plastic fluctuations in pure
materials and alloys with quenched disorder. It reveals a rich and intricate landscape of behaviors
and scaling properties that defies conventional phenomenological approaches and call for a
paradigm change. We are witnessing an opening of materials science and metallurgy to the
powerful methods and techniques of nonequilibrium statistical physics.

In HCP materials, characterized by a low lattice friction and a strong plastic anisotropy, dis-
location avalanches are detectable even on macroscopic bulk scales. They are power-law dis-
tributed in size and energy which suggests critical dynamics, reminiscent of developed turbu-
lence. However, at macroscopic scales, such wild fluctuations are nearly undetectable in most of
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the situations of interest to classical metallurgy. This is particularly true for bulk FCC and BCC
metals and their alloys, especially once strain hardening takes place. The small relative scale of
plastic fluctuations explains the lack of interest to this subject until recent times when ultra-small
structures started to enter industrial applications.

The “smaller is stronger” size effect, emerging at these scales, appears beneficial at first glance.
However, it is corrupted by wild plastic fluctuations, which in the case of sub-micron samples can
occasionally reach the system size and produce a brittle-like response. In other words, despite the
extremely high strength achievable at ultra-small scales, the corresponding plastic flows turned
out to be uncontrollable due to the stochastic nature of strain bursts reminiscent of macroscopic
earthquakes. The disastrous dislocation avalanches not only poison the forming processes but
also compromise the load-carrying capacity in various engineering/industrial processes deal-
ing with sub-µm parts, including nanoimprint lithography [118] and shaping of MEMS [37].
An urgent challenge facing today’s metallurgy at sub-µm scales is, therefore, to reduce the
“wildness” of the associated fluctuations, while keeping or improving other properties, such as
strength.

In this review we focused on the important fact that the transition from a mild to a wild
plasticity is controlled by a dimensionless ratio of length scales which we denoted by R = L/l ,
where L and l are external and internal scales, respectively. In FCC pure materials, the internal
scale l can be linked to a dislocation mean free path, hence to dislocation patterning and
hardening. Instead, lattice friction may play a significant role in shaping the value of l in BCC
materials at low temperatures. Thinking in terms of R also suggests that plastic intermittency can
be reduced or shifted towards smaller system sizes by introducing quenched disorder through
alloying and other similar means. Our experimental results fully support the feasibility of such a
“dirtier is milder” metallurgical strategy.

While these first steps in harnessing plastic fluctuations at ultra-small scales have been
successful, many key challenges persist. Some of them are listed below:

(i) In case of HCP materials, the possibility to tame wild fluctuations at bulk scales, by
introducing tailored disorder, remains to be explored.

(ii) Finding the effect of lattice friction and thermally activated processes below the athermal
temperature on plastic fluctuations in BCC materials requires a systematic analysis.

(iii) In weakly disordered and dislocation-free or strongly starved FCC crystals, we identified a
transition from a spin-glass type marginality to a spinodal stress-tuned criticality. Both regimes
are associated with deleterious system-spanning instabilities and a brittle-like behavior. It is still
unclear how such brittleness can be controlled without introducing stronger doping.

(iv) In this review, we did not discuss the structure of individual dislocation avalanches—
how they initially intensify and then fade away—the so-called avalanche shape [144], and in fact
this topic has been mostly avoided in plasticity [145]. It deserves much more attention, as the
avalanche shape can carry a strong signature of the underlying crystal symmetry.

(v) At small scales, stochasticity results in an increasing variability of “global” mechanical
characteristics like strength [39, 146] and hardening coefficient (e.g. Figure 7). This large scatter
is a deleterious effect and this problem recently emerged most clearly in the context of nano-
indentation [147]. As in fracture of disordered materials (e.g. [148]), the analysis of finite-size
effects on strength variability is then of crucial importance.

(vi) The conceptual stochastic models of plasticity, discussed in Section 5, remain too
schematic to adequately account for the geometry of real systems and the complexity of the as-
sociated loading protocols. In other words, realistic problems are still outside the realm of nu-
merical modeling by stochastic differential equations. DDD simulations have been extensively
used to model the associated systems but the predictive power of this approach remains limited
because of the ever-increasing number of ad-hoc rules required for its implementation. An al-
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ternative may be found in embedding of stochastic rheological closure relations within (so far)
deterministic finite-element (FE) codes.
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