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Abstract 

A common approach in modeling martensitic phase transitions in the framework of continuum mechanics involves a 
nonconvex energy. This paper analyzes the influence of the spinodal region, or the region where the energy density is concave, 
on the resulting equilibria. We compare a one-dimensional model with a degenerate spinodal region to models with a finite 
spinodal region. In all models we consider an elastic bar with a nonconvex energy placed on a rigid elastic foundation, to 
mimic elastic interactions between different phases in higher dimensions. Interfacial energy is modeled by a strain-gradient 
term. We find that when the spinodal region is small, global minima are not affected, and the minimum energy as a function 
of the overall strain exhibits nonsmooth oscillations associated with sudden finite phase nucleation. However, a sufficiently 
wide spinodal region results in the partial smoothening of the global minimum energy and infinitesimal phase nucleation in 
the interior of the bar. This involves gradual growth of apretransitional nucleus with strain in the spinodal region. We show 
a hysteresis path using an energetic strategy of switching between branches of local minima. Copyright © 1998 Elsevier 
Science B.V. 

PACS: 64.70Kb; 64.80Gd; 81.30Kf; 83.10Ff 
Keywords: Spinodal region; Phase nucleation; Pretransitional nucleus; Hysteresis 

O. Introduction 

Materials undergoing stress-induced martensitic 

phase transitions often form a variety of finely lay- 

ered microstructures and exhibit hysteretic behavior 

[1,4,7,11,24,26]. 

In the last 20 years, a number of researchers 

have attempted to describe twinning, formation of 

microstructure and hysteresis in crystalline solids 

* Corresponding author. Tel: (607) 255-9174; fax: (607) 255- 
2011; e-mail: vainchte@tam.cornell.edu. 

within the framework of elasticity theory. A common 

approach involves minimization of a nonconvex elas- 

tic energy for the material. In his pioneering analysis 

of a one-dimensional elastic bar, Ericksen [9] has 

demonstrated the relevance of nonconvex energy in 

the modeling of crystalline solids exhibiting twin 

microstructures. 

We consider a one-dimensional bar whose elas- 

tic energy density is a nonconvex two-well poten- 

tial function of strain. The two wells represent two 

different material phases. The bar interacts with 

an elastic foundation. This interaction mimics the 
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Fig. 1. Two-parabola model: (a) energy density; (b) stress. 
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Fig. 2. Three-parabola model:  (a) energy density; (b) stress. 

three-dimensional boundary conditions constraining 
the surface displacements and induces microstructural 
refinement [3]. On the other hand, a strain-gradient 
term, intended to model interfacial energy, causes 
the system to minimize the number of interfaces [6]. 
The combined effect of these two terms in the total 
energy selects the number of interfaces in both local 
and global minimizers. 

This approach has been considered by Mtiller 
[20,21] for a smooth two-well energy with zero dis- 
placement boundary conditions and by Truskinovsky 
and Zanzotto [29,30] for the case of multi-valued 
energy density represented by two convex (quadratic) 
functions (see Fig. 1) and general displacement 
boundary conditions. 

For a smooth energy density f (u l ) ,  the spinodal re- 
gion is the set of strains u I where f is locally concave, 
or f "  < 0. In the "two-parabola model" model by 
Truskinovsky and Zanzotto [29,30] the spinodal region 
reduces to a point separating two convex quadratic 
branches of f (the low- and high-strain phases). 

This paper is concerned with the effect of the 
spinodal region on the structure of equilibria of 
the elastic bar. For analytical simplicity we adopt a 
"three-parabola model" with single-valued energy; f 
is piecewise quadratic with two intervals of convex- 
ity (low- and high-strain well) separated by a finite 
spinodal region (see Fig. 2). We compare the two- 
and three- parabola models and also consider a model 
with a smooth nonconvex f (Fig. 3). 

As in [29,30], we are interested in local minimiz- 
ers of the total energy functional. Although the usual 
approach involving absolute minimization of the total 
energy captures some basic features of the microstruc- 
tures [13], it cannot account for hysteresis, which 
arises when the material gets locked in metastable 
states as suggested by calculations in [10,22]; see also 
[1,2,4,16,24]. 

Our approach relies on bifurcation analysis with re- 
spect to a loading parameter and enables us to study 
the evolution of branches of local minima. We find 
that the presence of the spinodal region yields a more 
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Fig. 3. Fully nonlinear model: (a) energy density; (b) stress. 
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complex bifurcation diagram. It is especially notewor- 
thy that we find new types of nucleation patterns not 
observed in the two-parabola model. Our results show 
that global minima are not affected when the spinodal 

region is small. As in [30], the energy at the global 
minimum is not a smooth function of the prescribed 
average strain but exhibits corners. Each corner corre- 

sponds to a finite nucleation event. By that we mean 
the following: suppose that the bar is initially in the 
low-strain phase. At a critical value of average strain 
(corresponding to a corner in the lower energy enve- 

lope), an interval of finite length with strains in the 
high-strain phase suddenly appears in the interior of 
the bar. On the other hand, when the spinodal region 
is large enough, the lower energy envelope becomes 
partially smooth in the sense that some of the corners 

disappear. This gives rise to a different, infinitesimal 
nucleation process: as the load is increased, an ini- 
tially infinitesimal interval with strains in the spinodal 
region appears in the bar interior and grows gradu- 
ally. This pretransitional nucleus is stable although it 

involves strain in the spinodal region. Further load in- 
crease causes an initially infinitesimal high-strain in- 
terval to nucleate and grow within the pretransitional 
nucleus. An analogous type of infinitesimal nucleation 
can also occur at the ends of the bar. 

We also find stable states with the entire bar in the 

spinodal region. The strains exhibit spatial oscillations 
approaching the high- and low-strain phases. This pat- 
tern is related to a pretransitional pattern known apre- 
martensite tweed, which is experimentally observed; 
see [15] for a discussion. Further load increase results 

in formation of a low- and high-strain mixture with 
pronounced phase boundaries. 

These types of states involving strains in the spin- 
odal region are a special feature of the present model. 

They are not possible in the two-parabola model or 
models without interracial energy and elastic founda- 

tion effects. 
We consider a strategy for switching between 

branches of local minima, that is energetically moti- 
vated and show that this procedure leads to hysteresis. 

In Section 1 we motivate our choice of the en- 
ergy functional by considering separately the effects 
of interracial energy and elastic foundation terms. 

We formulate the relevant functional and necessary 
conditions for equilibria for the models in Section 2, 
and remark on the computation of the equilibria, 

while in Section 3 we discuss the issue of stability. 
Section 4 contains predictions based on bifurcation 
theory and perturbation analysis for small values of 
the foundation coefficient. In Section 5 we compare 

the calculated phase equilibria with a small number 
of interfaces for the three models and discuss the ef- 
fects of the spinodal region. In Section 6 we consider 
a possible hysteresis scenario; Section 7 is devoted to 
conclusions. 

1. Motivation 

Consider a bar of unit undeformed length under 
prescribed end displacements (hard device). Let x 
[0, 1] be the reference coordinate of a point in the 
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bar; u(x) and u/(x) are the displacement and strain at 
x, respectively. The total potential energy of the bar 
is given by [29,30]: 

1 

E = [ [ f ( u ' )  + ot(ur') 2 q-/3U 2] dx. (1) 
t /  

0 

fa  f ( u  ~) dx is the elastic energy stored in the Here 

bar, fd Ot(u,t)2 dx models the interfacial energy and 

f2 /3u 2 dx is the energy of the elastic foundation. The 
significance of each of these terms is discussed below. 
We seek the local minimizers of the energy functional 
(1) subject to prescribed end displacements 

u(O) = - d / 2 ,  u(1) = d/2 .  (2) 

1.1. Ericksen' model 

Ericksen [9] considered a problem of equilibrium 
for a nonlinearly elastic bar with nonconvex energy 
without strain-gradient or foundation terms (o~ = 
0,/3 = 0). The problem reduces to the minimization 
of the energy functional 

1 

E = I f ( u ' )  dx, (3) 

0 

where f ( u ' )  is a two-well elastic energy density. For 
example, we may consider 

f ( u t )  = l [ (U ' )2  -- 112 (4) 

shown in Fig. 3. The interval of strains {d: f~ (d )  < 
0}, where f is locally concave, is called the spin- 
odal region. In case of energy density given by (4), 
it is the interval [ - 1 / 4 ' 3 ,  1/~fJ]. By minimizing the 
functional (3) subject to the boundary conditions (2), 
Ericksen has shown that for d in [ -1 ,  1], apart from 
the homogeneous solution u(x)  = dx - ½d which is 
unstable for d in [-1/~/-5, l /v/3],  there are infinitely 
many inhomogeneous solutions. These solutions are 
represented by a continuous displacement u describ- 
ing a mixture of the two states u' = 4-1 that minimize 
f (with the portion of the bar in each state prescribed 
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by d). All these solutions are global minimizers of the 
energy functional for d in the interval [ -1 ,  1]. 

1.2. Interfacial energy 

One way to reduce this non-uniqueness of the equi- 
libria is to introduce a strain-gradient term penalizing 
the formation of sharp interfaces: 

1 

E = [ [ f ( u ' )  + o/(ut ')  2] dx, (5) 

0 

where ~ > 0 is a constant nonlocality coefficient. 
Solutions to the corresponding Euler-Lagrange equa- 
tions are now smooth; all discontinuities in u'(x) are 
replaced by smooth transition layers of thickness pro- 
portional to 4'-d. The idea of introducing this strain- 
gradient dependence has been widely used to analyze 
spinodai region decomposition, phase transitions and 
other phenomena (e.g. [6,19,28]). 

In this case the Euler-Lagrange equation is given by 

f " ( u l ) u  " - 2oeu tl1' = 0 (6) 

with the boundary conditions (2) and natural boundary 
conditions ulr(0) = ur~(1) -~ 0. This equation has the 
trivial solution (with constant strain u I = d): 

u(x) = dx - l d .  (7) 

A standard bifurcation analysis involving the lineariza- 
tion of (6) about (7) shows that branches of nontrivial 
solutions bifurcate from the trivial solution branch as 
d varies as a parameter. This occurs at the bifurcation 
points dn that are solutions of 

f " (dn )  = -2c~(7cn) 2. (8) 

Along the n-branch (bifurcating from dn), the solution 
is locally (near the bifurcation point) 

Un(X) = dx  - l d + e sin(nJrx) + o(e) 

as e -+ 0. (9) 

Assume that in the spinodal region f~Z(d) monotoni- 
cally decreases, reaches a negative minimum at some 
d. (d. = 0 for (4)) and then monotonically increases. 
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Fig. 4. (a) Energy and (b) stress diagrams (S(d) = Et(d )) for Ericksen's problem with interfacial energy added: a = 0.0025; dotted 
line: n = 0, dashed line: n = 1, dash-dotted line: n = 2, solid line: n = 3, thick solid line: n = 4. 

This will  cause the bifurcation points dn to come in 

pairs, dn 1 < d ,  and dn 2 > d ,  such that d 1'2 both satisfy 

(8) for the same n. One shows that d 1 and d 2 corre- 

spond to the same branch. Moreover, the bifurcation 
points are ordered: d 1 < d 1 , d  2 > d 2 , m  < n. The 

number of  bifurcation points is then 

V nma =L;V J' 0o) 

where [a] denotes the largest integer less than a. Hence 

nmax increases as one increases I f ' (d,)](thus sharp- 

ening the spinodal region peak) or decreases a .  For  

any smooth two-well  potential f (u ' ) ,  nmax isfinite as 

long as ~ 7~ 0. 

As interesting consequence of  (10) is that it implies 

nmax = ~ when the f ( u  ~) is given by two parabolae 

- the case studied in [30]. Indeed, consider a sequence 

of  C 2 functions fi (u ~) converging as i --+ ec to the 

piecewise smooth function f ( d )  whose graph consists 

of  two parabolae meeting at u '  = d , .  For each of  the 

functions fi in the sequence (10) gives some nmax,i 

that increases with f / ' ( d , ) ,  hence tends to infinity as 

i --+ ~ .  Also,  one can see from (8) that as i grows, the 
bifurcation points dn tend to cluster near d ,  and in the 

limit (i.e. in the two-parabola  model)  they all coincide 

at dn = d , .  This explains why in [30] d = d ,  is a 

singular point  from which all the branches bifurcate. 

Eq. 6 can be integrated in quadratures and so the 

nontrivial solutions can be found analytically [23,28]. 

The resulting energy-versus-end displacement dia- 

gram (for f as in (4)) is shown in Fig. 4(a). The en- 

ergy density is symmetric,  so d 2 = - d n  1 and d ,  = 0. 

The number of  bifurcating branches in this particular 

case is nmax = 4. 
We remark on the meaning of  the number n. Along 

the n-branches of  solutions depicted in Fig. 4, at suf- 

ficiently small d, the strains U~n(X) have n zeroes. As 

the nonlocali ty coefficient ol tends to 0, these solu- 

tions approach solutions of  Ericksen's  problem with 

o~ = 0 [9]. In these limiting solutions the strain u~n(x) 
alternates between the values 1 and - 1, with n jumps.  

Therefore, one can view n as the number of  phase 

boundaries. Note also that by (10), nmax tends to cx~ 

as o~ tends to 0; we know from [9] that if  oe = 0 there 

is no upper l imit  on the number of phase boundaries. 

Fig. 4 shows that the smaller the n is, the lower is 

the energy o f  the corresponding solution branch. I n  

fact, the solution with one interface is the g lobal  min- 

imum, while others are not even local minimizers [6]. 

However, experimental results [7] show that solutions 

with multiple interfaces are often preferred. 

1.3. Elastic foundation 

Another  approach is based on the observation that 

multiple interface microstructures arise in higher 
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dimensional settings, where the displacement is much 

more severely constrained by the boundary condi- 
tions than in one dimension. In order to model "the 

surrounding medium" the bar is placed on an elastic 
foundation (a continuous system of noninteracting, 

linearly elastic springs). Consider minimizing 

1 

E = / [ f ( u  ~) +/3u 2] dx (11) 
t /  

0 

subject to the boundary conditions (2). Here the con- 
stant /~ > 0 is the stiffness of  the foundation. For 

the case d = 0 it is well known that the infimum 
of E in wl'4(0, 1) is zero [3,31]. Here W;'4(1, 0) is 

the space of  functions that are in L4(0, 1) together 

with their first weak derivatives and vanish at the 
ends. One can construct piecewise linear (sawtooth) 
minimizing sequences uk(x) with u~(x) = 4-1 al- 

most everywhere, with uk tending to 0 uniformly, 

but the minimum is not attained, since the conflict- 
ing requirements u ~ = +1 and u = 0 cannot be met 

simultaneously. 
Equilibria for (11) can be found analytically (this 

was done in [3] for the special case of d : 0). As in 
Ericksen's problem, one looks for solutions with con- 

tinuous displacement but strains that are discontinuous 
at finite isolated points ci, i = 1, n. We require that the 
strains alternate between the " + "  and " - "  phases (the 

intervals ( - e c ,  - 1 / ~ / 3  and (1/~,/3, c~) where f ( u ' )  
is convex), so that 

f " (u ' )  > 0 (12) 

holds in each [ci, ci+l] interval. Any solution with 
strain in the spinodal region is unstable by Legendre's 

necessary condition. In the intervals [ci, Ci-t-1] the 
Euler-  Lagrange equation 

f " (u ' )u"  - 2/3u = 0 (13) 

Conditions (14b) stern from variations in ci, while (13) 
and (14a) is obtained by varying u with positions of  ci 
fixed. In addition, boundary conditions and the conti- 
nuity of  displacement at the corners must be satisfied 

by equilibria. 
Note that (14) means that at each corner the strain 

jumps from one Maxwell strain to another. These are 

the two values of  strain el and e2 at which a straight 
line is tangent to both convex branches of the f ( u  ~) 
graph; here, el = e2 = 1. The Euler-Lagrange equa- 
tion (13) has the first integral 

f (u') - f '  (u')u' + flu 2 = const. 

and can be integrated in quadramres since the function 

g(u ~) = f (u ~) - f~(u~)u ~ is invertible when (12) holds. 
Fig. 5 shows the calculated equilibria. All branches 

shown are weak local minima of  the energy func- 
tional (i.e. stable under smooth perturbations). How- 

ever, they are unstable with respect to nucleation 
(perturbations with new interfaces close to each other) 

and so they are not strong local minima. The energy 
diagram illustrates the fact that the functional (11) 

possesses no global minimum: the energy decreases 
with n, approaching the infimum but an infinite num- 

ber of interfaces (jumps) is needed to reach the limit. 

2. Condit ions  for equi l ibr ium 

The goal of  this work is to study the effects of 

the spinodal region in the elastic energy density f 
in the combined model (1). The latter involves both 
oscillation-inducing terms (elastic foundation) and 

oscillation-inhibiting (strain-gradient) terms; it is the 
interplay of  these two terms that selects a finite num- 

ber of  interfaces in global or local minimizers. 

We compare three models of  the stored energy den- 
sity f in (1). 

should hold with the constraint (12). At the corner 
points ci, Weierstrass-Erdman corner conditions are 

I / 
[ [ f  (u)]]ci = 0, (14a) 

[ [ f ( u ' )  ' ' ' -- f (u )u ]]el = 0. (14b) 

2.1. Two-parabola model (bilinear material) [30] 

The energy density is double-valued: 

f(u') -= { f+(u~)'f_(u'). (15) 
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Fig. 5. (a) Energy E(d) and (b) effective stress S(d) = El(d) diagrams for Ericksen's bar on elastic foundation of stiffness fl = 2.3, 
without interfacial energy. 

At each point it can be on either of  two convex 

branches f _  and f +  associated with two phases of  the 
material labeled " ÷ "  and " - " .  These are chosen to be 

f ~ (u ' )  = ( u ' z k l )  2. (16) 

Plots of  these functions and the corresponding stress- 

strain relations given by a :k(#)  = f ~ ( # )  are shown 
in Fig. 1. Each portion of  the bar is assumed to be oc- 
cupied by either " + "  or " - "  phases but not both. It 
is shown in [30] that the associated equilibria are the 

same as with the single-valued energy density f (u ~) --- 
ra in[f+ (u~), f _  (ut)] which is a two-parabola approxi- 
mation of  a smooth two-well energy density. However, 
we remark that major differences arise between the 
three-dimensional analogs of  the single-valued (see 
[18,25] and double-valued versions (15) (see [14]). 

Note that the spinodal region degenerates here to the 
point where the two parabolae intersect. 

We assume that each phase occupies afinite union 
of  intervals. This means that there is a finite number 

n of  transition points ci, ci < Ci+l, in (0, 1) where 
switching between phases occurs. Each ci marks a 
location of  a phase boundary. 

Note that the double-valuedness of  (15) allows extra 
degrees of  freedom: in addition to smooth variations 
in u, one can also vary the positions of  the phase 
boundaries ci. 

In order to test [u, ci] under the boundary con- 
ditions (2), fix n and consider the one-parameter 

family of  competitors X ( x ,  e) = x + e3x(x)  and 
U ( X , e )  = u(x + e~x) + e~u(x),  with ~x(0) = 
3x(1) = 6u(0) = ~u(1) = 0. Variation 3x(x)  dis- 
places the transition points ci to the new positins 

Ci = ci ÷ eSx(ci).  By requiring 3u(x) to be C 1, 
piecewise C 2 and 3x(x)  to be C 2, one can ob- 

tain the following necessary conditions for the 
equilibria [30]. The displacement u(x)  must be 
in C1[0, 1], C 4 in the intervals [ci,ci+]],i = 

0 . . . . .  n. In each interval the Euler-Lagrange 
equation 

2~u ' "  - f "  (u')u" + 2flu = 0 (17) 

must be satisfied. Here f = f +  or f _  depending on 
what phase occupies the given interval. In addition we 
have natural boundary conditions 

u"(o) = u"(1) = 0, (18) 
stress continuity conditions 

! / 
[[f~:(u ) - 2a, u'/][ci = 0, (19) 

(note that the stress includes the derivative of  the cou- 
ple stress 2o~u'), couple stress continuity 

[[u"]]ci = 0, (20) 

and the comer condition 
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[[f+(u')]]c~ = 0. (21) 

Here (17)-(20) come from variations of  the elastic 
field, while (21) is due to variations of  the transition 
points. It means that the strain u~(ci) at a transition 
point must equal the strain at which f +  and f _  interest. 
In addition, the smoothness conditions 

[[u']]e~ = [[U]]ci = 0 (22) 

and the boundary conditions (2) must be satisfied. 

2.2. Three-parabola model  ( tr i l inear material)  

In this model f is single-valued and given by 

{ f + ( d )  = ( u ' +  1) 2 for u' < - t ,  

f ( u ' ) =  fo (u ' )  = y ( u ' )  2 + ~ f o r - t  < u ' < t ,  
f _ ( u ' )  = (u ~ - 1) 2 for u' >_ t, 

(23) 

where 

y = l - 1 / t < O  o = l - t  

and t, - t  are the points of  contact of  the three parabo- 
lae. This function, as well as the corresponding stress- 
strain curve, is shown in Fig. 2. The parameters y and 

are chosen so that f is C 1. This results in an approx- 
imation of a fully nonlinear two-well energy density. 

As in the two-parabola model, we assume that there 
is a finite number n of  isolated transition points ci. 

The strain-gradient t e r m  o t u  "2  enforces continuity of  
the strain u~(x). The continuity of  u ~ and the single- 
valuedness of  f restrict the location of transition point 
ci by the condition 

u~ (ci) = + t ,  (24) 

where the sign depends on whether ci separates " - "  
and "0" regions or " + "  and "0" regions. 

We require the admissible variations in u(x )  to be 
in He(0 ,  1) and satisfy the zero boundary conditions. 
Hence variations are C1[0, 1] and their second dis- 
tributional derivatives are square integrable in [0, 1]. 
We then obtain the following necessary conditions for 
equilibria. The equilibrium displacement u(x )  must 
be a C3[0, 1], piecewise C 4 function, with the Euler-  
Lagrange equation (17) satisfied in each interval 
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[ci, ci+l]. Here f has subscript + ,  0 or - depending 
on which phase occupies [ci, ei+l]. Observe that in- 
tervals in the " + "  and " - "  phases must be separated 
by an interval in the "0" phase (spinodal region). In 
addition, equilibria must satisfy the boundary condi- 
tions (2), the natural boundary conditions (18), the 
smoothness conditions (22), couple stress continuity 
(20) and stress continuity (19). Since f and u are C 1, 
stress continuity (19) reduces to 

[[u/M]]ci = O. (25) 

When the specific forms of  (15) and (23) are used, 
the jump conditions (19), (20) and (22) for the two- 
parabola model reduce to 

[[U]]ci = O, [[ul]]ci = O, [[u"]]c~ = O, 

[[~u'" + sgn(u ' ) l]c i  = O, (26) 

while the cornel" condition (21) reduces to 

u' (ci) = O. (27) 

In the three-parabola case, (26) is replaced by 

[[ullc~ = O, [[u']]ci = O, 

[[u"]]c~ = 0, [[u"']]c; = 0 (28) 

and location of ci is restricted by (24). 
The Euler-Lagrange equation (17) in the -4- phase 

intervals (both models) and in 0 intervals (spinodal 
region; three-parabola) reduce to linear ordinary dif- 
ferential equations with constant coefficients in view 
of (15) and (23): in + and - intervals, 

otu m~ - u l / +  flu = O, (29) 

while in 0 intervals, 

otu ~tH - y u  ~' + 3 u  = 0. (30) 

The displacement in the ith interval [ci, ci+1] is a lin- 
ear combination of four functions with hitherto un- 
determined constants ak,i, k -= 1 . . . . .  4. The specific 
form depends on the sign of 1 - 4~/3 for -t- intervals 
and the sign of g 2 - 4a/3 for 0 intervals. It involves 
polynomial, exponential, trigonometric functions and 
combinations thereof in each case. 

The coefficients ak,i are then found by matching the 
solutions in the intervals by means of jump conditions 
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(given by (26) for two parabolae and by (28) for three 
parabolae) and using the boundary conditions (2) and 
(18). This yields a linear system of equations for ak.i. 

To find the extremals of the energy functional at 
fixed n, one has to find ci from (27) and (24) for 
the two- and three-parabola cases, respectively. This 
results in a nonlinear algebraic system. 

We first solve the linear system for ak,i (ci, d, ol, t ,  )/) 
and then substitute the result into the nonlinear sys- 
tem to solve for ci as nonlinear functions of d, o~, fi 
and y. The solutions are not unique so that the 
functions ci (d, a, fi, y )  are multi-valued. Typically 
there is more than one equilibrium for a given end 
displacement d and the number of interfaces n. 

2.3. Fully nonlinear model 

imization with respect to ci yields different branches 
of local minima for given d. The energies for differ- 
ent n can then compared directly to examine global 
minima. See [30] for details. 

In the three-parbola model the study of stability 
does not reduce to a finite-dimensional problem. The 
transition points ci are no longer independent variables 
since the strain is continuous across them and u'(ci) = 

+t .  
Therefore, we consider the second variation of the 

energy functional directly 

1 

S2E(u0 ;  rl) : ] [f ' t  (dO)(tf)2 

0 

+2~(~")  2 + 2fi02] dx, (32) 

Herre f is a smooth function with two wells and a 
spinodal region (see Fig. 3): 

f ( u ' )  = ¼(u ,2 - 1) 2. (31) 

Equilibria u (x) must satisfy the Euler-Lagrange equa- 
tion (17) with boundary conditions (2) mad (18). Here 
we assume the competitors to be in H~(0, 1). A stan- 
dard argument shows that the equilibria belong to 
C4[0, 1]. 

Eq. (17) is now a nonlinear fourth-order ordinary 
differential equation with o4 fi and d as parameters. It 
is solved numerically using the pseudo-arclength con- 
tinuation technique implemented in the software pack- 
age AUTO [8] with the displacement d treated as the 
continuation parameter. The program follows the main 
branch of solutions determining the bifurcation points 
(where other branches emerge) and then calculates the 
bifurcating branches. 

3. Stability 

For the two-parabola model, the problem of sta- 
bility is essentially finite-dimensional [30]. One first 
minimizes the total energy forfixed number n and loca- 
tions ci of interfaces. This is facilitated by the double- 
valued special form of f .  The resulting expression of 
the energy for fixed n depends on the variables ci. Min- 

where q(x) ~ //2(0, 1) = {h(x) e H2(0, 1): h(0) ----= 

h(1) = 0} is a variation and uo(x) is an extremal, i.e. 
3E(uo, ~) ---- 0 for any ~ in H2(0, 1). For f ( u ' )  given 
by (23), f "(u') in (32) is piecewise constant with 
jumps at u'  = i t .  Using the assumption that U~o(X) has 
a finite number of isolated points ci where #o(Ci) = 
4-t (so that it is strictly monotone in some neighbor- 
hoods of ci) and taking into account the continuity of 
U~o(X), one can show that the second variation is con- 
tinuous at u0 uniformly with respect to ~ in//o2(0, 1). 
In view of this, the strict positive definiteness of the 
second variation, that is, existence of constant k > 0 
such that 

2 •2E(u0;  r/) > kllr][[H2(0,1) , 

is sufficient for uo(x) to be a local minimum with re- 
spect to our admissible variations (see [32, Theorem 
40A]). For the simple cases with no phase bound- 
aries the stability analysis can be done analytically. 
When phase boundaries are present and c~ and fi sat- 
isfy 4c~fi < y2 we approximate the variation t/(x) by 
cubic Hermite polynomials, so that the second varia- 
tion (32) is approximated by a finite sum, and investi- 
gate the sign of the minimal eigenvalue of the resulting 
quadratic form. In case g 2 -4o~fi < 0 it can be shown 
[17] that the energy functional is convex and at each 
value of d there exists a unique equilibrium global 
minimizer. 
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Fig. 6. (a) Local bifurcation diagram from imperfection analysis: a = 0.0025. Dotted line: n = 0 at/3 = 0, dash-dotted line: n = 2 
at /3 = 0, thick solid line: n = 0, 2 at /3 = 0.005. (b) Global bifurcation diagram obtained numerically: el = 0.0025,/3 = 0.005. 
Thick solid line: n = 0, 2, 4 (the main branch), dashed line: n = 1, solid line: n = 3. 

Stability for the fully nonlinear model was studied 
numerically by the same method. 

The results are shown in Section 5. 

4. Symmetry  and local perturbation results 

As was pointed out in [30], we have two types of  

symmetry: (i) Geometric symmetry ("G-symmetry"): 

if Ud(X) is an equilibrium solution satisfying (17), (2) 
and (18) then so is Vd(X) = --Ud(1 --x) ,  with the same 
total energy. We refer to solutions satisying 

u(x)  = - u ( 1  - x) (33) 

as G-symmetric. Solutions for which (33) does not 
hold are called non-G-symmetric and come in pairs. 

(ii) Physical symmetry: if ua(x) is an equilibrium for 

given d and the energy density satisfies f ( - u  I) = 
f ( u ' ) ,  then so is v-d(x)  = - u a ( x ) ,  with the same 
energy. The total energy is thus an even function of  
d: E(d)  = E(- -d) .  

In Section 1 we considered the special case 

/3 = 0 (~ 7~ 0) and have shown the energy and stress 
diagrams in Fig. 4. For/3 > 0 and d ~ 0 the trivial 
solution (7) of  problem (6) (/3 = 0) no longer satisfies 
the Euler-Lagrange equation (17) with nonzero /3. 
However, a local perturbation analysis with/3 as the 

perturbation parameter shows that the main branch 

solutions of  the perturbed problem will fol low the 
branches with even n of the unperturbed (/3 ---- 0) 

problem near the points where these branches bi- 
furcate. Consider bifurcation point d22 in the energy 
diagram shown in Fig. 4(a). When /3 = 0, one can 
show that near this point 

d = d 2 -t- Be 2 -4- o(82), 

1 

8 = ] ~/2 sin(27vx)(u - dx  + ½d) dx, 

0 

where B is a constant. The corresponding local 8 -  

d bifurcation diagram for n = 2 (dash-dotted line in 
Fig. 6(a) is a pitchfork bifurcation. As we introduce a 

small perturbation/3 > 0, we obtain instead, 

d = d  2 + A ~- 4- B8 2 + Cfi 
8 

+ o ( 8 2 ) + o  ~ -  , 

where A, B, C, D are constants for which analytical 
expressions are available. The corresponding diagram 
is shown by a thick solid line in Fig. 6(a). A similar 
diagram can be obtained for n = 4. 
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The global bifurcation diagram obtained numeri-  

cally is shown in Fig. 6(b). Local ly  it agrees with the 

analytical results. Thus, the bifurcation points of  even 

n branches in the unperturbed problem get replaced 

by turning points in the perturbed one while bifurca- 

tion points of  the odd branches do not. Using argu- 

ments from [12] one can easily show that there is a 

G-symmetr ic  solution branch connected to the solution 

u = 0, d = 0. Hence the main branch consists of  G- 

symmetric solutions, and non-G-symmetr ic  solutions 

form the bifucating branches. Solutions along bifur- 

cating branches with even-n in the unperturbed prob- 

lem possess G-symmetry  while solutions with odd-n 

do not. Thus, in our example with nmax = 4 when fi ---- 

0, the main branch in the perturbed problem follows 

the trivial solution n = 0 (coming from the negative 

d direction), then makes a turn and goes close to the 

n = 2 branch of  the unperturbed problem, again fol- 

lows n = 0, makes another turn to follow n = 4, goes 

close to n = 0 again, follows n ---- 4, then n = 0, goes 

close to n : 2 and then turns to n = 0 in the positive 

d direction. From this main branch other branches of  

solutions with less symmetry bifurcate (n = 1, 3 in 

this example).  See Fig. 6(b). The sketch of  the energy 

diagram is given in Fig. 7 (compare to Fig. 4). 

n =0 

n =0 

A. Vainchtein et al./Physica D 115 (1998) 29-48 

d 

Fig. 7. Sketch of the energy diagram with small elastic foun- 
dation coefficient: dashed: n = 1, solid: n = 3, thick solid: 
n =0 ,2 ,4 .  

5. Comparison of the three models 

We compare phase equilibria with a low number of  

interfaces in all three models. 

Following [30], we choose ce, fi and t that satisfy 

both V2 _ 4c~fi > 0 and 1 - 4o~fi > 0 (recall that 2t 

is the width of  the spinodal region and y = 1 - 1/t) .  

Recall  that in the case V2 _ 4ceil < 0 the energy func- 

tional is convex [17]. Thus at each d there is a unique 

equilibrium which is also the global minimizer. Hence 

hysteresis cannot take place. This was also observed 

in numerical calculations. The energy functional in 

the two-parabola model  is never convex because g = 

-cxD, and so 4otfi < )/2. Finally, when ~fi >> 1 no 

microstrnctures are observed. 

Formula (10) shows that in the case fl = 0 the max- 

imum number nmax of  zeroes of  strain in bifurcating 

branches is determined by the nonlocali ty coefficient 

ee and by the curvature of  the spinodal region near its 

peak f n ( 0 )  = 2)/. The results of  our computations 

suggest that the elastic foundation does not change 

nmax and formula (10) apparently holds f o r  nonzero fi 

as well. Notice that by (10) nmax tends to :xD as ot tends 

to 0, and we have seen in Section 1 that nmax = cx~ 

when ot ---- 0 but fl 5& 0. 

On the other hand, the stability and shape of  

branches depends on all of  or, fi and t. 

The results of  calculations are presented in two 

kinds of  diagrams: total energy E(d)  and effective 

stress S(d) = E~(d). One can show that S(d) equals 

the end stress (at x = 0, 1). The stability of  the com- 

puted solutions is indicated in figure captions. 

5.1. The interfaces 

The notions of  a phase boundary in the models with 

spinodal region and in the two-parabola model  are 

different. In the two-parabola model  [30] + and - 

intervals are consecutive. However, in models with 

spinodal region there is a "thick interface" between the 

phase: the + and - intervals are always separated by a 
0 (spinodal region) interval, e.g. (+ ,  0, - )  as opposed 

to (4-, - ) .  The notation (4-, 0, - )  means that the three 

intervals [0, q ] ,  [Cl, c2] and [c2, 1] are occupied by 

the 4-, 0 and - phase, respectively. Thus in place of  
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Fig. 8. (a) Energy E(d) and (b) effective stress S(d) diagrams for the two-parabola model (from [30]): e+ = 0.01, fi = 10; dashed: 
n = 0 (stable), boldly dashed: n = 1 (FG is stable, OG and OF are unstable), dash-dotted: n = 2, G-symmetric (BC is stable, OB 
and OC unstable), dotted: n = 2, non-G-symmetric (unstable). 

one phase boundary in two-parabola case there are two 

transition points or one "thick" boundary for models 

with the spinodal region. 

Moreover, with the spinodal region now present, 

new combinations of  phases arise, e.g. (0, - ,  0), (+ ,  

0, + )  and (+ ,  0). As we shall see, these solutions form 

"transitional" branches connecting the 0-branches 

(without phase boundaries) with branches having 

"true" interfaces where the spinodal region separates 

two different phases. 

5.2. The O-branch o f  phase  equilibria 

In the two-parabola model, solutions with no tran- 

sition points ( (+)  or ( - ) )  are solutions of  (29) subject 

to (2) and (18). The resulting branches are represented 

by a dashed curve in Fig. 8. When the spinodal region 

is present, the 0.branch is not defined f o r  all d but con- 
sists of  three separate parts (see Fig. 12 and Figs. 9 -  

11). The left and right parts are branches of  solutions 

of  (29)wi th  strain u~ < - - t  and u r > t ( (+)  and ( - ) ,  

respectively). The middle part is the branch of solu- 

tions of  (30) with - t  < u' ___ t (spinodal region). 

These parts get closer to each other as we decrease/3.  

Physical ly the separation of these 0-branches means 

that only if  one pulls far enough one gets a pure + 

phase solution. This is due to the elastic foundation. 

However, in the absence of a spinodal region pure 

phase solutions exist and are stable for all d (although 

not absolute energy minima for small d). In all mod- 

els 0-branches have relatively high energy because of  

the elastic foundation. 

5.3. The 2-branches o f  phase  equilibria 

5.3.1. G-symmetr ic  branches 

Dash-dotted curved triangles in Fig. 8 are G- 

symmetric n = 2 branches ( ( - ,  + ,  - )  and (+ ,  - ,  + ) )  

calculated for the two-parabola model. 

Corresponding branches in the models with spin- 

odal region are all G-symmetr ic  of type (-t-, 0, - ,  0, + ) ,  

(0, - ,  0) and (+ ,  0, + )  (and corresponding types with 

- and + interchanged). The first type gives branches 

with two "true" (thick) interfaces (we call them "n = 

2" although there are four transition points). They are 

connected to the 0-branches and other branches with 

even n via the other two "transitional" branches of  

type (0, - ,  0) and (÷ ,  0, + ) .  

To see how the spinodal region affects the n = 2 

branches, we start with a two-parabola model  (t = 0) 

and gradually insert a wider and wider spinodal region 

by increasing t, the maximum value of the energy E 
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Fig. 9. (a) Energy E(d) and (b) effective stress S(d) diagrams for the three-parabola model: a = 0.01, fi = 10, t = 0.05; 0a: (+)  
(stable), 0b: (0) (unstable), la: ( - ,  0, + )  (FG is stable, the rest is unstable), lb: (0, +)  (unstable), 2a: ( 0 , - ,  0), G-symmetric 
(unstable), 2b: (+,  0 , - ,  0, + ) ,  G-symmetric (BC is stable, the rest is unstable), 2c: (+,  0, +) ,  G-symmetric (unstable). Not all 
branches are shown. 

becoming smaller (see Figs. 8-11). At t = 0 the n = 2 
G-symmetric branch ((+,  - ,  +) ,  for example) has the 
form of a curved triangle (dash-dotted curve in Fig. 8). 

It is represented by O B C  in Fig. 15. As we increase t 
(spinodal region width), the triangle opens up so that 
sides A B  and C D  emerge from two different points (A 
and D in Fig. 15) rather than a single point O. Also, 
the ends of  the sides A B  and C D  are now occupied 
by (0, - ,  0) and (+,  0, + )  while the rest of  the curve 
is (+,  0, - ,  0, +) .  Notice that while the point C is a 
turning point in Figs. 8-10, it is not as we increase t to 
0.4 (see Fig. 11). Neither B nor C are mining points 
for t = 0.75 (Figs. 13 and 14). For large t the order of  

C and D is reversed, so that the 2-branch does not 
coexist with, but rather follows the 0-branch as d in- 
creases. This unfolding for large t is shown in Fig. 15. 
Along the n = 2 branch the following sequence is ob- 
served: 

(+)  > (+,  O, + )  > (+ ,  O, - ,  O, + )  

(0, - ,  0). 

This means that if we start increasing d from a nega- 
tive value with only the + phase present, we observe 
first a 0 interval and then the - phase growing in the 

middle. The transition points move outward and the 

+ phase disappears from the ends. If  f ' ( O ) / ( 2 ~ x ) =  
(1  - 1 / t ) / a  is such that 2 _< nmax < 4 in (10), this 
sequence of  transitions can be continued as 

( o ,  - ,  o )  . > ( o ) ,  

and the 2-branch connects to the spindal region part 
of  the 0-branch. See Figs. 11, 13 and 14. However, 
if branches with higher even n are present, which is 
the case in Figs. 9 and 10, the 2-branch connects to 
the spinodal region 0-branch via these branches with 
higher n. These branches were not calculated for the 

cases t = 0.05 and t = 0.25 but an example of  such 
a connection can be seen in Figs. 6(b) and 17. 

In fact, our calculations for the fully nonlinear 
model have shown that the 0-branch and all G- 
symmetric branches form the main branch of solu- 
tions. That is, the G-symmetric 2-branch does not 

bifurcate from the 0-branch but is in fact part of  the 
main branch of  solutions from which the branches 

with less symmetry bifurcate. This result is not seen 
in the two-parabola model because there all branches 
emerge from d = 0. In general, the main branch con- 
tains all G-symmetric solutions with even n. For ex- 
ample, in Fig. 17 it consists of  G-symmeWic solutions 
with n = 0, 2, 4. 



42 A. Vainchtein et al./Physica D 115 (1998) 29-48 

(a) 
E r 1 ' 

,-  " , u - 0 b  
/ i  

0.1 

: . . . . . . . . . .  ' .  3 b  

. . . .  2ct .... :" 

2,... ;.1o ,,%,, 
o.s.' F ~ . . . .  ' , ' .  . . . . . . . . ,  y" . . . .  " ~  

P ~.~ i. • \ 
0.5 I- 2~q i ,., ,., ' ,  

/'-- %.-- 5 ' .;'-, c--  -.-/" 
I . - . , .  22b. . . ."  "..... . ; - .  - 
[ Oa7 . . . .  : . . . .  ,. " - - : - : - - "  , - - ,  

0.4 -o.s .0.4 .o.x -0.2 .oa o o.t 0.2 , ,3 o14 o . s d  

(b) 

, ", ,7_Oh 
°° Oa/7 ' ,  . . . . . . . . .  . 

o.~ " / /  ='.-~3b'I-'"" ", .;"% 
f '  : # '  ~ "~ . J 

0.2 ' : ," '"  ", V lal,..- i 
o, '  / "" " - ~ i ~ : - - " :  . . . .  - ~ 7 " > ,  ' / 

1~--2c ..: j ~  \ / .. , ] , -o. / . , "  
{ .1 " /~ ; , ¢ 

-o.i[ " "~ / "  -o. - 2 a " ,  :~ i,, 

- 0 ' . 5 -0~ .4 -0 .3 -0 .2 -O . l  6 OJ.l 012 O.-'x3 0.4 0.5 d 

°if /%," / I ! 
-0  - .  # /  1 

0 0,1 0.2 [1,3 0,4 0.5 0.6 [1,7 0.8 0.9 X 

Fig. 10. (a) Energy E(d) and (b) effective stress S(d) diagrams for the three-parabola model: ce = 0.01,/~ = 10, t ---- 0.25; 0a: (+) 
(stable), 0b: (0) (unstable), la; ( - ,  0, +)  (FG is stable, the rest is unstable), lb: (0, +)  (unstable), 2a: (0, - ,  0), G-symmetric (unstable), 
2b: (+ ,  0, - ,  0, +) ,  G-symmetric (stable), 2c: (+,  0, +) ,  G-symmetric (unstable), 3a: ( - ,  0, +) ,  n = 3 (unstable), 3b: (0, +) ,  n ---- 3 
(unstable); (c) solutions at the same value of d belonging to different ( - ,  0, +)-branches. The solid (n = 3) and dashed (n = 1) 
curves represent the strains on the branches 3a and la  correspondingly. 

One can observe  how the unfold ing  o f  the symmet -  

ric n = 2 branch with  increas ing t leads to smoothen- 
ing of  the lower  enve lope  o f  the n ---- 0 and n = 2 

branches.  Indeed,  at t = 0, t = 0.05 and t = 0.25 

(Figs. 8 -10)  this envelope  is nonsmooth: the branches  

n = 0 and n = 2 intersect,  and even though the en- 

ergies o f  the two solutions are the same at this point,  

the solutions themselves  are distant in u-space  (no- 

t ice that the stress drops at this point).  Hence  in order  

to make  a transi t ion f rom n = 0 to n = 2, the sys- 

t em has to o v e r c o m e  an energy barrier to nucleate  a 

finite-phase interval  in the interior of  the bar: 

(+) > ( + , - , + ) .  

An energy barrier  here  means  that in order to get  f rom 

one local  m i n i m u m  of  the energy to another  wi th  the 

same boundary  condi t ions  the sys tem has to c l imb up 

a certain "energy  mounta in"  in u-space.  

However ,  beyond  some crit ical  t depending  on o~ 

and /3 ,  the branch unfolds  at the point  C and the en- 

ve lope  smoothens up. N o w  the transit ion f rom n = 0 

to n = 2 occurs  smoothly: 

( + )  > (+ ,  0, + )  > (+ ,  0, - ,  0, + ) .  

First  we  observe  the appearance  o f  a pretransitional 
nucleus in the 0 phase. Then  an interval  in the - 

phase (high-strain nucleus)  grows gradual ly  inside the 
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Fig. 11. (a) Energy E(d) and (b) effective stress S(d) diagrams for the three-parabola model: a = 0.01, fi = 10, t = 0.4; 0a: (+) 
(stable), 0b: (0) (unstable), la: ( - ,  0, +) (stable), lb: (0, +) (unstable), 2a: (0, - ,  0), G-symmetric (unstable), 2b: (+, 0, - ,  0, +), 
G-symmetric (stable), 2c: (+, 0, +), G-symmetric (stable), 3a: ( - ,  0, +), n = 3 (unstable), 3b: (0, +), n = 3 (unstable). 

t=O t = t l > O  

Fig. 12. Sketch of 0-branches. 

pretransitional nucleus. Even though there is no en- 
ergy barrier here in the sense described above, and the 

system can smoothly get from ( + )  to (+,  0, - ,  0, + )  
along the path of  local minima (+,  0, + )  (the seg- 

ment C D  in Fig. 11), the stress still drops before  nu- 

c leat ion.  This agrees with experimental observations 
[27]. 

Another example of  a transition from sharp to 
smooth change of  phase due to interactions with the 
elastic environment is discussed in [5]. 

5.3.2.  N o n - G - s y m m e t r i c  branches  

Figs. 13 and 14 show the non-G-symmetric n = 2 

branch (0, - ,  0, + )  bifurcating from the n = 2 sym- 
metric (0, - ,  0) branch at the point B (see sketch in 

Fig. 16(b)) by nucleation of  the + phase at one end 
of  the bar (symmetry breaking bifurcation). There is 
also a (0, ÷ ,  0, --)  branch bifurcating from (0, + ,  0). 
These correspond to the non-G-symmetric n ---- 2 sub- 
branches observed in [30] (see Fig. 8). In all three 
models  these branches are unstable. 
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Fig. 13. (a) Energy E(d) and (b) effective stress S(d) diagrams for the three-parabola model: ~ = 0.005, /3 = 2.3, t = 0.75; 0a: (+)  
(stable), 0b: (0) (unstable), la :  ( - ,  0, + )  (stable), lb:  (0, + )  (unstable), 2a: (0, - ,  0), G-symmetric (unstable), 2b: (+,  0, - ,  0, +) ,  
G-symmetric (stable), 2c: (+,  0, ÷) ,  G-symmetric (stable), 2d: (0, - ,  0, + )  (unstable). 
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Fig. 14. (a) Energy E(d) and (b) effective stress S(d) diagrams for the fully nonlinear model: c~ = 0.005, /3 = 2.5; 0a: (+) (stable), 
0b: (0) (unstable), la:  ( - ,  0, +)  (stable), lb: (0, +)  (unstable), 2a: (0, - ,  0), G-symmetric (unstable), 2b: (+, 0, - ,  0, +),  G-symmetric 
(stable), 2c: (+, 0, +),  G-symmetric (stable), 2d: (0, - ,  0, +) (unstable). 

In Figs. 9-11 we confine our attention to just a few 
solution branches. In particular, non-G-symmetric 
n = 2 branches are not shown. In these cases there 
are many equilibria connecting the branches that are 
shown to the spinodal region part of  n = 0 as well 
as to each other in complicated way. Calculating 
them requires substantial computational effort. We do 
show all the connections in some cases where nmax is 
low (Figs. 13, 14 and 17). However, for the cases in 

Figs. 9-11, this exhaustive numerical study was not 
conducted. 

5.4. The 1-branches of phase equilibria 

In models with a spinodal region the analogs of  the 
n = 1 branch in the two-parabola model (see Fig. 8) 
are of  (0, + )  and ( - ,  0, + )  type (see Figs. 9-11 and 



A. Vainchtein et al./Physica D 115 (1998) 29-48 45 

\ 
/ . j / ' ° B  

t=t~>O A 

. ? o 8  

~ D  t=t2>t~ A 

Fig. 15. Sketch of G-symmetric 2-branches: dash-dotted: n = 2, solid line: n = 0. 
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Fig. 16. (a) Sketch of 1-branches. (b) Sketch of non-G-symmetric 2-branches and 1-branches and their connection to the main branch: 
solid line: n = 1, dotted line: n = 2, non-G-symmetric, dash-dotted line: n = 2, G-symmetric. 

Figs. 13 and 14). In the two-parabola model  (t = 

0), the 1-branch has the form of  the triangle OFG in 

Fig. 16. As we increase t, the triangle opens at O; 

the sides HG and FE have two different end points 

E and H rather than O. The curves HG and FE are 

increasingly occupied by (0, + ) - type  solutions while 

the rest of  the curve is ( - ,  0, + )  (and corresponding 

G,related solutions). 

Figs. 13 and 14 show how the n = 1 branch is con- 

nected to the n = 2 branch. The following sequence 
of  phase transitions is observed: 

(0, - ,  0) (symmetric n = 2) > (0, - ,  0, + )  (non- 

symmetric n = 2) ~ (0, + )  ~ (--,  0, + )  

(--,  0) ~ (--,  0, + ,  0) ) (0, + ,  0). Each branch 

is ran over twice by two G-related solutions in all three 

cases. 

Although the energy and stress diagrams for the 

three-parabola (Fig. 13) and the fully nonlinear 

model  (Fig. 14) differ quantitatively, the shapes of  

the branches and nucleation patterns are qualitatively 

similar. 

5.5. Solutions with higher number o f  boundaries 

There are cases when solutions with higher n are 

stable, in addition to the ones discussed above. Thus 

in Fig. 17 the main branch contains (0) solutions with 

n = 2 and 4 (i.e. strain is in the spinodal region but 
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intersects zero two and four times respectively). These 

cannot be observed in the three-parabola model, where 

the (0) solution is unique for each d. Such underdevel- 

oped solutions are a distinct feature of  fully nonlinear 
energy models. Notice that the (0) solution with n = 2 

(dotted curve in Fig. 17) is stable right after the bifur- 
cation point. This might correspond to experimentally 

observed oscillations in strain before phase bound- 
aries appear ("premartensite tweed" [15]). The bifur- 

caring branch contains stable n = 3 ( - ,  0, + ,  0, - ,  0) 
solutions. 

6. Hysteresis 

Although dynamical models would be more appro- 

priate for the study of  hysteresis (for instance, one 

may add a dissipative term Uxxt to the stress and in- 
clude inertia), some observation can be made within 
our static approach. 

For example, consider the stress and energy dia- 
grams in Figs. 14(a) and (b). Following the branches 
with lowest energy (starting with negative displace- 
ment, say, d = - 1 ,  and then reducing Idl), we see 

that the bar at first has no phase boundaries (+),  then 
(+,  0, + )  symmetric solutions evolve, followed by the 

truly two-interface (+,  0, - ,  0, + )  symmetric state. 

As we approach d = 0, there are two possibilities: 

(1) The system follows the lower energy envelope; 
this will require a drop in stress at d = 0 and 

overcoming a certain energy barrier in order to get 

from one energy minimizing state (+,  0, - ,  0, + )  
to another ( - ,  0, + ,  0, - ) .  

(2) The system continues following the (+,  0, - ,  0, 

+ )  branch for some time, then jumps to another 

local minimum, e.g. (-t-, 0, - ) .  I f  the second pos- 
sibility occurs, there are different hysteresis paths 
the system might follow. 

A possible approach involves the estimation of bar- 
riers. For example, consider the points 1, 2 and 3 

on the energy diagram in Fig. 18(a). These represent 
different equilibria for the same boundary conditions 
(same d); 1 and 2 are stable and 3 is unstable. One 

can view 3 as a saddle point or a "mountain pass" 
between the two minima 1 and 2 (see the schematic 
at the bottom right corner of Fig. 18(a)). In order to 
get from state 1 to 2 that has less energy, the system 
has to overcome a barrier B equal to the difference 
in the energies of  states 1 and 3. We assume that the 

system jumps  from one branch to another when the 

barrier B is less than or equal to a critical value Bcrit. 

W h e n  Bcrit = 0.004, we obtain the hysteresis path 
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Fig. 18. (a) Estimation of the barrier via unstable solutions. Points 1 and 2 on the energy diagram represent stable solutions (local 
minima of  the total energy), while 3 is an unstable equilibrium. (b) The corresponding hysteresis loop on the stress diagram with the 
barrier Bcrit = 0.004. 0a: (+) ,  0b: (0), l a :  ( - ,  0, +) ,  lb: (0, +) ,  2a: (0, - ,  0), 2b: (+,  0, - ,  0, +) ,  2c: (+,  0, +) ,  2d: (0, - ,  0, +) .  

shown in Fig. 18(b). Observe that the system jumps 

from (+, 0 , - ,  0, +)  to (+, 0 , - )  first, and then to 

( - ,  0, +, 0, - ) .  Although the ( - ,  0, +, 0, - )  branch 
has lower energy than (+, 0, - ) ,  the system does not 
switch to it right away because the barrier is too high 

(B : 0.015). The hysteresis loop is wider for smaller 

values of Bcrit. 

7. Conclusions 

Our study shows that the presence of a spinodal re- 
gion in phase transition models that incorporate non- 

local interactions has a strong effect on nucleation 
mechanisms and resulting microstructures. 

We find that in models with sufficiently wide spin- 

odal region an infinitesimal phase nuncleation in the 
interior of the bar is possible. The system makes the 
transition from n = 0 to n = 2 through the forma- 

tion of a "premartensite" structure in the interior. This 
happens by the appearance and growth of a pretran- 
sitional nucleus of the 0 phase inside the low-strain 
phase, followed by the appearance of a high-strain 
nucleus within the former. This process has some char- 
acteristics of a second-order phase transition. The ef- 
fect cannot be captured by the two-parabola model (or 
a model with a narrow spinodal region) where only 

sudden finite phase nucleation can occur. Accordingly, 
in models with wide spinodal region, the lowest en- 
ergy envelope smoothens. Another kind of nucleation - 

with afinite nucleus at one of the boundaries of the bar 
- can still take place in models with a spinodal region. 
These transitions are nonsmooth as predicted in [30]; 

the system has to overcome an energy barrier in jump- 

ing from one state to another. As a result, the overall 
lowest energy envelope is only piecewise smooth even 

in models with spinodal region. This leads to discon- 
tinuities on the corresponding stress diagram [10,30]. 

The size and shape of the spinodal region determine 

the (finite) maximum number of phase boundaries in 
bifurcating equilibria. Recall that this number is infi- 

nite in the two-parabola model. Due to the degeneracy 

of the latter, all branches of equilibria bifurcate from 

the u = 0 solution point at d = 0. In smoother mod- 
els the structure of connections between equilibrium 
branches unfolds. It is remarkable, however, that sta- 

bility results are similar in all three models. 
The results of numerical computations for the fully 

nonlinear model and semianalytical results for the 
three-parabola model are in qualitative agreement. 
This implies that the three-parabola model captures 
the main effects of the spinodal region. 

Our work suggests that, apart from dynamics, 
there are purely energetic reasons for the hysteresis 
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phenomenon:  We remark  that more  sophist icated 

models  o f  the elastic foundat ion  (for example ,  w h e n  

Er icksen ' s  bar  is coup led  with  a l inearly elast ic bar  by 

a "spr ingy glue")  y ie ld  hysteresis  loops that are in bet-  

ter qual i ta t ive agreement  wi th  exper imenta l  observa-  

tions. These  models  are current ly under  invest igat ion.  
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