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DYNAMICS OF NON-EQUILIBRIUM PHASE BOUNDARIES IN A 
HEAT CONDUCTING NON-LINEARLY ELASTIC MEDIUM* 

L.M. THUSKINOVSKII 

The phase transformation of the first kind in a non-linearly elastic heat 
conducting medium is simulated by the relationships on a strong discon- 
tinuity. A generalization of the Stefan formulation is given. Anexist- 
ence condition for stationary flow , analogous to the Gibbs phase 
equilibrium condition, is obtained for non-equilibrium phase boundaries. 
A pure dilatational phase transition in a compressible fluid and pure 
shear transformation of the twinning type in non-linearly elastic 
crystals are considered as model examples. The problem of the structure 
is solved for closure of the system of relationships on the shock. 

Aphasetransformationordinarilyturnsouttobe localizedin anarrow 
domain of space and it can be simulated in terms of the conditions on a 
strong discontinuity /l/. Formulation of the problem of the static 
equilibrium of liquid phases as well as of liquid and (non-linearly 
elastic) solid phases was given by Gibbs, who proposed a phase equilibrium 
criterion and formulated appropriate conditions on the shock; the 
extension of the Gibbs conditions to the case of the equilibrium of two 
solid phases is known in both the linear /2/ and non-linear /3/ theories 
of elasticity. The dynamic problem of the propagation of the equilibrium 
phase boundary is considered in the Stefan formulation as a rule, 
including the assumption about the continuity of the density (the strain 
tensor component) .on the shock; the thermal problem is here separated 
from the mechanicalone. Simulating the interphasal surface on the shock 
the temperature fields are merged by using the well-known Stefan con- 
ditions as well as the phase equilibrium condition that reduces to giving 
the temperature on the front. 

The purpose of this paper is to extend the Stefan-Gibbs formulation 
to the case of the motion of a coherent isothermal phase boundary in a 
non-linearly elastic heat conducting medium and to derive the dynamic 
analogue of the phase equilibrium condition (and the Stefan conditions) 
with possible dissipation at the transformation front. Two dissipative 
mechanisms are examined, viscous and kinetic. The case of equilibrium 
phase boundaries was investigated in /4-6/. 

1. The model of a coherent phase boundary is based on the assumption of the continuity 
of the displacements at the front. Let zi =x'(p) be the deformation law for the elastic body, 

Xi the Euler Cartesian coordinates of the observer, and r the Lagrange coordinates that are 
in agreement with the Euler coordinates in the reference state. The phase boundary coherence 
condition is written in the form 

[x i]=O (1.1) 

where, as usual, [A] =A+ - A- is the difference between the limit values of the function on 
the sides of the surface of discontinuity. 

The system of relationships on the phase boundary at rest includes together with the 

isothermal condition IT] = 0 (1.2) 

the standard requirement of equality of the forces 

[df/&r,"] naO = 0 (1.3) 

as well as the additional scalar phase equilibrium condition 

[fl- W/a.%,') [%‘I=0 (1.4) 

Here f(x,, T) is the free energy per unit mass x,,~ = &,!~W$'is the distortion tensor, T is 
the temperature, n,'is the vector of the unit normal to the phase boundary in the reference 

*Prikl.Matem.Mekhan.,51,6,1009-1019,1987 

777 



778 

configuration, and the latter is assumed to be common for both phases {A) = ii2 fAf -+ A-). 

Conditions fl.lf-(1.4) enable the equilibrium two-phase configuration with unknown 
boundary to be determined. In the special case of the equilibrium of two liquid phases re- 
lationship (1.4) reduces to the conditions, known in thermodynamics, of the equality of the 
chemical potentials [fi- pV1 = 0, where V is the specific volume and p = -4flaV is the 
continuous pressure on the phase boundary by virtue of (1.3). The static equilibrium problem 
is formulated as a prablem to seek a broken-line extremal of the free energy functional; 
consequently, it is easy to identify the classical Weierstrass-Erdmann conditions in (1.3)- 
(1.4). Ordinarily, the normal vector n, Oi.s included explicitly in the con&ition analogous 
to (1.4) (see /3, 7, 8/5, however , the moae of writing used here for the relationships on the 
broken-line extremal is also well-known (see [9-llf, say). 

To obtain the dynamic conditions at the phase jump we write the system of equations of 
motion of the heat conducting non-linearly elastic medium in Lagrange coordinates {in the 
absence of mass forces and thermal sources) 

Here e (xs*, s) =j+ 2's is the internal energy per unit mass, xi(P,t) is the law of 
motion, s is the entropy density, vi== ax%% is the velocity vector, p"(E") is the density 
in the reference configuration, and q” is the heat flux vector. 

We assume that the phases are characterized by a different kind of dependence of the 
function e on its arguments; sometimes it is possible to Speak about one (non-convex) function 
defined on a non-simply-connected 01: even non-connected domain. The discontinuities ([.%'I= 

0, I%*1 + 0, fsl + f-8 of the solution of system (1.5) correspond to coherent two-phases states. 
The Hugoniot conditions 

E 
pVu'+ p+n,* ]=o, Ep"je+~~_t~Q--$u~~~]= Q.6) 

W%zO] * 

should be SatiSfi8d at the jump, where D"is the velocity of the jump in the reference con- 
figuration, and surface effects are neglected. Taking account of possible energy dissipation 
at the jump due to viscosity, heat conduction, transformation non-equilibrium etc., the 
entropy balance condition can be represented in the form /l/ 

[@D”sJ = [p”n,“/TJ + R” (1*7) 

where R" is the entropy production per unit surface area of the discontinuity in the re- 
ference configuration. 

Following Stefan, and assuming that the time of heat transfer within the transformation 
front is much less than the time to heat a domain with the characteristic linear dimension 
of the external problem, we consider the temperature at the jump to be continuous fsee (1.2)). 
It can be shown that relationships (1.2) and (1.6) turnoutto befnsufficfent to determine 
the parameters behind the jump and the jump velocity by means of the state ahead of the jump. 
If the jump is evolutionary, a single discontinuous solution can sometimes be constructed by 
using the relationship (1.71, which is formulated as the inequality R"> 0. To determine the 
velocity of the front in the case of Subsonic motion under consideration, it is necessary to 
have an additional relationship at the discontinuity, for instance (as is done in deflagration 
wave theoryIt the shock velocity D” or the dissipation ROT can be given explicitly. 

Assuming that R" is a known Eunction oftheflow parameters, we obtain a relation, an 
analogue of (1.41, from (1.21, (1.6) and (1.7). jet us use the 8iadamard compatibility 
conditions 

~z~,'~=h"n*", @Q= --+zt" 68) 

which are corollaries of (1.1) and we eliminate the expression [$'%~"] from (1.6) and (1.7). 
After reduction, we obtain 

pW"(([fJ - (af/azai)*[[;thi])3'/a [ui][Vt])= - R"T (W 

This condition can obviously be rewritten in the form 

Relationship (1.10) is the desired extension of (l-4), we note that in the caSe of 
equilibrium fnon-dissipative) phase jumps, the static condition (1.4) and the dynamic con- 
dition (l.fO) are in identical agreement. 

We assume that the points zni+ and mi- can be connected smOOt.hly in the space of the 
tensors z,*', lying entirely in the domain of definition of the function f(rai, T). Then trans- 
forming the left side of fl.lO), we obtain 
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(1.11) 

- R”T 

For non-dissipative 
ized "Maxwell area rule" 

phase shocks in a liquid medium condition (1.11) yields the general- 
/12/ 

~(p-p*)dV+~(p--p_)dV=O (1.12) 
v- v- 

The energy balance condition at the shock can be obtained in the form 

by using (1.6), (1.7) and (1.10). 
It differs from the classical Stefan condition by the fact that the thermal effect of the 

transformation is computed taking the heat dissipated into account. 
To close the system of relationships on the phase shock, it is necessary to determine 

the quantity R" by relying on additional information about the non-equilibrium processes in 
the interphasal domain and by solving the problem of the structure of the discontinuity. In 
certain cases phenomenological models containing empirically determined parameters can be 
utilized. 

By definition we introduce [p]z[f] - {8fl8z~')[s,"] and we note that the expression m, = 
-_p”D’ yields the mass flux across the phase boundary. Then condition (1.10) can be rewritten 
in the form m,,[p] = RT. This relationship recalls the formula forthevolume dissipation in 
a homogeneous chemically reacting mixture (monomolecular reaction); the vanishing of the 
"thermodynamic force" corresponds to the equilibrium state: [p] =O. In the limit, the weak 
non-equilibrium of the "flux" and the "force" can be connected by the linear relationship 

m, = yO1 [p], TR” = yg1[p13 = yomo2 

The problem of investigating the structure reduces to determining the single parameter 

Yo in this approximation. A theory of the "normal" growth of crystals from a supercooled 
melt and a Hertz-Knudsen theory of non-equilibrium condensation are constructed according to 
the principle mentioned. 

2. The passage from (1.10) to (1.4) for equilibrium phase boundaries is made under the 
assumption of a non-zero mass flux through the surface; consequently, the static equilibrium 
conditions found in this manner require additional foundation. To clarify this question we 
give an independent variational deduction of the conditions of the phase jump, while also 
keeping in mind a possible extension to the case of non-coherent transformations. Thisenables 
a natural tensor representation of the relationship (1.10) to be obtained. 

To simplify the discussion and avoid unimportant details , we will confine ourselves to 
considering the isothermal problem by assuming T E To and neglecting dissipation. It is 
convenient to perform the subsequent analysis in four-dimensional form by supplementing the 
three Lagrange space coordinates ?(a = 1,2,3) by a fourth, the time E4 = t. We denote the 
'coordinates in R* by Greek letters (a,p = 1,2,3,4) and in R3 by Latin letters. 

The equations of motion and boundary conditions on the transformation front can be 
obtained by using the Hamilton variational principle /l, 9/ 

We will assume that v,(t) is a three-dimensional volume occupied by the medium in the 
reference configuration, dV, is its external surface, and V, is the four-dimensional 
volume formed by the locations of V, at different times t c (tr, &,). Let there be a two- 
dimensional strong surface of discontinuity Z,(t) within the volume V, which moves over 
particles of substance forming a three-dimensional surface Z,CVa in R*. The position of 
the surface Z, can be given by a set of functions %=Fg(l(s',t),f = t where a* are coordinates 
in Z, and A = 1,2. 

We consider variations of the law of motion of particles of the medium 6s' = z”(E”, t)- 
.d (5”, t) as well as variations of the position of the surface of strong discontinuity over the 
particles @. = c'?' (uA, t) --Em (u*,t). Setting all variations in av, equal to zero and carrying 
out standard reduction /4, 9/, we obtain from (2.1) 

nao da” = 0 
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where W2 is the variational derivative, nno is the unit 4-vector normal to z,, do" is the 
invariant surface element in the reference configuration, and Ax' are the total variations 
of coordinates of the surface. To take account of dissipation it is necessary to transfer 
from the variational principle (2.1) to the Sedov variational equation /l/ by adding the non- 
holonomic term 

to (2.1). 
Equating the coefficients of the volume variations &ri in (2.2) to zero, we obtain the 

first of Eqs.ll.5). The energy equation is replaced by the isothermal condition. Because 
of the independence of the variations Ax" and c%$ on Z, we have 

For coherent boundaries [A.ri] = 0, ~&“] = 0 consequently 

[ t3iY/dX,‘] ?Zao = 0 (2.4) 
[Ayja- (dit",~t3za*).x~iJna"~ 0 (2.5) 

It is easy to recognize the first group of Hugoniot relations (1.6) that ensure continuity 
of the momentum flux (n," = ---DO) in the three conditions (2.4). The expression in the square 
brackets in (2.5) taken with the opposite sign is called the energy-momentum tensor; its 
spatial part 

T," = p" (&a - {~~~a~~~)~~i) 

is known in the theory of elastic defects as the Eshelby tensor /13/. For coherent phase 
boundaries only one of, the four relationships (2.5) is independent by virtue of the compati- 
bility conditions [x~'] = hiGo and it can be written thus, for instance (compare /6/): 

[A ] - {o,\C;as,i)].r,']-- 0 (2.6) 

Projecting (2.5) on the time axis (fi = 4), we obtain condition (1.9). The difficulties 
noted above for deriving the static conditions from the dynamic conditions are associated with 
the fact that the projection on the g1 axis is a degenerate operation in statics. 

The spatial projection of 12.5) by using the Eshelby tensor can be written in the static 
case in the form 

0 0b [T**]n,n = () (2.7) 

In connection with the fact that relationship (2.7) is an extension of the condition of 
equality of the liquid phase chemical potentials, the tensor Tba is sometimes called the 
chemical potential tensor /7/. 

Using the known dualism between the Eshelby tensor and the Cauchy stress tensor /14/, 
the equations of motion can be rewritten in terms of TtiU. Thus, for pw= const we obtain the 
relationships @,"a~/& = a~,~/@ which are corollaries of the equations of motion (the Noether 
identity), here q, =: q.~~~. 

we note a case that is important for the sequel, when the utilization of these relation- 
ships simplifytbeinvestigation. Let f = f (p, apiaz", T,), p = 1) !det/)rOi j/ then the Cauchy tensor, 
which is not spherical in the general case, has the form 

(the comma before the subscript denotes differentiation). At the same time the Eshelby tensor 

turns out to be spherical , and consequently, the equilibrium equations can be integrated once 
/15/. 

TO construct models of non-coherent boundaries it is necesisary to turn to (2.3) and to 
formulate the appropriate constraints on the variations A.&, 6ffi* /7, 8, 16/. 

3. The simplest example of applications of the results obtained above is phase transition 
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Fig.1 
where D is the jump velocity in the observer's coordinate 
system. For a liquid undergoing a phase transition the 
function f(V,T,) has two branches corresponding to 

different phases. 
The classical discontinuous solutions of (3.1) with a jump of the type B-A’ (shock 

in a liquid. In this case the free energy depends on 
the single deformation characteristic that enables us 
to make the form of this function specific, to construct 
the structure oftheisothermal phase shock, and to 
evaluate the dissipation due to viscous friction /5/. 

We can write the equations of isothermal compress- 
ible fluid flows (T=T,) in the form of plane waves 

The corresponding Hugoniot conditions have the form 

[P (D - u)] = 0, [p (D - v)” + P] = 0 (3.2) 

waves, Fig.1) satisfy the conditions of the Zemplen theorem and are adetermined uniquely by 
relationships (3.2). Jumps of the type B -A do not satisfy the evolutionarity condition 

Consequently, 
solution. In 
be written in 

aP ( P(A)--Pm 8P 
ali A A\ V(A)-V(B) Q-air B 

relationship (3.2) turns out to be inadequate for constructing the discontinuous 
the case of equilibrium phase jumps (R = 0) the additional condition (1.10) can 
the form 

[f + pip + V, (D - u)'l = 0 

If the dissipation is different from zero, it is necessary to turn to the problem of the 
structure of a discontinuity to evaluate it. 

A unique equation of state f(V, T,) in the range of values of V corresponding to the 
interphasal zone is required to obtain continuous solutions. The simplest model of an 
"equilibrium mixture" assumes the construction of the maximum convex continuation for f and 
reduces to determining the points Ao and B, on the graph of f(v, T,) by using the relation- 
ships [c?f/W]=O, [f - Vaf/aV] = 0 (the Gibbs conditions) , which are then connected by a line 
segment. Taking account of surface effects in the heterophasal domain results in a non- 
convex (Fig.1) continuation of f /17/. Van der Waals proposed takingaccountof non-local 
terms in the equation of state by setting 

-f (P, VP, T) = f (p, T) + e (VP)~ (3.3) 

in order to "suppress" the thermodynamic instability of the material in a domain with pf/ap( 
0. Here e>O is a function of the density and temperature that can be considered as a small 
parameter after reduction to dimensionless form. A medium with inhomogeneities can be a 
realistic physical model of a heterophase mixture; the disperion relationships corresponding 
to (3.3) for a medium with periodically located phase inclusions can be obtained by the 
methods from /18/. 

We consider the solutions of (3.1) of the form p(E), u(e) where E = r - Dt with the 
boundary conditions p(+ co)= P~,~,v(+ m) = vB,= which models the jump structure. Taking 
into account the non-local components-in the expression for the stress tensor (2.8) as well 
as the viscous stresses, we obtain after integration 

pu = m,, u = u- D 
(3.4) 

P-f +($-)“- 2epP-$$ -n-$ + Pu*=x, 

where r) is the viscosity coefficient,m, and no are constants of integration. Eliminating 
u(g) from (3.4) and introducing the notation y(P)= dpldg we arrive at a boundary value 
problem for a first-order equation /5, 12, 19/ 

d (eY* - p)ldp = mO~lYb’, Y (Pa) = Y (Pa) = 0 

P = f (p, TJ - llrmoslp’ + n,lp 
(3.5) 

where p=,p are two neighbours of the point minP(p). 
The boundary value problem (3.5) has a solution only for special values of the parameters; 



the corresponding relation m.,(n,, T,) mereLy enables us to determine its velocity by means of 
the state in front of the shock. The necessary condition for the solution (3.5) to exist 

agrees with (l.lO), where the dissipation RT,, equal to the right-hand side of (3.6), can 
be calculated explicitly by means of the known function Y(P). 

Questions of the existence and uniqueness of the solution of the boundary value problem 
(3.5) axe examined in 112, 191. 

Let us approximate the function p(V,T,) by a cubic parabola. We assume that the 
Maxwell pressure p0 CT,) is known as are the specific volumes of the phases v,"< V,O in 
equilibrium with those which exist for T= T, and p= po. The isotherm p = pO- k(V- Vao)(V- 
Vfio). (V---l, (r/,‘+ r;,s) is determined by this apart from a constant k = 61/3AplAln, AV = Vo” - I’,” 

that characterizes the attainable degree of metastability Ap (Fig.1). In the case of non- 
dissipative transformations (n ~0, r*lp,") = & (pRe)) we obtain Vae + Vse = V, f V,3ii’ which enables 
us to determine the state beind the jump (Vae; U~=D (~&'~e - V=' - VfiO) and also the state velocity 
by means of the state ahead of the jump (V@e; LA= 0) LIZ= k(Vt<)* (Vso - VRe) (V 3 - V8e). If q # 0, it 
is necessary to solve Eq.(3.5) numerically; however, the problem has an aanalytic solution 

in the case 6 = s,ip4, a, = coast 

X 

o,l 

B 

-w 

-0.2 

Fig.2 

Fig.3 

Fig.4 

This solution can be regarded as approximate for other dependences E(P); its validity 
near the liquid-vapour critical point is noted in /20/. 

The relation between the parameters before and after the shock is given by a second- 
order equation 

3 (i - 6:W) (22 - y + i)* + ya = i, W = '/p,,~/e, 
5 = ( V,,” - V&/Al', y = (VO - VJIAV 

The dependence z(u) is represented in Fig.2 for different values of the dimensionless 
parameter W; the Jouguet regimes correspond to the dashed lines /12/. For 2z--+ 1 >O we 
have phase rarefactions jumps, and for ZS--y+i<,-O compression jumps; for sufficiently 
small W two-flow modes with a compression jump are possible, a fast and a slow one (Fig.2). 

The calculation of the dissipation at the jump according to (3.6) yields 

RTo = y'no2 (1 + ca~,)~ (3.7) 
t/ZkW 

Y-7 (AV)"(i + 2.43, a = - 

We turn our attention to the fact that although a linear model of dissipation (Newtonian 
viscosity) was used in the equations of the structure, a linear relationship between the 
thermodynamic force and the flux on the phase boundary is conserved only in the limit m,-0, 
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in which case Y-Y@. where y$ = (1/%'12) WAp (AV)3. 

4. Twinning in elastic crystalline substances , which generally occurs without a change 
in volume /21/, can serve as an alternative to the phase transition in the liquid phase; as 
an example we consider the very special case of twinning in tetragonal crystals. 

We assume that the Lagrange coordinate axes p (a = 1, 2, 3) are superposed on the crystal 
axes of symmetry. We use the notation: a, b, b are parameters of the elementary cell and we 
rotate the system of coordinates through the angle cp = arc@ (bia) in the rl, r* plane by 
going over to a new material system El, 52, E3 (Fig.3). We consider shear deformations of the 
form 

x1 = 51, x* = UE’ + y, x3 = E” 
(4.1) 

and we denote the free energy per unit volume of the crystal in this class of isochoric 
deformationswithparameter u by W(u) = p"j(xai, T,). 

It can be seen from Fig.3 that the function W(u) hastwo minima corresponding to mirror- 
symmetric twins. This is the undeformed state with Y 0 and the simple shear state with 
u0 = 2(b2 - as)/&. In the absence of external stresses piecewise-homogeneous (twinned) equili- 
brium configurations of the type displaced in Fig.3 are obviously possible. 

We write the equations of isothermal motions in the form of plane waves (u'= UZ (E', t)) 
of the non-linearly elastic medium under consideration 

p’avilat = ao”‘ldp (4.2) 

where ui = xi- Ei isthedisplacement vector, ui= ax"/& is the velocity vector, and (Til _ - 
aW/d(asi/afl) are the non-zero Piola-Kirchhoff stress tensor components. 

The Hugoniot condition and compatibility relationships at the phase jump have the form 

[pODOu" + .?I] = 0, [u' + D" (ax'/aE')] = 0 (4.3) 

The superscript i takes the single value (i = 2) for the class of deformations (4.1) 
under consideration; consequently we will omit it henceforth. The evolutionarity conditions 

are satisfied for ordinary shock waves of the type A -B but are not satisfied for phase 
jumps of the type A -B (Fig.4). Condition (1.10) obtained above and which is written in 
the form 

D”([W] - (a) IU]) = - R?!‘, 

can be used as the additional condition on the shock. 
In statics we have the equilibrium solution u+ = 0, IL- = uO, of F 0. 
According to (4.4), motion of the twinning boundary over the unperturbed background 

(u' = 0, cl+ = 0) is possible only when there is dissipation at the front, and is ensured by a 
homogeneous shear stress (a- = O& behind the jump. Therefore, (4.4) sets up a correspondence 
between the velocity of the twinning boundary motion and the applied stress for a known ex- 
pression for Rot and can be used to determine the plastic flow law due to twinning, and to 
investigate the dynamics of the deformation of materials with a shape memory (pseudo-elasticity 
/22/j. 

To determine the dissipation, the problem of the structure of the discontinuity must be 
solved by using complicated equation of state and rheological relationships. The structure 
of the equilibrium twinning boundary can be constructed if, by following the analogy with the 
liquid case, energy of the form i8,= W(u) +.E(V u)’ /23/ is considered. The question of the 
dissipation mechanism during twinning is substantially more complex, however, and a detailed 
micro-model of the displacement process for the twin boundary must be relied upon for its 
solution. 

Let us present the simplest phenomenological scheme that enables the non-equilibrium of 
the transformation to be taken into account in the case of quasistatic processes when it can 
be assumed that [cf]~O. We assume that the phase states are characterized by different 
values of a certain internal parameter q, while the Gibbs free energy per unit mass is written 
in the form g (11, Vq, T, 0) = W-UOU. We consider the medium to be at rest and the density 
to be constant. 

Relaxation of the internal parameter q can be described within the framework of the 
Ginzburg-Landau phenomenological model by using the kinetic equation /24/: &$&=--I’Sg/&q 
where a/hn is the variational derivative. In the isothermal case (TE T,) soliton solutions 
exist for 'this equation, whidh depend on 
jump - the discontinuity of the variable 
formation will obviously be proportional 

g=x- Dt and describe the structure of the phase 
11. Dissipation due to non-equilibrium of the trans- 
to the quantity /25/ 

y (drljdE)'dE 
-0D 
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For instance, let '1 = (u - UP):(U~ - ~a), where 
awlau. We set 

u~.~(o~) are the roots of the equation .l?o= 

g'go = g (11, 9. T,) + E (vq)z, agiaq = q (q - 1) (q - qo), 

The parameter Q depends on the external shear stress aO. For O<q<l/l the kinetic 
equation has an analytic solution of the desired form 

rl = (1 + exp (E - E,)/(Z Jq,-' 

The wave velocity D = --m,lp, 
we have 

is given by D = (l-ZnO)gaF1/< For dissipation at the jump 

RT, = ~am,,l, yo-' = 3p,'r 1/F 

Therefore, for small m0 we again arrive at a quadratic expression in the flux for the 
rate of entropy production. As in the case of viscous phase jumps in a compressible fluid, 
analysis of the structure of the discontinuity enables us to find the value of the pheno- 
menological coefficient Ye. 

The author is grateful to V.L. Berdichevskii, A.N. Golubyatnikov, A.V. Zhukov, A.G. 
Kulikovskii, and A.L. Roitburd for discussing this research. 
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