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INTRODUCTION

Structures made of transforming materials exhibit a striking capacity to hysteretically 
recover significant deformation with a controllable amount of energy absorbed in the process. 
The unusual properties of these materials are due to the fact that large deformations and 
inelastic behavior are accomplished by coordinated migration of mobile phase or domain 
boundaries. Intensive research in recent years has led to well-defined static continuum theories 
for some of the transforming materials (see Pitteri and Zanzotto (1997) for a recent review). 
Within the context of these theories, the main unresolved issues include history and rate 
sensitivity in the constitutive structure. 

In this overview we focus on the elastodynamical aspects of the transformation and 
intentionally exclude phase changes controlled by diffusion of heat or constituent. To 
emphasize ideas we use a one dimensional model which reduces to a nonlinear wave 
equation. Following Ericksen (1975) and James (1980), we interpret the behavior of 
transforming material as associated with the nonconvexity of elastic energy and demonstrate 
that a simplest initial value problem for the wave equation with a non-monotone stress-strain 
relation exhibits massive failure of uniqueness associated with the phenomena of nucleation 
and growth. 

The multiplicity of solutions at the continuum level can be viewed as arising from a 
constitutive deficiency in the theory, reflecting the need to specify additional pieces of 
constitutive information through some kind of phenomenological modeling (see, for instance, 
Truskinovsky, 1987; Abeyaratne and Knowles, 1991). Here we take a different point of view
and interpret the nonuniqueness as an indicator of essential interaction between macro and 
micro scales. 

We recall that our wave equation represents a long wave approximation to the 
behavior of a structured media (atomic lattice, periodically layered composite, bar of finite 
thickness), and does not contain information about the processes at small scales which are 
effectively homogenized out. When the model at the microlevel is nonlinear, one expects 
essential interaction between different scales which in turn complicates any universal 
homogenization procedure. In this case, the macro model is often formulated on the basis of
some phenomenological constitutive hypotheses; nonlinear elasticity with nonconvex energy 
is a theory of this type. 
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The well known phenomenon of a finite time blow up in nonlinear elastodynamics is 
a sign that the phenomenological equations are at least incomplete. In some cases (Dafermos, 
1979), the detailed microlevel behavior turns out to be irrelevant and the closure can be 
achieved by prescribing a single inequality. This means, for instance, that the fine structure of 
a shock discontinuity does not affect the dynamics and that the localized perturbations in initial 
data die out instantly. The situation is more complex in the case of material with a generic 
nonconvex energy where in order to obtain a unique solution at the continuum (or macro) 
level, one must "de-homogenize" the model and introduce additional physical hypotheses 
about the behavior at the sub-continuum (micro) scale. It is important to remember that the 
physical picture at micro and macro levels can be quite different. For example, analysis of 
physically motivated discrete models show, that phase boundary motion at the micro scale 
requires overcoming a barrier which, as we show, is formally absent in a continuum picture 
(Slepyan and Trojankina, 1984); the same is true for the nucleation which is barrier-free in 
the classical elastodynamical setting. The regularization can also be achieved in numerical 
calculations because of the dissipation and dispersion which formal discretization brings into 
the model. 

For the purpose of illustration, in this paper we use a viscosity-capillarity model 
(Truskinovsky, 1982; Slemrod, 1983) as an artificial "micromodel", and investigate how the 
information about the behavior of solutions at the microscale can be used to narrow the 
nonuniqueness at the macroscale. The viscosity-capillarity model contains a parameter 
with a scale of length, and the nonlinear wave equation is viewed as a limit of this 
"micromodel" obtained when this parameter tends to zero. As we show, the localized 
perturbations of the form can influence the choice of attractor; for this type of 
perturbation, support (but not amplitude) vanishes as the small parameter goes to zero. 
Another manifestation of this effect is the essential dependence of the limiting solution on the 
contributions of the type - describing the structure of the jump discontinuity. 

Since in this problem not only the limit but also the character of convergence matters 
we conclude that consistent homogenization of the micromodel should lead to a description in 
a broader functional space than is currently accepted. One interesting observation is that the 
concave part of the energy is relevant only in the region with zero measure where the singular, 
measure valued contribution to the solution is nontrivial (different from point mass). We 
remark that the situation is similar in fracture mechanics where a problem of closure at the 
continuum level can be addressed through the analysis of a discrete lattice (e.g. Truskinovsky, 
1996).

METASTABILITY

Following Ericksen (1975), consider an elastic bar which occupies a segment [0,1] 
in the reference state. Let u(x) be a displacement field so that x+u(x) is the deformed 
position of a material particle with the reference coordinate x. The stored elastic energy of the 
bar has a density f(w) where w = ux is the longitudinal strain. We assume that f(w) is not 
convex, in particular, f"(w) > 0 for w < α (phase 1) and w > β (phase 2) and f"(w) < 0
for α < w < β (spinodal region) (see Fig. la). The corresponding stress-strain relation
σ= f'(w) is nonmonotone (see Fig.1b), and one can formally define equilibrium stress σM,
and equilibrium strains a and b in such a way that: (a)= σ(b)= σM, and

(Maxwell construction). Two regions a < w < α (in phase 1) and
β < w < b (in phase 2) are called metastable.

The concept of metastability in this elementary setting has exactly the same meaning as 
in the closely related case of van der Waals's fluid. Consider the simplest equilibrium 
treatment of a bar loaded by a constant stress σ0,. The static problem reduces to the
minimization of the functional 
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Figure 1. The free energy (a) and the corresponding stress-strain relation (b) for the elastic material 
supporting two phases. 

(2.1)

where g(w σ0) = f(w) - σ0w is the potential (Gibbs) energy. If we choose the value of
stress from a metastable region, say σ0,E σM,σ(α)) as in Fig.1b, then the function g(w σ0)
has three extrema: two minima (at w0 and w1) and a maximum (at w2) (see Fig.2). 

Figure 2. Potential (Gibbs) energy of the bar loaded by the constant stress σ0, ε σM, σ(α)).

One can show (Ericksen, 1975) that the homogenous state w(x) ≡ w1 corresponding
to a deeper minimum of g(w σ0) is the global minimizer of the functional (2.1); another
homogenous configuration w(x) w0 (the metastable state), is only a weak local minimizer 
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which is not even isolated in the strong sense (in W1,p). In other words, it is unstable in the 
class of piecewise smooth competitors: the "dangerous" perturbation is a "Weierstrass needle"
a nucleus of state w1 with an infinitesimal support. In the fully 3D case the situation is 
essentially similar, the only difference being that the metastable region begins with the failure 
of quasiconvexity rather than convexity, which is due to the nontrivial constraint of strain 
compatibility (see, for instance, Ball and James, 1996) . 

The absolute instability of the "metastable" states in the framework of classical 
elasticity manifests itself in dynamics as well. The associated elastodynamical problem 
reduces to a solution of the nonlinear wave equation uit = σ'(ux)uxx. It is convenient to
rewrite it as a mixed type first order system 

(2.2)

where we introduced particle velocity v = ut. The elastodynamic problem with initial 
conditions w(x,0) = w0, v(x,0) = 0, corresponding to the metastable state, has a trivial 
solution w(x,t) ≡ w0, v(x,t) ≡ 0. To show that this solution is not unique, choose an
arbitrary point x = x0 inside the segment [0,1] and prescribe the same initial data everywhere 
except for this point. Then, we obtain a (degenerate) Riemann problem with piecewise 
constant initial data and, at least locally, one expects to find a self-similar solution of the type 
w = w(ζ ), v = v( ζ), where ζ = (x-x 0)/t. The elastic field in this case must be a
combination of constant states separated by jump discontinuities and/or centered Riemann 
waves. Classical conservation laws must be satisfied on the discontinuities which leads to the 
following Rankine Hugoniot jump conditions 

(2.3)

Here as usual [ A ] = A+ - A- and D is the discontinuity speed. The entropy inequality yields 

(2.4)

where { A} = ½( A ++A-) the average value. As was first shown by James (1980), the 
nontrivial solution satisfying (2.2 , 2.3) has the following form (see Fig.3) 

Figure 3. Nontrivial solution of a degenerate Riemann problem with initial data in the metastable area. 
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(2.5)

Solution (2.5) (see Fig. 4) describes the nucleation of a phase 2 ( w = w-) which is 
accompanied by a generation of shock wave precursors in phase 1 (w = w0) and is 
satisfactory only until the first shock wave reaches the boundary of the segment [0,1]. The 
entropy inequality (2.4) is automatically satisfied for the precursors (moving with the 
speedD1) and is satisfied for the phase boundaries (moving with the speed D2) if the area 
A1 in Fig. 4 is smaller than the area A2 (phase boundary is dissipation free if A1= A2).

Figure 4. Nontrivial solution of a degenerate Riemann problem with initial data in the metastable area. 

The only restriction imposed by the Rankine-Hugoniot conditions (2.3) is that the 
areas of the rectangles abcd and aefg in Fig. 4 are equal. This shows that, the information 
contained in (2.3, 2.4) is not sufficient to find all the unknowns, since the balance equations 
impose only four restrictions on the five constants w+,w-, v+,D1 ,D2. Moreover, one obtains a
two-parameter family of solutions since the nucleation point x0 is also arbitrary. The two 
sources of nonuniqueness in this problem, and the necessity to make additional assumptions, 
have long been recognized by physicists who traditionally distinguished between the theories 
ofgrowth and nucleation.

GROWTH

The only way to determine all five constants w+, w-, v+,D1 ,D2 in the above problem is 
to supply an additional jump condition. This jump condition cannot be universal since, if 
applied at both discontinuities, it leads to an overdetermined system. We must therefore 
differentiate between the waves moving with the speeds D1 and D2. Notice that only the first 
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one (with the speed D1) satisfies the Lax condition (Lax, 1957) which means in this context 
that the wave is subsonic with respect to the state behind and supersonic with respect to the 
state ahead. We call this discontinuity a "shock". The second discontinuity (moving with the 
speed D2) is subsonic with respect to the states both in front and behind; we refer to it as 
"kink" (Truskinovsky, 1993a). An elementary analysis of the configuration of the 
characteristic directions shows that it is the subsonic discontinuity (kink) which requires an 
additional jump condition (see Kulikovsky (1976) for general background on "non-
evolutionary" or"undercompressive" shocks).

There is a long history of phenomenological modeling of kinks - phase or domain 
boundaries - in physics (normal growth hypothesis in crystal growth, Hertz - Knudsen theory 
of condensation, etc.); in the framework of elasticity theory the phenomenological "kinetic
relations" were recently reviewed by Gurtin (1993) and Lin and Pence (1996). Here instead 
of postulating the missing jump condition we shall focus on its derivation from a model for a 
fine structure of the interface. As shown in Truskinovsky (1993a) this method naturally 
distinguishes between shocks and kinks. 

In order to describe the internal structure of a moving discontinuity, the classical 
balance equations are supplemented with an additional physical hypothesis regarding the 
material behavior in the transition region. The principal difference between shocks and kinks 
in terms of the relevant physical mechanisms can be understood as follows. Consider a 
generic discontinuity propagating with constant velocity D > 0 which transforms the state w, 
into the state w-. Suppose that equations (2.2) and Rankine-Hugoniot conditions (2.3) are 
satisfied, in particularD2 = (σ+, –σ-) / (w+ – w-). Then the total energy release rate associated
with the moving discontinuity can be written in the form Gdm, where dm = Ddt. One can 
show that G(w+,w-) = f (w+ ) –f(w-)– ½(σ + σ-)(w+ – w-), where G is a driving (or
configurational) force (Knowles, 1979; Truskinovsky, 1987). To calculate the hypothetical 
"microscopic"variation of the rate of dissipation inside the discontinuity, suppose that the 
balance of mass and linear momentum is satisfied for every intermediate state between w+ and
w -, which means that D(w-w+)+(v-v+)=0 and D(v-v+)+(σ−σ +)=0. Then the rate

of dissipation R = D(f(w+) – f( w) + ½ (v+
2 -v2)) + (σ+v+ – σv) can be calculated explicitly as

a function of w. Introduce ψw+ (w) = –R / D, which may be viewed as a dynamic analog of
the potential energy g( w) from (2.1). The straightforward calculation gives 

in particular, 

(3.1)

Figure 5. Dynamic driving force in the case of shocks and kinks. 
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Let us fix the state ahead of the discontinuity w* and compare the behavior of the 
function ψw * (w) for shocks and kinks involved in solution (2.5). Two important conclusions

can be drawn from the analysis of the graphs of ψw 0(w )and ψw+ (w ) sketched in Fig.5.

First, if G(w+,w- ) > 0 (the opposite inequality is prohibited by the second law of 
thermodynamics) then one has to consider dissipation in the interphase region: for shocks 
introduction of the dissipation is usually sufficient to describe the structure of the 
discontinuity. Second, in case of kinks it is necessary to introduce an additional mechanism 
for crossing the barrier. The “no barrier” condition is implicit in the Oleinik (1959) criterion 
for shocks and the exclusively dissipative regularizations lead to the situation when kinks 
cannot move (Pego, 1987). On the other hand, in the absence of dissipation, the propagation 
of a kink can be viewed as an autocatalytic process which does not require extra energy after it 
is initiated. A process of this type is feasible in principle in dispersive media if group velocity 
for at least some wave lengths is greater than the speed of the kink. It is also clear that, 
contrary to the case of shocks, the velocity of the kink must be special to make this 
“tunneling” process possible. 

One of the most interesting micromodels for the nonlinear wave equation is a discrete 
chain of atoms connected by nonlinear springs; such sytems automatically exhibit 
“macroscopic” dissipation due to energy transfer between long and short waves. In discrete 
models, shocks are usually de-localized and classical discontinous waves represent weak but 
not strong limits of highly oscillatory solutions (Lax et al., 1992)). Autocatalytic barrier 
crossing in bi-stable chains is also possible (Slepyan and Trojankina, 1984), however, here 
for simplicity we limit our consideration to mesoscopic continuum models exhibiting 
dispersion and dissipation. 

There are several ways that dispersion (and the corresponding length scale) can be 
brought at the phenomenological level into the conservative part of the model. The two most
well known examples of such theories are: gradient (or van der Waals) models with energy 

(e.g. Carr et al., 1984), and strongly nonlocal models with energy 

(e.g. Fosdick and Mason, 1996). The nonlocal model can sometimes be reformulated as a 
local theory with an additional order parameter; an Ericksen-Timoshenko bar with energy 

is one example (e.g. Rogers and Truskinovsky, 1996). More general phase field models with 
an energy of the type f(ux, , x) have also been considered (e.g. Roshin and Truskinovsky,
1989; Fried and Gurtin, 1994)). 

The simplest example of a theory which incorporates both dispersion and dissipation 
is the so called viscosity-capillarity model (Truskinovsky, 1982, Slemrod, 1983). It combines 
van der Waals correction to the energy with Kelvin viscoelasticity, which in the present 
context amounts to the following additional constitutive assumption 

ηwt = σ−σ(w,wx ).

Here σ(w, wx) is the equilibrium stress and η is the effective viscosity coefficient prescribing
a rate of interphase kinetics. One can also consider other phenomenological dissipation models 
like Maxwell viscoelasticity (e.g. Mihailescu-Suliciu and Suliciu, 1992), or internal order 
parameter relaxation (e.g. Truskinovsky, 1988). As is well known, the van der Waals model
cannot be considered as a reasonable long wave description for the simple atomic lattice 
because of the “wrong” sign to the gradient term (e.g. Kunin, 1982). However, since the 
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group velocity is always larger than phase velocity, the dispersion is of the "right" type for the 
description of subsonic kinks. 

With the introduction of the two new small parameters ε and η , the regularized wave
equation takes the form 

(3.2)

Consider traveling wave solutions u(x,t) = u(ξ ), where ξ = (x – Dt) / The
corresponding boundary value problem in the infinite domain takes the form 

(3.3)

where W = η / For the given state in front of the discontinuity, the set (spectrum) of
admissible velocities D consists of two parts: continuous, corresponding to shocks (saddle-
node (focus) trajectories) and discrete, corresponding to kinks (saddle-saddle trajectories). To 
be specific take σ(w) = w(w–1)( w – ½) . Then an additional condition selecting kinks can be
written explicitly (Truskinovsky, 1987, 1994) 

(3.4)

We remark that the continuum spectrum does not contain all "supersonic" Lax discontinuities 
( Shearer and Yang, 1993; Truskinovsky, 1993b). The generic picture of the admissibility 
domain for both shocks and kinks is presented in Fig.6. 

Figure 6. Set of jump discontinuities (kinks and shocks) compatible with the isothermal viscosity-capillarity
model; W=2.5.

Some interesting aspects of the interface kinetics appear only when temperature and 
latent heat are included into the model. If the process of heat conductivity is governed by a 
classical Fourier law, the entropy balance equation takes the form Tst = Txx + η wt

2 where
s = Suppose for simplicity that equilibrium stress is cubic in strain and linear in 
temperature and assume that specific heat at fixed strain is constant. Then in nondimensional 
variables the system of equations takes the form (see Ngan and Truskinovsky, 1996a) 
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where we introduced the following dimensionless numbers: W1 = h the ratio of 
viscosity to nonlocality, W2 = - the ratio of heat conductivity to nonlocality and W3 -
the measure the latent heat. A step-type traveling wave in this model describes an adiabatic 
shock or kink; the behavior of the corresponding heteroclinic trajectory in 3D phase space is 
similar to that for the 2D phase space of the isothermal system. Fig. 7 illustrates a numerical 
example of how the appropriate driving force 

(see Abeyaratne and Knowles, 1995) is then related to the speed of a kink D (i.e. a kinetie 
relation).

Figure 7. Multivalued kinetic relations for adiabatic kinks; W1 =1,W2= 0.025, W3= 0.03. 

Two important effects distinguish adiabatic kinks from isothermal ones. First, the 
kinetic curve does not originate from the point G = 0 due to the negative feedback provided 
by the latent heat (cf. Patashinskii and Chertkov, 1990 and Turteltaub, 1997). The second 
effect is the multivaluedness of the kinetic relation at small speeds, which has also been found 
in lattice models of fracture (Marder, 1995; Slepyan, 1996). Although most of the slow 
regimes are probably unstable, the general nonmonotonicity of the curve G( D), can give rise 
to an interesting stick-slip behavior (Rosakis and Knowles, 1997). We also remark that the 
viscosity-capillarity model in the nonisothermal setting does not provide a kinetic relation of 
the form G = G(D;W1,W2,W3) because of an implicit dependence on one additional 
parameter prescribed at infinity; this observation casts some doubts concerning the existence 
of the simple universal constitutive relations in a force-flux form for the configurational 
forces.

We conclude that the growth of a new phase is controlled by the rate of dissipation at a 
moving kink. This dissipation is taking place at the microlevel and must be prescribed in order 
for the macro-description to be complete. The incompleteness of the continuum model 
manifests itself through the sensitivity of the solution to the singular (measure-valued)
contributions describing fine structure of the subsonic jump discontinuities (kinks). 
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NUCLEATION

We now turn to consider the other source of nonuniqueness in the breakdown of a 
metastable state, namely the ambiguity of the nucleation point(s) and the necessity for each 
point to select between the two solutions - trivial and nontrivial. The degenerate Riemann 
problem considered here is, of course, only the most elementary example where such a 
problem arises. For instance, similar nonuniqueness may be responsible for the instability of 
the moving phase boundary (Truskinovsky, 1993b). The phenomenological nucleation 
criterion suggested by Abeyaratne and Knowles (1991) selects a resolution based on the size 
of the static energy barrier shown in Fig.2. Here, again, we consider fine structure arguments 
for deriving a nucleation criterion. 

In order to understand better what happens when a nucleation point, say x = x0, is 
selected, let us focus on the small time behavior of the nontrivial self-similar solution. 
Consider a solution (2.5) at time t = ∆t. It is convenient to parametrize the functions
w(x,∆t) and v(x,∆ t) by x and present them as a curve in the (w,v ) plane. It is not hard to see
that one then obtains a loop, beginning and ending in a point ( w0,0) (see Fig. 8b); the details 
of the loop depend, of course, on the fine internal structures of shocks and kinks (see Fig. 
8a).

Figure 8. Schematic representation of the singular components of the solution and of the initial data: (a) -
fine structure of the kink; (b) - fine structure of the nucleus. 

In view of the self-similar character of the solution, the loop does not change as 
∆ t → 0 even though the strain and velocity fields converge to the constant initial data
everywhere outside the point x = x0. This means, that by selecting the point x0 we have
supplemented constant initial data with a singular part represented by a parametric measure (in 
the state space) located at x = x0. We conclude that, contrary to the behavior of, say, 
genuinely nonlinear systems (σ "(w) 0 (see Di Perna, 1985), the choice of a short time
dynamic attractor in this problem ( trivial solution vs. self similar dynamic regime (2.5)) is 
affected by a singular contribution to the initial data and may depend on the structure of the 

Since the energy of the nucleus is identically zero, the integral impact of this localized 
contribution to the initial data can be measured by the corresponding energy density which is 
finite. For our self-similar solution (2.5) one can equivalently calculate the rate of dissipation 
R (Dafermos, 1973) 

loop.
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If the kinetic relation is known then the energy release rate R , which does not depend on t,
can be calculated as a function of w0; the fact that R 0 at t = 0 means that the initial data
with the superimposed loop are in fact instantly "dissipative". This observation, however, 
does not give insight into the associated barrier separating the uniform initial state and the state 
with the superimposed loop. As we have seen earlier such a barrier does not exist in the 
"homogenized " description. It can be calculated, however, in the framework of a regularized 
model which describes the initial stage of the transformation when internal length scales can 
not be neglected. 

Suppose again that the isothermal viscosity-capillarity model (3.2) describes the "de-
homogenized" structured material. Consider the initial value problem corresponding to a 
metastable state with the fixed strain w0 and zero velocity but now add a finite perturbation 
with a small support. Numerical experiments based on the high-order accurate difference 
scheme developed by Cockburn and Gao (1996) show that sufficiently large perturbations 
evolve into a regime which closely resembles the self-similar dynamic solution (2.5), while 
small perturbations gradually decay (see Fig.9). This confirms the existence of the two 
dynamic attractors and makes it natural to relate the nucleation criterion to the size of the trivial 
regime's domain of attraction (basin). 

Figure 9. Two regimes of evolution for the initial data corresponding to slightly perturbed critical nucleus: 
(a) - perturbation leading to the growth of a new phase; (b)- perturbation which eventually decays; 1 - initial
data; 2 - solution after finite time. 

One representative point on the stability boundary is the so called critical nucleus, a
saddle point (with a one dimensional unstable manifold) of the static energy functional 

where
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The critical nucleus, which can be found explicitly, is described by a homoclinic trajectory of 
the Euler-Lagrange equation εwxx = g'(w) (see, for instance Bates and Fife, 1993). The fact
that this perturbation plays a role of a threshold is clear from Fig.9 which demonstrates 
extreme sensitivity of the problem to slight variations around the critical nucleus representing 
particular initial data (see Ngan and Truskinovsky (1996b) for details). 

We note that both the energy of the critical nucleus and the size of its support are 
proportional to . In the limit ε → 0 the energy of this perturbation goes to zero, however
the associated energy density 

is a function of wo (or applied stress) only. The limiting perturbation can therefore be 
described by a probability measure vx0, which in turn suggests that the nucleation criterion 
should be formulated in terms of the intensity of the exterior, measure-valued "noise". We 
note that such noise is invisible at the continuum level. 

CONCLUSIONS

Solids undergoing martensitic phase transformations are currently a subject of intense 
interest in mechanics. In spite of recent progress in understanding the absolute stability of 
elastic phases under applied loads, the presence of metastable configurations remains a major 
puzzle. In this overview we presented the simplest possible discussion of nucleation and 
growth phenomena in the framework of the dynamical theory of elastic rods. We argue that 
the resolution of an apparent nonuniqueness at the continuum level requires "de-
homogenization" of the main system of equations and the detailed description of the processes 
at micro scale. 
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