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About the "normal growth" approximation in the 
dynamical theory of phase transitions 

L. Truskinovsky 

Nonequilibrium phase transitions can often be modeled by a surface of dis- 
continuity propagating into a metastable region. The physical hypothesis of 
"normal growth" presumes a linear relation between the velocity of the phase 
boundary and the degree of metastability. The phenomenological coefficient, 
which measures the "mobility" of the phase boundary, can either be taken 
from experiment or obtained from an appropriate physical model. This lin- 
ear approximation is equivalent to assuming the surface entropy production 
(caused by the kinetic dissipation in a transition layer) to be quadratic in a 
mass flux. 

In this paper we investigate the possibility of deducing the "normal 
growth" approximation from the viscosity-capillarity model which incorpo- 
rates both strain rates and strain gradients into constitutive functions. Since 
this model is capable of describing fine structure of a "thick" advancing phase 
boundary, one can derive, rather than postulate, a kinetic relation governing 
the mobility of the phase boundary and check the validity of the "normal 
growth" approximation. 

We show that this approximation is always justified for sufficiently slow 
phase boundaries and calculate explicitly the mobility coefficient. By using 
two exact solutions of the structure problem we obtained unrestricted kinetic 
equations for the cases of piecewise linear and cubic stress-strain relations. As 
we show, the domain of applicability of the "normal growth" approximation 
can be infinitely small when the effective viscosity is close to zero or the 
internal capillary length scale tends to infinity. This singular behavior is 
related to the existence of two regimes for the propagation of the phase 
boundary - dissipation dominated and inertia dominated. 
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1 Introduction 

Phase transitions in continuum bodies have recently become the subject of in- 
tense studies in mechanics and mathematics. Within this mainstream of research 
activity, considerable interest has focused on the understanding of the principles 
of the evolution of phase boundaries. It was realized, that the highly localized 
phase boundaries may be represented by jump discontinuities and that the es- 
sential physics of the transformation process can be modeled by the appropriate 
jump conditions. These conditions must comply with the integral form of the 
basic conservation laws, as well as with additional equation governing the pace 
of the transformation process. The necessity for an additional jump condition 
was tacitly assumed by the physicists who used to calculate the phase boundary 
velocity without any reference to the conservation laws [1, 2]. 

Two major regimes of subsonic phase boundary migration have been long 
recognized in the physical theory of phase transformations: diffusion controlled 
and interface-controlled. In the first case, the rate of the growth of a stable phase 
is limited by supply of heat (or a constituent) which is governed by diffusion 
type equation in the bulk phase. Since the Aransport is assumed by this approach 
to be a rate-limiting process, the interface kinetic is taken to be instantaneous in 
a corresponding time scale. The classical mathematical framework for analyzing 
this type of process is a Stefan problem and its generalizations. The alternative 
approximation of the dnterface controlled growth (the subject of this paper) 
is based on an assumption that the heat transport (diffusion) is fast so that the 
growth of a stable phase is limited by the dissipative processes inside the narrow 
transition zone. In the limiting case of an infinitely fast heat conductivity, one 
has an isothermal formulation where the physics of the transformation process 
is confined in a/kinetic relation, governing the evolution of the phase boundary. 
Usually in the physical literature it is assumed that the phase boundary velocity 
depends on a thermodynamic driving force that is the free energy decrease due to 
the transformation. The hypothesis of "normal growth" assumes the dependence 
of the velocity on the driving force to be linear. 

In a continuum mechanical framework it was first realized that the mixed- 
type initial value problems, arising for the materials supporting several phases, 
are ill posed (e.g., [3]). As a condition of uniqueness an extra jump (admissibil- 
ity) relation was suggested for subsonic phase discontinuities [4, 5, 6, 7]. This 
additional condition, can either be advanced on phenomenological grounds, an 
example being the "normal growth" hypothesis, or be derived from the micro- 
mechanical model of the process inside the narrow transition zone. 

In the case of/nondissipative phase boundaries, the kinetic relation, which 
is an immediate generalization of the phase equilibrium (Maxwell) condition, 
states that the surface entropy production is equal to zero. If the transforma- 
tion is/dissipative, one has to account for the irreversible processes inside the 
phase boundary by specifying the/surface entropy production. Often processes 
which are only weakly nonequilibrium are of most interest. In the case of a 
weak metastability of a state ahead of the phase front, one would anticipate 
small deviation from the Maxwell prescription for the state behind. This is a 
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basis of the "normal growth" hypothesis which, following the pattern of the 
linear thermodynamics of nonequilibrium processes, presumes the surface en- 
tropy production to be a quadratic function of the material velocity of the phase 
boundary [5]. This assumption guarantees a linear relation between the mass 
flux and the "driving force," which measures the energetical preference of the 
state behind the advancing boundary. 

Numerous examples of the successful application of the hypothesis of "nor- 
mal growth" can be found in such diverse areas as the Hertz-Knudsen theory 
of nonequilibrium condensation [8] or the theory of motion by mean curvature 
[9]. To answer the question about the validity of the assumption of "normal 
growth" for the fast phenomena, e.g., the explosive "burst like" martensitic 
transformations in solids [2], one has to go beyond the quasistatic approxima- 
tion and consider inertial effects as well [10]. In this paper, by studying the 
"slow limit " originating from the general/viscosity-capillarity theory, we con- 
tribute to the understanding of the domain of application of the hypothesis of 
"normal growth." 

In the viscosity-capillarity theory the basic equations of elastodynamics are 
regularized by the introduction of/viscosity and gradient type/nonlocality [4, 
11]. The effective viscosity is meant to simulate the interface kinetics, while 
the purpose of the introduction of higher deformation gradients is to bring an 
internal length - scale of/nondissipative origin into the theory. This approach 
may not represent the transformation process in its full complexity, however 
we believe that it provides a reasonable tool for the analysis of the interplay 
between the Anertia and the/dissipation. 

Based on analysis of the one dimensional isothermal model, we show in this 
paper that the viscosity capillarity theory always leads to a "normal growth" type 
kinetic relation in a limit of a/weak metastability of the state ahead. We obtain an 
explicit relation for the "mobility" coefficient as a function of the nondimensional 
ratio of the viscous and capillary length scales. This dependence is singular 
at zero viscosity which results in nmxowing of the domain of application of 
the "normal growth" approximation for the materials with progressively weak 
dissipation. The study of the exact solutions for the structure problem in cases 
of/piecewise quadratic and/quartic elastic energies provide explicit examples 
of the unrestricted kinetic relations. The most remarkable feature of the kinetic 
relations obtained from the viscosity-capillarity theory is that in addition to the 
slow, dissipation dominated branch of the kinetic curve, meant to be described by 
the "normal growth" approximation, there exists a fast, inertia dominated branch. 
This peculiar behavior of kinetic curves was first observed for certain cases [12, 
5] and then demonstrated to be generic [10]. Our analysis of the examples shows 
that not only does the kinetic curve deviate from the straight line upon proceding 
deeper into the metastable area, but that both steady regimes cease to exist when 
the critical level of metastability is achieved. This puts a principal limit on a 
straightforward application of the "normal growth" approximation as well as its 
polynomial extensions. 

In Section 2 we briefly introduce the model of the internal structure of the 
phase boundary and reformulate the problem of finding the kinetic relation as 
a/nonlinear eigenvalue problem. We demonstrate in Section 3, that regardless 
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of the particular form of the elastic energy, the "normal growth" approximation 
can be obtained for a sufficiently slow phase boundary motion. We then show 
that the corresponding "mobility" coefficient can be presented in an explicit 
form. Two exactly solvable cases illustrating the general properties of these 
kinetic relations, are considered in Section 4. Alternative forms of the "normal 
growth" hypothesis, originating from the different choices of the measure of 
metastability, are discussed in Section 5. In the last Section we summarize our 
results. 

2 Viscosity-capillarity model 

Consider the system of conservation laws 

ut = vx (2.1) 
7)~ ~ O -  x ' 

where u = yx(x, t) denotes deformation, v =t  (x, t) - velocity and or(u) - 
stress; y(x, t) is a displacement of a reference point x; subindices indicate partial 
derivatives. The system (2.1) or an equivalent nonlinear wave equation 

y .  = d (y~)yxx, (2.2) 

where the prime stands for the ordinary derivative, constitute the simplest model 
fo r /one  dimensional isothermal elastodynamics with no body forces and con- 
stant reference density (p = 1); one can conceive either longitudinal or simple 
shearing motions. It is also well known, that substitution of V = u-1 (specific 
volume) and p = - a  (pressure), with the simultaneous transformation to eule- 
rian variables (y, t), allows the use of (2.1) for the description of one dimensional 
isothermal flows of a compressible fluid as well [5]. 

For materials, exhibiting phase transitions (shape memory alloys, van der 
Waals fluid, etc.) the constitutive function a(u) (or p(V)  in case of fluids) can 
be nonmonotone. The simplest nontrivial function a(u) has two disjoint intervals 
of monotone growth (u < o~ and u > fi), to which we shall attribute the names of 
o~ - and fi - phases, accordingly, and the interval of a monotone descent, where 
the system (2.1) looses hyperbolicity (see Fig. 1). For the sake of definiteness, 
we assume that 

d ( u ) > 0 ,  d'(u)<0,  ifu<c~, 
c r ' ( u ) > O , d ' ( u ) > _ 0 ,  i f u > f l  

and will refer to points ot and r ,  where the related stored elastic energy 

f ( u )  = f0" ~r(/~)d/z (2.3) 

looses its convexity, as spinodal points. 



About the "normal growth" approximation 189 

ff 
In 

11 (u/ 
~-Pfi ~ phase 

a c~ 1~ h 

Fig. 1. The typical stress-strain relation for the material undergoing phase transformation. 
The interval (c~, fl) corresponds to spinodal (elliptic) region, am- Maxwell stress, a, b- 
equilibrium strains. The steadily propagating phase boundary with the material velocity 
D performs switching from state u+ ahead to the state u_ behind the discontinuity 

The horizontal chord on Fig. 1 at cr = am constitutes the equal area (Maxwell) 
construction 

b a ( v ) d v  = crm(b - a ) ,  
(2.4) 

o-m = o - ( a )  = o - ( b ) ,  

where a and b are the equilibrium strains in the coexisting phases. 
Although the system (2.1) with the nonmonotone or(u) allows discontinuities 

simulating steadily propagating phase boundaries (see transition u+ --> u_ on 
Fig. 1), a generic initial value problem was found to have a nonunique solu- 
tion [3]. The/viscosity-capillarity model presents a natural regularization of the 
system (2.1) which substitutes discontinuities with "thick" transition layers and 
provides an additional selection (admissibility) principle, narrowing the above 
nonuniqueness. 

Two mechanisms have been found to be essential for the proper resolution of 
the fine structure of the phase interface-dissipation and nonlocality, and none of 
them alone is capable of describing the whole spectrum of related phenomena. 
In a formal way, the viscosity-capillarity model can be obtained from (2.1) 
by augmenting the purely elastic constitutive model for stress ~ with viscous 
stresses and capillary (hyper) stresses [4, 11] 

= ~(u) + ~Vx - 2~Uxx, (2.5) 

where rl is an effective viscosity coefficient and e is a positive parameter pro- 
viding the scale of (weak) nonlocality of a continuum. The last term in (2.5) 
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arises from an explicit (quadratic) dependence of the specific stored energy on 
the strain gradients. The important feature of the regularization (2.5) is that in 
a limit ~ --+ 0, E --+ 0, not only do we get a description of phase boundaries 
as jump discontinuities, but we also obtain a desired selection principle in the 
form of kinetic relation, which depends on a limit of the nondimensional ratio 
[5] 

W = ~/,jT. (2.6) 

To fix the ideas, consider the traveling wave solution of the system (2.1) 
with ~ taken from (2.5). Substitute the ansatz ~ = x - D t  and eliminate v(~) to 
get 

( ~ Y ( u )  - -  D 2 u  - r lD i t  - 2~fi)" = 0, (2.7) 

where D is the phase boundary velocity, which we take to be positive, and 
the superimposed dot indicates the g-derivative. Since the parameter E is small, 
one can invoke the standard reasoning of the theory of matched asymptotic 
expansions and supplement (2.7) by the boundary conditions at infinity 

u(+oc)  = 0 (2.8) 

u(-t-ec) = u~:. (2.9) 

Let us for the sake of definiteness assume that u+ belongs to phase oe, while 
u_ belongs to phase b (see Fig. 1). Parameters u+ and u_ correspond to the 
limiting values of the deformation to the right and to the left of the discontinuity. 
The solution of (2.7) which describes the internal structure of the phase discon- 
tinuity is supposed to deviate considerably from u+ and u_ only in a narrow 
region scaled with v~.  

The integration of (2.7) yields 

o r ( u )  - -  D Z u  - ~ D i ~  - 2~iit = C .  (2.10) 

Boundary conditions (2.8, 2.9) are then used to find the constant C and specify 
D as a function of u+ and u_. We get 

C = ~r (u+)  - D 2 u +  = o r ( u _ )  - D 2 u _  (2.11) 

and therefore 

D = l o-(u+) - o-(u_) (2.12) 
bt+  I t _  

The necessary condition (2.12) is a classical/Rankine-Hugoniot jump condi- 
tion, governing the integral balance of momentum. With (2.11) and (2.12) one 
can rewrite the equation (2.10) in a form 

+ ~/t~ I or(u+) - or(u_) = a(u) - o-(u+) - or(u+) - o-(u_) (u - u+). (2.13) 2~/i 
U_ t_ / g _  b /+  - -  U _  
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The general solution of the second order ODE (2.13) depends on two con- 
stants. However, since both (2. l 3) and the boundary conditions (2.9) are invari- 
ant under translations, only one of these constants is nontrivial. Therefore, for 
the given u+, the boundary value problem (2.13) is overdetermined and can be 
considered as a/nonlinear eigenvalue problem with respect to u_. The specifi- 
cation of the points of/discrete spectrum for this eigenvalue problem constitutes 
the desired kinetic relation which will be the subject of our main interest in what 
follows, and it will be convenient to regard this kinetic relation as a locus in a 
(u+, u_) plane. 

3 Kinetic relation 

It is easy to recognize in (2.13) the equation of motion of a damped mathematical 
oscillator in a potential field with the energy 

g(u; u+, u_) = .s [cr(v) - or(u+) - a(u+) - o-(u_) (v - u+)] dr. (3.1) 
u +  - -  u _  J 

The mass of the oscillator equals 2e and the linear dissipation is scaled with 

I o-(u+) - a(u_) 
N(u+, u_) = r 1 u+ u_ (3.2) 

The energy integral reads 

et;t 2 4- g(u; u+, u_) = N(u+, u_) j~oc it2(v)dv ' (3.3) 

where the choice of the integration constant follows from (2.8) and (2.9). The 
desired (infinite domain) solution, describing the internal structure of the phase 
boundary, corresponds to the "motion" from one extremum to another. On the 
phase plane (u,/~) this solution is represented by the heteroclinic separatrix 
u_ --+ u+, connecting two equilibrium points (see Fig. 2). 

The fact that both u+ and u_ are critical points of the energy function 
g(u; u§  u - )  follows directly from the definition (3.1). If these equilibria are 
saddles, the heteroclinic trajectory is not generic and to guarantee the connection, 
an extra constraint on u+ and u_ is required. 

Introduce 

c(u) =,/-~'  (3.4) 

the local characteristic (sound) velocity. One can show that u+ (belonging to 
phase c~), and u_ (belonging to phase fl), are both energy maxima and the 
corresponding equilibria on the phase plane ((0, u+) and (0, u_)) are saddles if 
and only if 

D < c(u+) and D < c(u_), (3.5) 
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Fig. 2. Sketch of a potential energy g(u, u+, u ) together with the corresponding phase 
portrait, which shows the separatrix connecting the two saddles u+ and u_. Phase tra- 
jectories for the nondissipative (r~ = 0) system ul(~) and u2(~) are shown by dashed 
lines 

which means that the phase boundary is subsonic with respect to the states on 
both sides of the discontinuity. As is well known, contrary to our case, classical 
shocks are supersonic with respect to the state ahead. One can show [10] that 
they are represented on the phase plane by heteroclinic trajectories connecting 
a saddle with a node (or focus). In terms of our nonlinear eigenvalue problem, 
conventional shocks correspond to points of continuous spectrum and no extra 
relation between u+ and u_ is obtained. 

In what follows we focus our attention on subsonic phase boundaries, which 
satisfy (3.5). To obtain a desired necessary condition relating u+ and u_, evaluate 
(3.3) at ~ = - o c  to get 

g(u_; u+, u_) = N(u+, u_)h(u+, u_), (3.6) 

where 

(3.7) 

Since u(~) in (3.7) is an unknown solution of (3.3), the relation between u+ 
and u_, given by (3.6) is implicit, until the boundary value problem (2.13) is 
solved. Note, however that u+ = a, u_ = b with (2.4) implies g(b; a, b) = 0 



About the "normal growth" approximation 193 

and N(a, b) = 0 so (u+, u_) = (a, b) is a solution to (3.6). Since D = 0 in this 
case, it is an equilibrium solution. 

In one of its formulations the "normal growth" assumption states, that if u+ 
is in the metastable area (u+ E (a, o0), then u_ > b and, for u+ close to a, the 
kinetic relation can be approximated by 

u _  - b ~ K ( u +  - a ) ,  (3.8) 

where the coefficient tc depends on the parameters of the constitutive model of 
the transition zone but is independent of u+ and u_. 

The existence of the corresponding solution of the boundary value problem 
(3.3) (2.9) for u+ ---> a can be shown by the analysis of  the phase plane [11, 13, 
14]. Here, in order to check the validity of  the approximation (3.8) and, in so 
doing, arrive at an expression for the coefficient K, we assume that u_ = u_ (u+) 
near (u+, u_) = (a, b) and then calculate the derivative du_/du+ at u+ = a. 

A straightforward calculation provides 

d 
du+ 
- - g ( u _  (u+ ) ; u+, u_ (u+ ) ) = 

u _ - . +  [du_ } 
2 du~-_ (c2(u-) - D2) + c2(u+) - D2 lu_=u_(u+)l , 

(3.9) 

d - -N(u+,  u_ (u+)) = 
du+ 

(3.1o) 
o .+) [du_au+ ] = - - ( r  ) -- D 2) @ (D 2 - c2( / ,+))  ] 

2D(u_ - -  )u = u _ ( u + )  

where D is given by (2.12). Now, by differentiating (3.6) and using (3.9), (3.10) 
we obtain 

d/A_ _ C2(bt+) -- D 2 [D(u_ - u+) 2 + @(u+, u_(u+))]  

du+ C2(b/_) -- D 2 [O(u_ u+) 2 - tlh(u +, u_(u+))j  
( 3 . 1 1 )  

f O(u-u+) u_ (u+)))l D2(dh/du+)" + 
L(c2(u_) - D2)(D(u_ - u+)20h(u+, 

In the Appendix  we show that 

1 .b 
l i m  ~ h(u+, u_(u+)) = - ~  s ~/-g(u; a, b)du, (3.12) 
(D-+ O) 

while the limit of  D2dh/du+ as u+ ---> a and D -+ 0 is equal to zero. Then, 
since W = 0 if and only if 0 = 0, one obtains from (3.11) that 

du_ f c2(a)/c2(b), if  W ~ 0 
lim _= ,c = (3.13) u+-+a du+ ~ -c2(a)/c2(b), i f  W = 0 " 

D-->O) 
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W 

Fig. 3. Singular parametric dependence of the coefficient tc in the "normal growth" law 
(3.8) 

This singular dependence of ~c on the parameter W = rl/~/~ is illustrated in 
Fig. 3. 

We mention that for W r 0 the coefficient ~c depends only on elastic proper- 
ties of the equilibrium phases, which explains the universal character of K. The 
finite discontinuity in the function K(W) at W = 0 raises a question as to the 
validity of the "normal growth" approximation for W close to zero. As we show 
in [10] for sufficiently small W, the kinetic curve which starts at u+ = a with 
the positive slope K -= c2(a)/c2(b) necessarily terminates at some u+ > a where 
it meets another (fast) branch of kinetic relation which does not go through 
u_ = b at u+ = a and which has a negative slope du+/du_. This provides a 
nonuniqueness of u_ for the given u+ > a which we shall illustrate in the next 
section by two examples. 

4 Exact solutions 

In order to exhibit closed form solutions to the boundary value problem (2.13) 
(2.9) we present two specific examples for the constitutive function o-(u). The 
obvious first choice is a /piecewise linear stress strain relation (see Fig. 5), 
corresponding to the double-well quadratic elastic stored energy. The advantage 
of this choice is that the equations become linear in both phases and explicit 
solutions can be matched with the appropriate jump relations. Here we consider 
the simplest, bilinear material with the discontinuous stress-strain relation; the 
trilinear material with continuous o-(u) was analyzed in [15]. 
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By using the same notations of  Maxwell  stress (era) and equilibrium strains 
(a and b) we assume the following expression for the energy f 

c 2 (  a + b  b - a )  2 

f = ~ -  u 2 2 + a ~ ,  (4.1) 

where C 2 is a constant speed of elastic waves, which for the sake of simplicity 
we take to be equal in both phases (see Fig 4). 

f 

0.06- 

0.04.- 

0.02 

I 
I 

j 
\ t  "-I" 

0 1 

Fig. 4. Sketch of elastic energy f = f / ( 2 c 2 ( b  - a) 2) vs. u = u / (b  - a) for the two 
materials considered; solid line - piecewise quadratic energy (4.1), dashed line - quartic 
polynomial energy (4.12 a). Parameters are taken to be: a = 0, b = 1, a,, = O, c a = .5 

The related stress strain relation takes the form (see Fig.5) 

( ) a + b l  b - a  sign u - +a ,~ .  (4.2) a = c  9- u 2 ] 

With or(u) taken from (4.2), equation (2.10) reduces to 

(c 2 - D 2) (u - u+) - Dr/h - 2s/~ = 0 (4.3) 

in the u-phase, where u < ( a + b ) / 2  and to 

(C  2 - -  D2)(u - u_) - DOu - 2s~ = 0 (4.4) 

in the fi-phase, where u > (a + b ) / 2 .  
The solutions of  the linear equations (4.3) and (4.4) must be matched at 

a+b Because of the translational invariance of the point ~ = G ,  where u -- 2 �9 
the problem, one can put $, = 0 without loss of  generality. In this case one 
will have o~-phase in ~ > 0 and fi-phase in $ < 0. At ~ = 0, the maximum 
smoothness one can require is C I, so that the following jump conditions hold 

[u] = 0, [u] -=0,  (4.5) 
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Fig. 5. Sketch of the stress-strain curves o" = c~/(2ca(b - a))  vs. u = u / ( b  - a)  for the 
two materials considered; solid line - piecewise linear material (4.2), dashed line - cubic 
material (4.12). Parameters are taken to be the same as in Fig. 4 

where [A] = A(~ ---> 0 - )  - A(~ ---> 0 +) is the discontinuity of the function. The 
condition of continuity of tractions at ~ = 0 reads 

- 2 s [ f i ] + [ ~ ]  = 0 ,  (4.6) 

where, obviously, 

[ ~ ] = c 2 ( b - a )  (4.7) 

is the discontinuity of the elastic stress while the first term in (4.6) is a contri- 
bution due to hyperstress. 

Equations (4.3) (4.4) with the boundary conditions (2.8) (2.9) (4.5) (4.6) 
can be solved explicitly. Introduce u~(~), solution of (4.3) which is defined for 

> 0 only and u~(~), solution of (4.4), defined at ~ < 0. Then a straightforward 
calculation provides 

U _  - -  h i -  t-  

u,~(~) = u+ + p i p 1  _ p 2  - F  ~ (4.8) 

u _  - u+ e p ~  ' (4.9) Ufl(~) = U_ - } - P 2 - -  
P l  - P2 

where 

P l , 2 = E -  - 1  . (4. to) 
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Our interest in subsonic phase boundaries requires that c 2 < D 2 and therefore 
Pl _> 0 while P2 _< 0, which justifies (4.8) and (4.9). One can see that, in 
agreement with the general analysis [10], the sufficently slow phase boundaries, 
represented by (4.8) (4.9) are monotone and the structure gains oscillations only 
if 

D 2 4W 

C 2 8 - -  W 2"  

These oscillatory regimes are only available for low viscosity materials with 
W 2 < 8 .  

Using (4.8) and (4.9) and the boundary conditions (4.5) (4.6) one obtains a 
kinetic relation between u+ and u_ in explicit form 

1 + ru_-.§ 1~ b - ~ _ . + ~ - o  = 1. (4.11) 
b - a  

As we already mentioned, the parameters e and ~ enter the kinetic relation 
(4.11) only through the nondimensional combination W = rj/v/~. In addition it 
does not depend on c. Several kinetic curves (for different W), originating from 
(4.11), are presented at Fig. 6. 

~ / '- 
1.5" / ~ / qool 

�9 -i I_/ 
-:.:--\,// 

0 0.1 0.2 0.3 0.4. u+ 

Fig. 6. Kinetic curves u _  = u / ( b  - a )  vs. u+ = u + / ( b  - a )  for the material with 
piecewise linear stress-strain relation (4.2). Numbers correspond to different W 

As we see from Fig. 6, all kinetic curves u_ = u_ (u+, W) except the one 
for W = 0, are tangent to the line 

u _ = u + + b - a  
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in accordance with (3.13) and c(a) = c(b). At W = 0, the kinetic curve is 
tangent to 

u _ = - u + + a + b ,  

which again follows from (3.13). For small positive W, the associated kinetic 
curve has a vertical tangent turning point at some fi+ > a so that for 0 < u+ < 
~+ two values of u_ correspond to the same value of u+. This turning point 
separates the dissipation dominated (slow) branch from the inertia dominated 
(fast) branch. This is an illustration of the generic behavior of kinetic curves, 
studied in [10]. 

The disadvantage of the piecewise linear stress-strain relation, depicted at 
Fig. 4, is the absence of the spinodal (elliptic) region where ce < 0. Therefore 
it is instructive to consider the next simplest nontrivial example: a function a(u) 
given by a/cubic polynomial. The two-well elastic stored energy is presented in 
this case by a quartic polynomial. Using again the same notations as in Section 2, 
we obtain for f(u) 

k f= ~(u-a)2(u-b)2q-~mu 

and for or(u) 

(4.12a) 

or(u) = k(u - a ) (u  - b ) (u  a § b )  2 + O-m' (4.12) 

One can show that the choice k = 2c2/(b-a) 2 matches the elastic properties 
at the Maxwell stress to those of the piecewise linear material (4.2). For the 
equation (2.13) with or(u) taken from (4.12) the desired heteroclinic separatrix 
connecting u+ and u_ can be presented in a finite form [5] 

u(~)=u++u-u+-U-tanh[~ u+-u- ] 2 2 ~ ( ~  - se*) ' (4.13) 

where the reference point ~, can again be chosen arbitrarily. Substitution of 
(4.13) into (2.13) gives an explicit expression for phase boundary velocity D 

_Dc -- 3~ /2 (  u + + u - W  b a ba+b)-- . (4.14) 

Together with the Rankine-Hugoniot condition (2.12), this provides a kinetic 
relation 

12 u + + u _  a+b)2+( u--u+)2= 1 (4.15) 
3 ( 1 - W 2 ) t  ~ T a  b - a  b - a  

to be compared with (4.11). It again depends on ~ and ~ through W only and it 
does not depend on c. Several kinetic curves for different W are shown in Fig. 
7. They terminate at the straight line which describes marginal "sonic" regimes 
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0 0.1 0.2 u+ 

Fig. 7. Kinetic curves u = u _ / ( b  - a) vs. u+ = u + / ( b  - a) for the material with cubic 
stress-strain relation (4.12). Numbers correspond to different W. 

of phase boundary propagation (Chapman - Jouget regimes), given by 

u_ + 2u+ = 1.5(a + b). (4.16) 

One can see once again that if W ~ O, the kinetic curves can be approximated 
by 

u _  = u +  + b - a  

("normal growth" approximation). For small enough u+ we have two values 
of u_, representing slow (dissipation dominated) and fast (inertia dominated) 
regimes. For small positive W no steady phase boundaries are available if the 
metastability of the state in front, measured by u+ - a, is sufficently large 
(beyond the turning point associated with the specific W under consideration). 
This puts a limit on the range of application of the "normal growth" hypothesis. 
As W tends to zero, the domain of validity for the approximation (4.16) shrinks 
to a point. 

5 Mobility of phase boundaries 

The "normal growth" hypothesis is often formulated in terms of dependence of 
the phase boundary velocity on the degree of metastability of the state ahead of 
the moving phase oundary. If the degree of metastability is again measured by 
u+ - a, the "normal growth" approximation states that D is a linear function of 
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u+ - a for u+ - a sufficently small. In nondimensional form it reads 

D u+ - a (5.1) 
c(a) -- # b - a 

The coefficient # is a measure of "mobility" of the phase boundary. Of cause 
the global features of the curve D(u+) can be obtained directly from (2.!2). The 
mobility # is the normalized slope of this curve as u + -  > a. 

The viscosity-capillarity theory developed in Section 2 enables us to calculate 
the coefficient/~ as a function of the nondimensional parameter W. Thus from 
the Rankine-Hugoniot condition (2.12) we get 

dD c 2 ( u _ ) - D 2  Idu_ c2(u+)-D 2 ] 
du+ - ~ -  ~++) ff~u+ c2(u_) D5 . (5.2) 

If we substitute the limiting value for du_/du+ as u + -  > a from (3.13) into 
(5.2), we obtain the desired expression for/~ 

c(a)(b - a) 2 

# = W [fb a ~/-g(u;  a, b)du1-1" (5.3) 

As we see from (5.3), contrary to the phenomenological coefficient K from 
(3.8), # is inversely proportional to W. The integral in the denominator of (5.3) 
is readily calculated for the two examples considered in Section 4. Thus for the 
piecewise linear constitutive law (4.2) one obtains 

c 
/~ ~/-g(u; a, b)du = ~ ( b  - a) 2, (5.4) 

which gives for the mobility coefficient 

4,,/2 5.657 
- - ( 5 . 5 )  

W W 

On the other hand the cubic stress strain relation (4.12) gives 

f f  ~/-g(u; = c a, b)du ~ ( b  - a) 2, (5.6) 

corresponding to mobility coefficient 

6 ~  8.485 
/ z  - -  ~ ( 5 . 7 )  

W W 

Several "mobility" curves D vs. u+ for these materials, illustrating the asymp- 
totics (5.5) are shown in Fig. 8. Similar curves for the material with cubic stress 
- strain relation, illustrating (5.7) are shown in Fig. 9. 

It follows from these pictures that for the given state ahead of the phase 
boundary, one can have two different values of D. However, the two regimes 
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Fig. 8. Kinetic curves D = D/c vs. u+/(b - a) for different values of W and piecewise 
linear a(u) 

0.4 �84 

~ 
0 0.1 0.2 u+ 

About the "normal growth" approximation 201 

Fig. 9. Kinetic cm-ves D = D/c vs. u+/(b - a) for different values of W and cubic d(u) 

require different boundary conditions (different "piston") to support the steady 
state propagation of the phase boundary. That is why this nonuniqueness does 
not necessarily mean instability of  one of the regimes. This is most clearly seen 
if we choose a different measure of  metastability. To justify our choice we will 
need to adopt more a general point of  view [16, 4, 5, 6]. 
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Consider the full system of Rankine-Hugoniot jump conditions on a moving 
surface of discontinuity in a heat conducting thermoelastic body. Let n be the 
reference normal to the surface and D its material velocity. Then the balances 
of momentum and energy on the jump take the form. 

D[v] - [Pn = 0, 

V 2 
D[e + ~ ]  - [ P n - v -  q - n ]  = 0, (5.8) 

Here e(F, s) is the specific energy which depends on deformation gradient F and 
specific entropy s;v is the velocity, P 0e r = p ( N ) F  - the stress tensor and q is a 
heat flux. The entropy balance takes the form 

D[s] + [ ~ ]  = R > = 0 ,  (5.9) 

0e where T = g is the absolute temperature, while R is the surface entropy pro- 
duction, which is assumed to be nonnegative. If, as in our case, both temperature 
and displacements are continuous on the jump, (5.8) (5.9) yields 

RT = GO, (5.10) 

where [5, 6] 

a = [ f ] -  ~-~ [V]. (5.11) 

Here we recall that [A] = A+ - A_ denotes the value of the discontinuity, while 
{A} = 1 g(A+ + A_) denotes the average of the limiting values on both sides of 
the discontinuity. 

From the expression (5.10) of the surface dissipation, we conclude that G, 
which is sometimes called the driving traction, is conjugate to D. Then the kinetic 
model can be formulated as a relation between the "flux" D and the "force" G, 
using the language of the linear thermodynamics of nonequilibrium processes 
[5]. Assuming R to be quadratic in D, some theories of "normal growth" provide 
a linear relation between G and D which reduces to (5.1) as G tends to zero. 

Let us use our exact solutions to calculate D vs. G dependence in a nonlinear 
case. In the isothermal setting the rate of entropy production R is equivalent to 
the energy release rate, which in our case reads 

RT = ) ( u + ) -  f ( u - )  - ~(u+) +c~(u-) ] 2 (u+ - u_) D = oD a / 2 ~  u2d~. (5.12) 

Now, it is easy to see that 

G = g(u_; u+, u_), 

and G can be considered as 

(5.13) 

an alternative measure of metastability (replac- 
ing u+ - a). For the material with a piecewise linear stress-strain relation, a 
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straightforward calculation gives 

r 
G = ~ ( u +  + u_  - a - b ) ( b -  a),  (5.14) 

which after the substitution of u+ and u_ from (2.12) and (4.11) yields 

c2(b - a) 2 4x/2 c )  1 - c ~  1 + -8 c2 j j .  (5.15) 

This is a desired kinetic relation between G and D illustrated in Fig. 10. 

0.25 
w : |  / / /  

~ / / /  

0.05 ~ 

, I , 0  
0 0.1 0.2 0.3 0./.,. P 

Fig. 10. Kinetic curves G = G/(ca(b - a) 2) vs. D = D/c  for different values of W and 
c~(u) piecewise linear 

For the material with a cubic stress strain relation, a similar calculation 
provides 

c 2 

G - -  2 ( b -  a) 2 (u_ - u+)3(u+ + u_ - a -  b). (5.16) 

Now, we substitute u+ and u_ fl'om (4.14) (4.15) to get 

c2(b - a) 2 6 v ' ~  1 + ~ c~ j . 

The kinetic curves on the G - D  plane, originating from (5.15) and (5.17) are 
shown at Fig. 11. 

One can see from Fig. 10, 11 that if we introduce a "natural" measure of 
metastability G, the nonuniqueness in the kinetic model disappears. 
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o / / / 
w= 7 2; s /  
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0 0.05 0.10 0.t5 0.20 B 

Fig. 11. Kinetic curves G = G/(c2(b - a) 2) vs. D = D/c for different values of W and 
a(u) piecewise linear (a) and cubic (b) 

6 Discussion 

The kinetic relation balances the energy release due to the growth of one phase 
in expense of the other and the dissipation due to the nonequilibrium nature of 
the transformation. In a quasistatic approximation it is natural to assume that 
the surface dissipation is quadratic in phase boundary velocity. The fact that the 
energy release rate is a product of a "driving force" and the velocity provides a 
basis for the "normal growth" hypothesis. This reasoning however completely 
neglects/inertial effects, moreover when the dissipation is weak it is feasible 
to have purely inertial regimes of phase transformation, when the free energy 
loss is compensated by the gain in kinetic energy. As we show, these effects 
are responsible for the formation of the fast branch of the kinetic relation in 
addition to the slow, dissipation-dominated (normal growth) branch. 

Based on the analysis of the kinetic relations, originating from the viscosity 
capillarity model, we conclude that the limitations of the "normal growth" are 
threefold. First, even for slow enough phase boundaries, the relation between 
the phase boundary velocity and the "driving force" may become nonlinear. 
We mention that assuming the linear dissipative mechanism in the transition 
region (the Newtonian viscosity) does not guarantee the linearity of the overall 
kinetic relation. The second limitation stems from the fact that the steady regime 
of phase boundary migration may not exist when the driving force is high 
enough. As we show for the low viscosity materials, this critical/metastability 
limit may be quite low. The last problem with the "normal growth" theories 
in their classical formulation, arises from their inability to describe fast, inertia 
dominated branch of kinetic curve. We show, however, that if the "natural" 
work conjugate variable describing the driving force is chosen, then the kinetic 
relation becomes single-valued in the whole range of parameters. Contrary to 
the usual quasistatic "free-energy release" which is a popular choice of a driving 
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force in the physical literature, the "natural" driving force includes the important 
kinetic energy contribution. 

The present model has an obvious shortcoming related to the limitations of 
the macroscopic approach of continuum mechanics. The real process is taking 
place in a discrete system of atoms and lattice effects may become important. 
For example, propagation of the front causes excitation of short waves not 
described by the continuum model and this radiation, which appears in a form 
of the dissipation at the macrolevel, can not be adequately described by the 
isothermal model. On the other hand, the lattice trapping can change the picture 
for sufficiently slow motions causing the hysteretic phase transformation. 

7 Appendix 

Since the dependence of the function h(u+,/t_) on its arguments is implicit, 
one cannot calculate the limiting value for h and dh/d/t+ as u + -  > a directly, 
without reference to the equation (3.3). This equation, however, is amenable to 
qualitative analysis on the phase plane (/t, ti). 

Consider the case /t+ = a. Then (3.3) has a solution with /t_ = b and 
D = 0 which represents stationary equilibrium phase boundary. In this case 
(3.3) integrates to give 

_ / . u  
�9 ~- ~ / - g ( # ,  a, b) = ~ - ~0 

and from (3.7), we obtain 

b 1 ~ J-g(u,  a, b)d/t h(a, b) = 

which gives (3.12). 
Now consider the branch of kinetic relation starting at the point (u+,/t_) = 

(a, b) on the u+ - u_ plane, which up to the second order terms (in u+ - a) 
can be approximated near the point (a, b) by 

u+ = a + ( u + - a )  

d / t _  i 
/t_ = b + iu:o(/t+ - a) 

To calculate the derivative of 

along this branch, observe that this function provides the area on the phase 
plane (/t,/t) between the separatrix connecting points u+ and/ t_  and the/t-axis 
(see Fig. 2). Suppose for the moment that ~ = 0 and introduce two functions 
Ul(~) and u2(~), representing the disconnected separatrixes of the dissipation 
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free analog of (3.3) (see Fig. 2). For the separatrix ua(~) which originates at 
u = u_ (~ = - o c ) ,  we can write 

1 
/~1 = ~ / - g ( u l ( $ ) ;  u+, u_ ) § g(u_; u+, u_) 

while the separatrix u2(~) which terminates at u = u+(~ = +oc )  yields 

1 
{/2 --  %/~ ~/--g(u2(~);  U+, U--). 

Since the energy 

C--l) 2 -1- g(g; U+, U_), 

serves as a Lyapunov function for our dynamical system (2.13), it followes that 
u(~) 6 [u+, u_] gives 

<(~) _< u(~) _< u2(~). 

Hence 

h2(u+,  u_ )  < h(u+, u_) < h l (U+,  u_ )  (A.1) 

where 

' U _  

hl(u+, u_) = ~ ~[.+ ~/g(u_; u+, u_) - g(u; u+, u_)du 

h2(u+,u-)  = 1 [.u, v/7 au+ ~/-g(u; u+, u_)du 

and u.(u+, u_) denotes a root of the equation 

g(u; u+, u_ ) = 0 

located between u+ and u_ (see Fig. 2). Calculation of the derivatives of 
hi(u+, u_(u+)) and h2(u+, u_(u+)) yields 

dhl 1 
du+ - ~ ~/g(u_ ; u+, u_) 

0 2 --  C2(bt+) 'u_ (bt --  U_) 2 

+ . / g ( . - ; . + ,  . - )  - g(u;.+,u_) du (A.2) 

D2-c2(u_)  (du_)  /u_ ( 2 u + - u _ - u ) ( u - u _ )  
+ ~ u + ~ u - _ )  ~u+ .,+ ~/g(u_;u+, u ) - g(u;u+, u_) du 
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and 

dh2 
du+ 

l (du,)  
~/6 \du+] ~/-g(u,;u+, u_) 

c 2 ( b t - ) - D 2 ( d u - ) u ,  (u - b/+) 2 

+ 4~(U~+ ~ u _ )  ~u+ ./u+ ,,,/~gg(u.u+,+,u_) du (A.3) 

c2(u+) - D 2 .u, (2u_ - u+ - u)(u - u+) 
+ 4 ~ +  -- ~_ ) s ~/~--~u; u~, u_~ d u. 

In these formulas, the derivative du_/du+ is the same as in (3.11) (along kinetic 
curve branch u_(u+) initially at (u+, u_) = (a, b)), while du, /du_ is readily 
calculated to be 

du_ d u ,  _ (u ,  - u+)  (C2(b/+) -- D2)(u, + u+ - 2u_)  + ( 0  2 - c 2 ( u _ ) ) ( u ,  - u+)  ( ~ !  

du+ 2(u+ -- U_) o-(u,) -- or(u+) -- D2(u, - u+) 

It is easy to check that all integrals in (A.2) and (A.3) converge and the only 
singular term in a limit u+ --~ a and D -+ 0 is the one with du, /du_  . One can 
see however, that 

lira D 2 (du*l ,+--,a \ du+ ] = O. 
D-->O 

Therefore 

l im D 2 dht _ lim D 2 dh2 = 0 
u+--~a du+ u,-,a du+ D-+O D---~O 

which, together with the inequality (A.1), provides 

dh 
lira D 2 -- 0. 

u+~o du+ 
D-tO 
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