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Transition to Detonation 
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Abstract 

Subsonically propagating phase boundaries (kinks) can be modelled by 
material discontinuities which satisfy integral conservation laws plus an addi- 
tional jump condition governing the phase-change kinetics. The necessity of 
an additional jump condition distinguishes kinks from the conventional shocks 
which satisfy the Lax criterion. We study stability of kinks with respect to the 
breakup (splitting) into a sequence of  waves. We assume that all conventional 
shocks are admissible and that admissible kinks are selected by a prescribed 
kinetic relation. As we show, regardless of a particular choice of the kinetic 
relation, sufficiently fast-phase boundaries are unstable. The mode of instabili- 
ty includes an emission of a centered Riemann wave followed by a sonic shock 
(Chapman-Jouguet type phase boundary). 

1. Introduction 

The motivation for this study arises from experiments on martensitic phase 
transitions. The experiments reveal that a martensitic interface moves in a 
direction normal to itself when sufficient driving force is available. Since the 
work of FORSTER & SCHEIL (1940), it has been common to draw a distinction 
between fast (umklapp) and slow (schiebung) martensitic transformations (cf. 
Nis~irva_~lA (1978)). The fast interface moves at a velocity close to that of  a 
corresponding elastic wave, while the slow growth can be easily observed with 
an optical microscope; under some circumstances the transition to the 
umklapp regime is accompanied by audible "clicks", which signify a "burst  
of transformation". In the physics literature, it has often been assumed that 
the difference in speeds reflects a fundamental difference in the mechanism of 
growth and is associated with some kind of instability in the interface kinetics 
(GRuJICIC et al. (1985), Yu & CLAPP (1989)). In this paper we discuss a dif- 
ferent interpretation of this phenomenon as an inertia-driven transition from 
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one dynamical regime to the other, which is somewhat similar to the transition 
from deflagration to detonation. 

We focus on the elastodynamical aspect of the phenomenon. Since the 
seminal paper of EglCKSEN (1975) it has been widely recognized that nonlinear 
elasticity is amenable to the modelling of equilibrium phase transformations 
provided that the governing equations lose ellipticity for a certain range of 
strains. After the papers of DArEgMOS (1969, 1973), KNOWLES (1979) and 
JAMES (1980) it has also become clear that the corresponding dynamic theory 
admits the propagation of discontinuities, simulating highly localized phase 
transitions. At the same time, the initial-value problem was found to be 
generically ill-posed, which results in a dramatic lack of uniqueness. It became 
common to view this nonuniqueness as arising from a constitutive deficiency 
in the theory, reflecting the need to specify additional pieces of constitutive 
information (cf. TRUSKINOVSKY (1982), SLEMROD (1983), ABEYARATNES~ 
KNOWLES (1987), GURTIN & STRUTnERS (1990)). Several criteria were used to 
pick out physically admissible solutions (cf., e.g., DAFERMOS (1973), SHEARER 
(1982), HAT:IDRI (1986), PENCE (1986), PEOO (1987), HSIAO (1991)). Contrary 
to the theory of conventional shock waves, the proposed admissibility criteria 
allow subsonic discontinuities singled out by an additional jump relation 
governing the phase-change kinetics. Following TRUSKINOVSKY (1993 a) we call 
these discontinuities kinks. The necessity for an additional jump condition 
distinguishes kinks from the conventional shocks which satisfy the Lax criterion 
(LAx (1971)). 

In this paper we investigate the condition of instability of subsonic phase 
boundaries against breakup into a sequence of different waves. We adopt the 
simplest one-dimensional isothermal model of phase-transformation dynamics 
described by a nonlinear wave equation with a nonmonotone stress-strain rela- 
tion. Subsonically propagating phase boundaries (kinks) are modelled by 
material discontinuities which satisfy integral conservation laws. We assume 
that all conventional shocks are admissible and that admissible kinks are 
selected by a prescribed kinetic relation (of the form discussed by TRUSKINOV- 
SKY (1987) and ABEYARATNE & KNOWLES (1990), among others). 

We derive a characteristic inequality which governs the stability of the kink. 
Then we show that sufficiently fast kinks are unstable, regardless of the par- 
ticular choice of the kinetic relation. The instability arises from the non- 
uniqueness of the solution of the Riemann problem. A similar type of non- 
uniqueness has been discussed by SHEARER (1986), /~EYARATNE d~ KNOWLES 
(1991 a) and PENCE (1992) in the context of dynamic phase transitions and has 
long been known for classical shock waves (cf. MENIIr & PLOrlR (1989), 
FOWLES (1993)). The mode of instability contains a forward-moving Riemann 
wave (precursor) with an attached sonic detonation wave at the rear and a 
backward moving classical shock wave. 

It is interesting that the above mechanism of instability is not possible 
if only those kinks and conventional shocks which are selected by the viscosity- 
capillarity criterion (cf. TRUSKINOVSKY (1982), SLEMROD (1983)) are considered 
admissible. The uniqueness of the Riemann problem in this case (cf. FAN & 
SLEMROD (1991), SHEARER & YANG (1992)) originates from the surprising fact 
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that the class of conventional shocks admissible by the viscosity-capillarity 
criterion is much narrower than the class of shocks admitted by the Lax 
criterion. 

In Section 2, we describe an elastodynamic model with a nonmonotone 
stress-strain relation and specify a single-wave solution whose stability we plan 
to examine. The split-wave solution is discussed in Section 3. The main 
theorem, showing the existence of an alternative solution, is formulated and 
proved in Section 4. In Section 5, we examine the properties of  the alternative 
solution; in particular, we observe that the entropy production rate may be 
either larger or smaller for the split waves than for the single wave solution. 
The implications of the viscosity-capillarity model are considered in Section 6. 
Finally, in Section 7 we give a heuristic discussion of  stability for the single 
wave solution. 

2. Preliminaries 

The nonlinear wave equation 

PYt, = a '  (yx)  Yxx (2.1) 

with nonmonotone a ( y x )  constitutes the simplest fully dynamical model for 
studying i s o t h e r m a l  phase transitions. Here y ( x ,  t)  denotes the displacement at 
time t of  a reference point x. A prime indicates the derivative with respect to 
Yx ,  while subscripts x and t stand for the corresponding partial derivatives. 
Although the isothermal model is hardly adequate for the description of  fast 
dynamic phase changes, it may be viewed as a natural starting point. 

With the reference mass density fixed at p = 1, (2.1) generates the 
associated first-order system of  conservation laws for the functions u = Yx - 1, 

V = Y t :  

Ut = Vx , 
(2.2) 

Vt = cr x . 

The constitutive function 

a = a ( u )  (2.3) 

delivers the stress corresponding to the strain u. It is assumed that the smooth 
function a ( u )  takes the form indicated in Fig. 1 and satisfies the following 
conditions 

a ' > 0 ,  a " < 0  if u < o ~ ,  

a ' > 0 ,  a " > O  if u > f l ,  

a '<0=  if o~<u<fl._ _ 

(2.4) 

Different phases correspond to the maximal intervals of  the m o n o t o n e  

behavior of a ( u ) .  Assume that the material is in the ~ phase if u _< a and 
in the fl phase if u __> ft. Let u = a _< o~ be a given point in the o~-phase. When 
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"=? V I  1( ) 

am c~ ~ bm ~" u 

Fig. 1. A typical stress-strain curve for an elastic material which admits phase change. 
The chord a ~ b 3 is tangent to a(u) at u = a (Chapman-Jouguet regime). The chord 
a ~ b 1 is horizontal. The horizontal dashed line corresponds to the Maxwell stress. 
The chord a ~ b 2 cuts equal areas from the curve a(u) (Maxwell regime). 

it exists, we let u - - b  a (a)  _> fl be the point  in the fl-phase at which 

a (bl (a)) = a (a ) .  (2.5) 

Similarly, we denote by b2(a) the point  in the fl-phase at which 

b2~a)" a du = a(a)  + a(b2(a) ) (b2(a)  _ a ) ,  (2.6) 
d 2 

again provided that  such a point  exists (see Fig. 1). I f  a = am is a point  in 
the a -phase  such that  def. 

bl(am) = b2(am) = bm, 

we call am = a(am) = a(bm) the Maxwell stress. We call c(u) d _ _ e f ~  the 
local characteristic (sound) velocity for the hyperbolic domain  where a ' =  0 
and introduce the no ta t ion  b3 (a)  for the point  in the fl-phase (if such a point  
exists) which satisfies the equat ion 

~J a(b3!a))  = c(a) . (2.7) 
~ ~ ~ a ~ 

b3(a) a 

For the sake o f  definiteness, assume that  (2.7) has a unique solution defined 
for all a _< c~ (see Fig. 1). This is true, for instance, in the case when a(u) 
is a cubic po lynomia l :  

a ( U )  = a m + k ( u  - a m )  ( u  - -  b in)  u . (2.8) 
2 
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In this particular case, one can easily see that the graphs of b = b2(a) and 
b = b3(a) are represented by segments of straight lines, while the graph of 
b = b l (a)  is an arc of  an ellipse. The three functions, defined by (2.5), (2.6) 
and (2.7) are illustrated in Fig. 1 (see also Fig. 5). The inverse of these func- 
tions were considered earlier in PENCE (1992). 

Since a (u )  is a nonmonotone function, the system (2.2) is of mixed type 
and therefore the initial-value problem is ill-posed. We shall be particularly in- 
terested in the initial data for the Riemann problem, 

u(x ,  0) ,  v (x ,  0) = f u _ ,  v_, x < 0, (2.9) 
( U+, v+, X >-- 0 

where u+, u_, v+, v_ are constants. Since both the system (2.2) and the data 
(2.9) are invariant under a uniform stretching of the variables x and t, consider 
a centered solution depending on ~ = x / t  alone. Such a solution contains a 
family of waves that emanate from the origin and propagate with constant 
speeds. It includes constant states joined by centered Riemann waves or jump 

discontinuities. 
A centered Riemann wave is a differentiable solution of  (2.2) of the form 

u(~),  v(~),  in which one of  the Riemann invariants 

v -T- f c(/~) d/t (2.10) 

is constant; the ~ dependence is then implicitly given by 

= -4-c(u).  (2.11) 

In particular, for the forward moving " f a n "  of  the form (2.10), (2.11), the 
constant states on the right (u+, v+) and on the left (u_,  v_)  that are con- 
nected by the wave satisfy 

) v_ = v+ - c ( u )  du.  (2.12) 
u+ 

For the material under consideration, the centered Riemann wave may corre- 
spond to either compression or rarefaction. That is, u_ > u+ if a " ( u )  < 0 
for u (  (u+, u _ ) ,  and u_ < u+ if a " ( u )  > 0 for uE (u_,  u+).  It is clear that 
Riemann waves are defined only in the hyperbolic region a ' ( u )  >__ O. 

A jump discontinuity is a pair of  functions (u, v) of the form 

(u, v) (x, t) = f u + ,  v+, x > D t ,  
( u _ ,  v _ ,  x <__ Dt  

which satisfy the Rankine-Hugoniot jump conditions 

D ( v +  - v _ )  + (a+ - a _ )  = O, 
(2.13) 

D ( u +  - u _ )  + (v+ -- v _ )  = O. 

Here D is the velocity of the discontinuity, o-+ = a ( u + )  and o-_ = a ( u _ ) .  
Assuming u+ =r u_, we solve (2.13) for D and obtain for the forward and 
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backward moving discontinuity 

~G_++ -- tT_ 
D = 4- (2.14) 

U_ 

The right and left particle velocities are then related by 

v+ - v_  = ~ ~ / ( a +  - a _ ) ( u +  - u _ )  . (2.15) 

In an attempt to single out physically meaningful discontinuities, several 
admissibility criteria, which we briefly discuss in the rest of this section, have 
been suggested (cf. LAX (1971), LIu (1981), D~Emuos (1985), FAN & SI.EMROD 
(1991), HATTORI & MISCHAIKOW (1991) and the literature cited therein). 

According to the second law of  thermodynamics (entropy criterion) 
specialized to isothermal motions, the energy release rate on a discontinuity 
is non-negative: 

D a d u  a + + a _  u+ 2 (u+ - u_)  _> 0. (2.16) 

Other restrictions follow if we expect physically realizable discontinuous solu- 
tions to arise as limits of  solutions of some appropriately regularized set of 
equations. Thus, according to the viscosity criterion the jump discontinuity is 
admissible if the states on both sides may be connected by a travelling wave 
of  the system (2.2) which is regularized by including a viscosity term propor- 
tional to the strain rate in the stress constitutive equation: 

a = a ( u )  + ~lUt, (2.17) 

where t/ is the effective viscosity coefficient. Discontinuities admissible by the 
viscosity criterion automatically satisfy (2.16). They include waves that comply 
with the chord ( Oleinik) condition : 

a ( u )  - a ( u + )  
if D > 0 ,  then __< 

U--  U+ 

a ( u )  - a ( u + )  
if D < 0 ,  then _< 

U--  U+ 

a ( u _ )  - a ( u + )  for all u+ _< u_< u_ ,  
bt_ - -U+ 

(2.18) 

a ( u _ )  - a ( u + )  for all u+ >_ u_> u_ ,  
U_ - -U+ 

plus all nontrivial stationary waves with D = 0 (cf. SLEMROD (1983), PEGO 
(1987)). 

Another principle for selection, employed by LAX (1971) in full generality 
for genuinely nonlinear systems, is the requirement of  stability of weak solu- 
tions. According to the Lax admissibility criterion characteristics of  one family 
from both sides meet on the discontinuity, while the characteristics of the 
other families cross through the discontinuity. For system (2.2) this means that 
admissible waves are supersonic with respect to the state ahead and subsonic 
with respect to the state behind. With our constitutive assumptions (2.4), the 
system (2.2) is not genuinely nonlinear and characteristics must be permitted 
to become tangent to the discontinuity. Therefore, following ISAACSON et al. 
(1990) we introduce a generalized Lax  criterion which allows for states for 
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which either 

or  

•,/•(u§ - ~ ( u _ )  
c ( u + )  <_ - -  <__ c ( u _ )  

~ 1  U+ U _  

•,/a(u§ - a ( u _ )  
c ( u §  >= >= c ( u _ ) ,  (2.19) 

~ I  bl§ - - U _  

depending on whether D ~ 0. For the forward-moving discontinuities with 
D > 0, this condition, long known in gas dynamics, means that the shock is 
supersonic or sonic with respect to a state ahead and subsonic or sonic with 
respect to a state behind. 

I f  o-(u) is strictly convex or concave, all three of  the criteria ((2.i6), (2.18) 
and (2.19)) prove to be equivalent. For the material with o-(u) depicted as in 
Fig. 1, they impose different restrictions on u+ and u_; the corresponding 
admissible areas in the (u+, u_ ) plane are schematically shown on Fig. 2 for 
the forward moving jump discontinuities. (For the rest of  the paper without 
loss of  generality we assume that  D __> 0.) 

II_ 

bm 

2 
E G 

F 

f 
'E' ~ D' 

Fig. 2. Restrictions imposed by different admissibility conditions on the values of u+ 
and u_ adjacent to the jump discontinuity with D _> 0. Domains GFH and G'F'H' 
correspond to classical shock waves, ECD and E'C'D ~ to supersonic phase boundaries, 
ABCD and A'B'C'D' to subsonic phase boundaries (kinks). The generalized Lax 
criterion (2.19) is satisfied in both GFH (G'F'H ~) and ECD (E'C'D'),  while the chord 
condition (2.18) is satisfied everywhere in the domain DCFH (D'C'F'H'). 
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We now define the boundaries of  the areas indicated in Fig. 2: 
1. F H  and F 'H '  (degenerate shocks) 

u + = u_ ,  (2.20) 

2. A B  and A ' B '  (Maxwell or dissipation-free regimes) 

~ + a ( u + )  + a ( u _ )  
a du = (u+ - u _ ) ,  (2.21) 

u_ 2 

3. CD and C'D" (Chapman-Jouguet or sonic regimes) 

a ( u _  ) - a ( u +  ) = c 2(u+ ) (u_  - u+ ) , (2.22) 

4. BCF and B 'C 'F '  (stationary shocks) 

a ( u + )  = • (u_ ) .  (2.23) 

By construction, the curve A B  is described by the function u_ = b2(u+),  the 
curve CD is represented by the function u_ = b3(u+) the segment BC cor- 
responds to u_ = b l ( U + ) ,  whereas CF is its obvious continuation into the 
elliptic domain u+ > o~. For the sake of  simplicity, we assume that the state 
behind the discontinuity u_ is always in the fl-phase. In this way we restrict 
our discussion to the domain A B C F H  (recall that D _> 0 throughout the 
paper). 

The condition (2.16) forbids points (u+, u_)  outside domain A B C F H  (and 
A ' B ' C ' F ' H ' ) .  All three admissibility criteria mentioned above are satisfied for 
the discontinuities having values (u+, u_)  in the domains GFH (classical 
shock waves) and D C E  (sonic and supersonic phase boundaries). We use the 
collective term conventional shocks for solutions (u+, u_, v+, v_)  of (2.13) 
with (u+, u_)  in these domains. Discontinuities in the domain ECFG, 
representing transformations of  the states in the elliptic region u+ 6 (oe, fl), 
are not considered here. 

One can see that the points (u+, u_)  from the open domain (see domain 
ABCD on Fig. 2) 

a m ~ u+ ~ or, 

u+ ~ am, 

bl (u+)  =< u_ < b3(u+) ,  

b2(u+) =< u_ < b3(u+) , 
(2.24) 

correspond to kinks which are subsonic with respect to the state ahead. All 
kinks in the domain (2.24) are admissible according to the entropy criterion 
(2.16). The viscosity criterion allows only particular kinks, namely, those on 
the line CB (see Fig. 2). This is an example of  a selection criterion which may 
depend on the type of the regularization. The necessity of  an extra jump con- 
dition of the form f ( u + ,  u_, D) = 0 for subsonic kinks, often called a kinetic 
relation, is discussed from different perspectives in ABEYAF.ATNE & KNOWLES 
(1987, 1990, 1991a), GtrRTIN & STRUTHERS (1990) and TgUSKtYOVS~ZY (1982, 
1987, 1993a). For the rest of the paper we adopt the following admissibility 
criterion: 
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1. All  conventional shocks are admissible, (*) 
2. Admissible kinks are selected by a prescribed kinetic relation of  the form 

f ( u + ,  u_ ,  D)  = O, 

having the property that all solutions ( u + , u_ , D)  o f f ( u + ,  u_ , D)  = 0 satisfy 
the entropy criterion (2.16). 

For the subsequent analysis a specific form of the kinetic relation will not 
be important. 

3. Formulation of the problem 

Consider a kink described by a piecewise constant solution of the system 
(2.2) 

( u , v ) ( x , t )  = f ( a , O ) ,  x>=Dt ,  (3.1) 
( (b, Vb), x < Dt ,  

where the pair (u+ = a, u_ = b) is in the domain ABCD of Fig. 2. In (3.1) 
we denote by v b the particle velocity of the state behind the discontinuity, 
and we have applied Galilean invariance to put v(x ,  t) = O, x > Dt, without 
loss of  generality. The velocity D _>_ 0 of our kink is related to a and b 
by 

D ( a ,  b) = ~ /cz(b)  - o-(a) (3.2) 
b - a  

while 

Vb --  ~ / ( t T ( b )  - a ( a ) )  (b  - a )  (3.3) 

in accordance with (2.15) and the assumption that D __> 0. The particular 
choice of the state behind the kink is restricted by a kinetic relation whose 
particular form is irrelevant at the moment. 

Consider the solution (3.1) at an arbitrary instant of  time t = to as 
providing piecewise constant initial data for the system (2.2). By changing 
variables ( x , t ) ~  ( x , t - t 0 )  we can take t 0 = 0 .  Then at t = 0 ,  we have 
special initial data 

( (a, 0), X _= O, 
(u, v) (x, O) = { 

(. (b, Vb), x < O, 
(3.4) 

where a, b and vb are related through (3.2), (3.3) and the kinetic relation 
f ( a ,  b, D ( a ,  b)) = 0. The question arises as to whether the continuation (3.1) 
is unique, or whether the states (a, 0) and (b, %) may be connected by 
another system of  waves. A straightforward search through the self-similar com- 
binations of fans, shocks and kinks, compatible with the initial data (3.4), 
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suggests the  fol lowing as a cand ida te  (see a s imilar  analysis  in PENCE (1992)): 

I (a, 0), c(a) t < x < co, 

(u, v) (~) = (u(~),  v(~)) ,  c(q) t < x < c(a) t, (3.5) 

(s, vs), - D s t  < x < c(q) t, 

(b, vb), - co < x < - D s t .  

Here  ~ =x/ t ,  u(~) is impl ic i t ly  given by c ( u ) =  ~, 
u(~) 

v ( ~ ) = -  ~ c(~)d~,  
a 

and  the  pa ramete r s  s, q, D~, v~ and  vb with s >__ bl(a),  q <-c~ are re la ted by 
t 

c(q) = .,/  ~r(s) - a(q)  , (3.6) 
s - q  

q 

vs = - ~ c(u) du - x / (~ (s )  - a(q) )  (s - q) ,  (3.7) 
a 

O" 

t [ Sonic 
I phase 
[ Conventional boundary 

to ] - -  - -  - - #  Centered Riemann 

~ Kink 

U 

X 

Fig. 3. A schematic illustration of the break-up of a steadily propagating subsonic 
phase boundary (kink a-- ,  b);  a ~ q is a centered Riemann wave, b ~ s is a classical 
shock wave, and q--* s is a sonic phase boundary. 
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! 
Ds = %/ a ( s )  - a ( b )  (3.8) 

v~ = Vb + ~/ ( a ( s )  -- a ( b ) )  (s - b)  . (3.9) 

If (3.5)-(3.9) has a solution, its geometric meaning is clear from Fig. 3. 
A forward moving Riemann wave (fan) a - ,  q, where q is implicitly given 
by (3.6), travels with a local characteristic speed c ( a ) .  In the wave the 
strain smoothly grows from a to q, while the velocity changes from 0 to 
- f q c ( u )  du. The fan is followed by an attached sonic phase boundary which 
also travels to the right in Fig. 3 with the local sonic speed c ( q )  <= c ( a ) .  The 
strain jumps abruptly inside this wave from q (a-phase) to s (fl-phase). The 
velocity behind the phase boundary v s is given by (3.7). At the same time a 
classical shock wave moves to the left with the supersonic speed Ds > - c ( b ) ,  
which satisfies (3.8). The particle velocity behind the shock is provided by 
(3.9). 

The two formulae (3.7) and (3.9) must give the same expression for v s, 
which is possible if and only if the nonlinear equation 

- ~ / ( a ( b )  - a ( a ) )  (b  - a)  + ~ / ( a ( s )  - a ( b ) )  (s  - b )  

q 

= -  ~ c ( u )  du - ~/ ( a ( s )  - a ( q )  ) (s - q)  , (3.10) 
a 

where q and s are implicitly related by (3.6), has a solution. In equation (3.10) 
the pair (a, b) represents a given point in the domain of kinks A B C D  (see 
Fig. 2). In the next section we characterize the subdomain of ABCD,  where 
equation (3.10) has a unique solution s = s (a ,  b) .  

4. The main theorem 

In Section 3 the original problem was reformulated as an algebraic one. 
Here we give a complete solution of this algebraic problem. 

Suppose q ( s )  <__ a is the solution of the equation b3(q)  = s. We define for 
(a, b ) ~ A B C D  and s __> b,d---efbi(o0 two auxiliary functions 

q(s) 
P ( a ,  s) = ~ c ( u )  du + ~ / ( a ( s )  - a ( q ( s ) ) )  (s  - q ( s ) )  , (4.1) 

a 

Q ( a ,  b, s) = D ( a ,  b)  (b - a)  - D ( s ,  b)  (s - b)  . (4.2) 

Also, we define for a < a the set 

b4(a)  = {b > b m :P(a)  = Q(a, b)}, (4.3) 
where 

P ( a )  = P ( a ,  b , ) ,  (4.4) 

Q ( a ,  b)  = Q(a ,  b, b , )  (4.5) 
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are restrictions of P and Q to the line s = b. .  According to Section 3, to prove 
the existence of a nontrivial solution of our Riemann problem (3.5) it is suffi- 
cient to find, for a given pair (a, b) from ABCD, a function s(a,  b) >= b .  such 
that 

Q(a,  b, s) = P(a ,  s) . (4.6) 

Our main results will be that b4(a ) ~ 0 and that equation (4.6) has a unique 
solution s(a ,  b) for b > minI inf  ba(a), b2(a)} and a =< c~. 

We begin with a characterization of the location of the subset b = b4(a) 
inside the domain ABCD. According to (2.24), for the stress-strain relation, 
shown at Fig. 1, (a, b ) E A B C D  if 

am <- a <- c~ and b l(a)  __< b < b3(a), or if 
(4.7) 

a <= am and b2(a) _<__ b < b3(a).  

This follows from the monotonicity of b l (a) ,  b2(a) and b3(a): 

db I c2 ( a ) 
- > 0 ( 4 . 8 )  

da c 2 ( b l ( a ) )  = ' 

db2 cZ(a) - D2(b2(a ) ,  a)  
< 0, (4.9) 

da D2(b2 (a ) ,  a) - c2(b2(a) )  

db 3 0"" ( a) 
< 0, (4.10) 

da - c2(b3(a) )  - D2(b3 (a ) ,  a) 

and the inequalities (see Fig. 4) 

b3(a) > bz(a) ,  b3(a) _> bl(a  ) 

(also note that b2(am) = bl(am),  bl(C~) = b3(~)). 
Let a = a <  a m be a solution of b 2 ( a ) =  b . ( - b l ( c ~ ) ) .  The location of 

the set b = b4(a ) for a belonging to a subinterval of (a, c~) is provided by 

Lemma. There ex&ts a unique ~ ~ (a, am) such that for  all a ~ [d, oi] the equation 

P (a )  = Q(a,  b) (4.11) 

has a unique solution b = b 4 ( a  ). Moreover, i f  a~[am,  Ol], then b4(a) E 
[bl(a), b.] ;  i f  aE [g~, am] , then b4(a) ~ [b2(a), b.] and b4(d) = b z ( a ) .  

Proof. The proof is based on a careful ordering of P and (~ on the boundaries 
of the domain ~CB, where the point ~ has coordinates (a, bz(a)) (see 
Fig. 4). We first show that 

P ( a )  < Q(a,  b , )  . (4.12) 

In fact, according to the Schwarz inequality, 

c(u)  du <= ~/ (6 (e t )  - or(a)) (el - a) ; 
a 
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therefore 
/5(a) < D(~,  a) (~ - a ) .  (4.13) 

On the other hand, since b,  > o~, the comparison of the areas of the two 
enclosed rectangles on the (a, u)-plane with diagonals ( a ( a ) ,  a) - ( a ( a ) ,  c~) 
and (G(a),  a) - (G(b, ) ,  b , )  gives 

Q(a, b ,)  = %/(o-(b,) - o-(a)) (b, - a) ____ D(a ,  a) (c~ - a ) .  

Combined with (4.13), this inequality proves (4.12). One can see that (4.12) 
is in fact strict unless a = c~. Now, by definition, 

Q(a, bl(a)) = - D ( b , ,  bl(a) ) (b, - b](a)) <= 0, 

while P(a)  _ 0, whence 

P(a) >_ O_.(a, bl(a)),  (4.14) 

and the inequality is again strict unless a = c~. 
Consider further restrictions of the functions P and ~ on the line 

b = b2(a) (the line BAAA on Fig. 4). Introduce 

/~(a) = / ~ ( a ) ,  O(a) = 0 ( a ,  b2(a)) .  

s $ 

b 

$ 1 I I I ~ s I ~ .  I I 

,~L /i [ , 
/ ~  I ,  I , r h " F i ' - r - -~  12-Lji 
/ I L ~ m U /  I b ~ ~ \ ~  3 " / I  I I I 
/kJT.  I I  / / I I  I I 

o L I , ~  i / ,  ! ! i ~  / 4~ o" o~b s, 
2r l  I / I I ~ / 

i ,  I h .  I 1 ~ "~P 

/ i 1 
/ I 1 I ~ / I  I I 
/ A  bo(a) 1 I ~ / I  i I 
/ .  ! �9 I - -  I b 4 ( a ) ~  '~', ,' ,'. ,'~ b 

b / _ " C 2  I Q > P  I / ~ 
�9 F ~ , - F ' ~ i - - - - I - - . -  - 2 - 1 - -  ~ - ~ ~  <2 

/ A  i -_x'~'~.._~ II ~ ~ / ~ " f  
i .i / L  2. . . .  . , 

bml-_ ~ ..L ~s ><~ _ N ' 
I I B  
I I 
I I 

5 a m ~ . a  

Fig. 4. Schematic illustration of the proof of the lemma and the main theorem. Shown 
are the domain ABCD of kinks and the triangular domain ABC outside of which the 
nontrivial solution (3.5) exists. 
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By the same reasoning that we used to get (4.12) and (4.14), we establish that 
at the point B = (am, bin) (see Fig. 4) 

/5(a m) > Q(am), 

while at the point A = (a, b2(~7)) (on Fig. 4) 

&a) < 

We conclude that on B ~  there exists at least one point where/5 = ~, which 

we denote by a. This point is unique, since bo th /5  and d are strictly mono- 
tone. In fact, one can show that 

dP _ dP - c(a) < 0, dQ = cOO _ + cOO db2 
da da da cOa cOb da 

< 0  

for a __< c~. The last inequality can be checked by a direct calculation: 

cOO 1 c2(a) -t- D2(a, b) 
m 

cOa 2 D(a, b) 
< 0 ,  

cOOOb _ 211c2(b)+D2(a'b)D(a, b) + c2(b) + D2(a' b*) b.)  

(4.15) 

> 0 .  

We also recall from (4.9) that db2/da < O. 
The rest of the proof is immediate from the established ordering of /~  and 

0 on the three lines b = b.(.~C), b = bl(a)(BC) and b = b2(a)(B~),  the 
monotonicity of 0 as a function of b, established by (4.15), and the inequality 

! (c2(b) + D2(a, b)) - c ( b ) D ( a ,  b) 2 
db4 D(a, b) 

- ~ _ 0 .  [ ]  
c2(b) + D2(a, b,)-] - da 1 Fc2(b)-~_ D2(a, b) + 

/ 2 L D(a, b) D(a,  b.)  

Now we are in a position to formulate the main theorem. 

Theorem. Suppose that a~ [a, c~] and b~ [b4(a), b3(a)) or that a < a and 
b~ [b2(a), b3(a)). Then the nonlinear equation (4.6) has a unique solution 
s = s(a, b). 

Proof. The proof of the Theorem is based on ideas similar to those used to 
prove the I_emma. We first show that 

Q(a, b, b3(a)) =< P(a,  b3(a) ) . (4.16) 
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Since the expression ( c r ( b ) -  a ( a ) ) ( b -  a) represents an area of a rect- 
angle with a diagonal (a, rr(a)), (b, rr(b)) and since b3(a)=>b and 
rr(b3) => or(b), it is obvious that 

x / ( r r ( b 3 ( a ) ) - c r ( a ) ) ( b 3 ( a ) - a )  > = x / ( r r ( b ) - r r ( a ) ) ( b - a ) .  (4.17) 

Now, by definition, 

Q (a, b, b3 (a)) = x/(cr (b) - rr (a))  (b - a) - xf (rx (b3 (a)) - rr (b)) (b 3 (a) - b) , 

P(a, b3(a)) = ~/(cr(bB(a)) - rr(a)) (b3(a) - a)) , 

so inequality (4.17) implies (4.16). By the same reasoning, (4.16) is strict unless 
b = b3(a). 

The next step is to establish the sign of the difference Q - P along the line 
s = b. First we note that 

Q(a, b3(a), b3(a) ) = P(a, b3(a)) (4.18) 

while from the Lemma (see (4.12)) 

Q(a, b,, b.) > P(a, b.) (4.19) 

if a <  a. Next we calculate derivatives of  Q and P along the line s = b(b >_ b.) 
at given a, to obtain 

d 
db Q(a, b, b) = 

1 c2(b) + D2(a, b) 
-> 0, (4.20) 

2 D(a, b) 

d 1 c2(b) q- c2(q(b)) 
db P(a, b) = --2 c(q(b)) __> 0. (4.21) 

From (4.18), (4.19) and inequalities (4.20), (4.21) we conclude that 

Q(a, b, b) >= P(a, b) (4.22) 

and the inequality is strict except when a = e~ or b = b 3 . Now, as one can see 
from Fig. 4, the existence part of the Theorem follows immediately from 
(4.16), (4.22), and the Lemma. 

To prove uniqueness it is sufficient to establish suitable monotonicity pro- 
perties of  the functions - Q and P with respect to s. A straightforward calcula- 
tion provides the desired result: 

OQ(a, b, s) 1 c2(s) + D2(s, b) 
- N O ,  

Os 2 D(s, b) 

OP(a, s) 1 c2(s) + c2(q(s)) 
- > 0  

Os 2 c(q(s).) 

for (a, b)~AACD and s~{max[b2(a), b. ,  b3(a) } (see Fig. 4). These inequa- 
lities, together with the information on the relative values of P and Q on the 
boundary of the admissible region (see Fig. 4), ensure the existence of  a unique 
s = s(a, b) which satisfies (4.6) everywhere except in the triangular domain 
~BC. [] 
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Remark. R. JAMES pointed out to me that the inequality (4.22) has a purely 
geometrical nature. In fact, by the Schwarz inequality (see the proof of the 
Lemma) 

P(a, s) - Q(a, b, s) <= D(a ,  q(s)) (q(s) - a) + D(s ,  q(s)) (s - q(s)) 

- D ( a ,  b)  (b - a)  + D ( s ,  b)  (s - b ) .  

In particular, 

P(a, b) - Q(a, b, b) <_ D(a,  qlb))  (q(b)  - a) + D(s ,  q(b)) (b - q(b)) 

- D ( a ,  b)  (b - a ) .  

But X/~av + ~ _-< x/(/~ + v ) ( r / +  ~) and therefore 

D(a,  q(b)) (q(b) - a) + D( q ( b ) ,  b) (b - q(b)) - D(a, b)(b  - a) <__ O, 

which proves (4.22). 

5. Entropy-rate criterion 

It seems appropriate to attempt to single out physically admissible solutions 
by employing the entropy-rate admissibility criterion, suggested by DAFEI~MOS 
(1973). DAFERMOS' criterion states that the rate of entropy growth, which is 
equivalent in our isothermal setting to the rate of release of mechanical energy, 
is not smaller for the admissible solution than for any other solution of the 
same initial-value problem. This criterion has been successfully used to narrow 
the class of solutions in both hyperbolic and mixed-type problems (cf. HATTORI 
(1986), PENCE (1992), ABEYARATNE r162 KNOWLES (1992)). 

The energy dissipation in isothermal, conservative elastodynamics takes 
place at jump discontinuities. For the Riemann problem the formula for 
the rate of decay of the total mechanical energy was given by DAFEnMOS 
(1973): 

R = ~ D(u_ ,  u+)A(u_ ,  u+),  (5.1) 
i 

where 
u+ r + 17(U_) 

A ( u _ , u + )  = j a(u)  d u -  ( u + - u _ ) ,  (5.2) 
u_ 2 

and summation is carried out over all discontinuities. 
Let us apply this criterion to our initial-value problem (3.4). For the trivial 

solution (3.1), 

Rt(a ,b)  = D ( a , b )  [ f a ( u )  du a(a)  + a(b)  (a - b)] 
2 J 
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while for the split solution (3.5), 

R~(a,b)=D(s,q)  [ ~ a d u  a(s) + a(q) (q _ s)] 
2 J 

- D ( s , b )  [ ~ a d u  a(s)+a(b)2 ( s - b ) ]  

where q = q(s) is a solution of (3.6), and s(a, b) is a solution of (3.10), de- 
fined for (a, b) EAACD. It follows from the definition that both solutions are 
identical at b = b3(a), so that 

R,(a, b3(a)) = Rs(a , b3(a)) .  (5.3) 

Direct calculation of Rt(a, b) and Rs(a, b) for the cubic a(u)  (equation 
(2.8)) shows that for sufficiently fast phase boundaries (b __< b3(a)), the rate 
of entropy production is larger for the split solution than for the single-wave 
solution, while slow enough kinks dissipate energy faster than the alternative 
multiwave solution. 

Hence in this case there exists b - - b s ( a )  such that 

Rt(a, b) >_ Rs(a, b) if max{b2(a), b4(a)} < b < bs(a) ,  

Rt(a, b) <= R~(a, b) if b5(a) < b < b3(a).  

The graph of b = bs(a) calculated for the cubic a(u) as in (2.8) with 

am = O, bm = 1, k = 1, am = 0 (5.4) 

is shown on Fig. 5. 

b 1.200 D 

1.1'75 " " " ~'~F-b3(a) 

1.150 

1.125 

 ,oo \ 
1.075 C 

1.050 

1.025, 

020 a 

b2(a) 

Fig. 5. The domain of existence and the Dafermos limit for the "split" solution ob- 
tained numerically for the material with the cubic stress-strain relation (2.8) with 
parameters (5.4). 
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According to Dafermos'  criterion for b => bs(a) the trivial solution (3.1) 
cannot be admissible. We note that this is an interesting case for the nontrivial 
solution when the existence boundary b = ba(a ) and the admissibility bound- 
ary b = bs(a) do not coincide. 

6. Viscosity-capillarity model 

The above mode of  instability is not operating if we consider as admissible 
only those kinks and conventional shocks that are selected by the viscosity- 
capillarity criterion (TRuSKINOVSKY (1982), SLEMROD (1983), SHEARER (1983), 
ABEYARATI~E & KNOWL~S (1991b)). This criterion is based on the availability 
of  a continuous description for the kink as a travelling-wave solution of  the 
regularized system of equations. 

In the viscosity-capillarity model, the constitutive equation for stress (2.17) 
is augmented by the introduction of  a strain-gradient term: 

a = a ( u )  + tlVx - 2euxx (6.1) 

where e > 0 is a parameter of  the conservative part of  the constitutive model; 
this brings an internal scale of  length into the theory. To derive the 
corresponding restrictions on u+ and u_, we substitute the ansatz u(ff), v(~), 
where ~ = x - D t ,  into (2.2), (6.1) and integrate once to get a boundary-value 
problem for a second-order ordinary differential equation: 

a(U) -- D2U -- rIDti - 2ea = a (u+ ) - D2u+ , (6.2) 

u(4-oo) = u•  ~(4-oo) = 0, (6.3) 

where the superposed dot denotes the ~ derivative. One can show (see 
TRUSI(INOVSKY (1993a, 1993b)) that if the pair (u+, u_)  is in the domain of 
kinks ABCD, the boundary-value problem (6.2), (6.3) has no solution unless u+ 
and u_ satisfy a certain relation of  the type f ( u + ,  u_, D) = 0 supplementary 
to the ordinary Rankine-Hugoniot conditions. This is a particular kinetic rela- 
tion. If  the boundary values u+ and u_ are anywhere inside the domain of 
classical shocks GFH, the solution of (6.2) exists unconditionally. If, however, 
the pair (u+, u_ ) is in the domain of the supersonic and sonic phase boun- 
daries DCE, the corresponding discontinuity may or may not be admissible by 
the viscosity-capillarity criterion, depending on the value of the nondimen- 

sional ratio W = r//x~-e. 
For example, consider the special case when a ( u )  is a cubic polynomial 

as given by the expression (2.8). Thus if (u+, u_)  is in ABCD (kink), then 
the boundary-value problem (6.2), (6.3) has a solution if and only if u+ 
and u_ are related by the following kinetic relation (TgusKi~OVSKY (1987, 
1993b)): 

( I ~ ) ( u L I - u - b m - t - a ~ m ) 2  (ll~mm--U~+~ 2 3 1 . . . .  + = I .  (6.4) 
am bm am ] 
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For the sonic or supersonic shock (u+ = a, u_ = b) in the domain D C E  one 
can show that the boundary-value problem (6.2), (6.3) has a solution if and 
only if b __> 4~(a). The function 4~(a) is defined by the condition that the pair 
(U+, U_)  = ( 1 . 5 ( a  m + bm) - 4 ( a )  - a, (~(a)) satisfies (6.4). This follows 
from the fact that if (u+, u _ ) ( D C E ,  then for the dynamical system (6.2) 
(with a ( u )  from (2.8)) the unstable manifold of  the saddle at (u, u) = (u_, 0) 
either is attracted by the stable node (focus) at (u ,u )  = ( u + , 0 ) ,  
which happens when the shock is admissible by the viscosity-capillarity 
criterion, or goes to infinity, which happens when the shock is not admissible; 
the borderline case when there exist a heteroclinic trajectory connecting the 
saddle at (u, t~) = (u_, 0) with another saddle at (u, ti) = ( l . 5 ( a  m + bm) - 
u_ - u+, 0) is provided by the condition (6.4) above (see also 
SI-IEA~tER & YANG (1992)). The domain of  admissible discontinuities is shown 
in Fig. 6 for W =  4. 

b 1.5 

1.4 

1.3 

1.2 

1.1 

1.0 

�9 

0 0.05 0.10 0.15 0.20 a 
I 

Nonadmissible shocks 

Fig. 6. Jump discontinuities admissible by the viscosity-capillarity criterion for the 
cubic a(u)  from (2.8) with parameters (5.4) and W = 4. Points B, C, D, E have the 
same meaning as in Figs. 2, 4. The kinetic curve BR is obtained from (6.4). The curve 
RQ is a solution of b = q~(a). 

As we see, in contrast to the purely viscous case ( W =  oo), the general 
viscosity-capillarity criterion imposes restrictions on some of the conventional 
shocks. Therefore the supersonic waves admissible by our criterion (*) are not 
necessarily admissible by the viscosity-capillarity criterion. Moreover, one can 
show that the sonic phase boundaries which are not admissible by the viscosi- 
ty-capillarity criterion are those required for the split solution to exist. This 
also follows from the uniqueness theorems for the Riemann problem of FAN & 
S~EMROD (1990, SI-IEARER & YANG (1992). That the class of  conventional 
shocks admissible by the viscosity-capillarity criterion is much narrower than 
the class of shocks admissible by the generalized Lax criterion may be viewed 
as an indication of  an inadequacy of  the regularization scheme (6.1). 
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7. Discussion 

In the previous sections we saw that two weak solutions of a system of 
nonlinear conservation laws (2.2) could have the same initial data if the ad- 
missibility criterion (*) from Section 2 is adopted. Since the initial configura- 
tion ought to determine the state of  deformation in the future, only one of 
these solutions should occur in nature and the other ought to be excluded on 
the basis of  some additional physical principle, which is not contained in our 
simplified equations. The clarification of  the cause of  the nonuniqueness is 
also important for computations since numerical algorithms are usually deter- 
ministic and always lead to a definite result. 

In order to pick out the physically meaningful solution, it is important to 
decide in what sense the established nonuniqueness corresponds to instability. 
For example, one can view the "nonuniqueness"  as implying that the initial 
data in fact differ for the two solutions. The only place where these data can 
deviate is at point x = 0. 

to+At 

ds 

S 

X 

S 

c,0: 

c(a) 
el 

Fig. 7. Schematic illustration of the finite perturbation (7.1), which is responsible for 
the instability. 
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To fix the ideas, consider an alternative solution (3.5) at t = At: 

I (a, 0), c(a) At < x < co, 

(u(~),  v ( ( ) ) ,  c(q) At < x < c(a) At, 

(u, v) (x, t) = (s, v~), -D~&t < x < c(q) At, 

(b, vb), -- c~ < x < --D~ At, 

(7.1) 

where all notations are as in (3.5). One can view (7.1) as a new set of  initial 
data at t = 0 and consider it as a perturbation of  (3.4) localized at the segment 
[ -DsAt ,  c(a)&t] (see Fig. 7). In the limit At ~ 0, the support  of  the pertur- 
bation (7.I) (parametrized by &t) tends to the point t = 0, which prove s the 
local instability of  the trivial solution, at least in L 1. The perturbation (7.0,  
however, does not converge pointwise to zero as At ~ 0. Of  course, the usual 
definition of weak solution for hyperbolic conservation laws does not make 
the distinction we are trying to clarify, so we are really advocating a different 
approach that  accounts directly for nucleation events (cf. A~EYARATNE & 
KNOWLES (1991 a)). In the regularized theory the existence of an internal scale 
of  length (or time) does not allow the limit At ~ 0, and the critical nucleus 
analogous to (7.1) cannot be considered a " sma l l "  perturbation, even in L 1. 
In this sense the single-wave solutions is metastable rather than unstable. 
Physically, the system requires an adequate perturbation (nucleation event) to 
overcome the energy barrier, which depends on this internal scale. One can 
speculate that  the availability of  this perturbation is related to the presence 
of highly localized constitutive or geometrical imperfections. 
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