¢} Inthe relativistic case é does not coincide either Uhlenbeck). Vol 1, Wiley New York ¢1961) pp 5-515
witl* the Otto—Arzeliés temperature or with the Planck— NN Bogolyubov Selected Works on Statistical Physics [in Russian)
Einstcin temperature. For 8 the law of transfor mation Moscaw (1979

:
"4 Cha ind I G Cowli A i , .
from one frame of reference to the other has the form 5 6 pmarn 1n . ow mgi The 1'athc17413[1ca} Theory of Nop-
) Lniform Gases 2nd ed Cambndgg Uni\emry Press 11932)

G=8,M1+p" 2 - pt =0 (pr=0) ‘1 » Pavlowskil ' Weakiy relativistic kinetic equations for neura
) . cartjcles, Preprint Noo 185 Instituce of Applied Mathematies Acadcmy i
The temiperature is not needed, generally speaking, {or “of Sciences of the USSR, Moscow (1975} L
the construction of relativistic hydrodynamics. M Arzelids. Thermodynamique Relativiste &t Quintique Gauthier. !

\illars Paris (1868)

g

In conclusion, it is my pleasant duty to thank A. V.
Bobylev for a useful discussion.

'N. N, Bogolyubov Problems of a dynamicai theory in statistical physics ’ ’
in: Stadies in $tatistical Mecharics (ed by I H. de Boer and G E T'ranslated by Edward U. Oldham ¥
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The classical theory of heterophase equilibria as- 1. General methods for constructing models of con-
sumes the infroduction of the idea of a mathematical sur- tinuous media with higher derivatives were developed
face separating the phases, at which the density of the sub-  in Refs 3 and 8-11. We introduce the following notation:
stance has a finite discontinuity. An energy proportionai x!, 1 =1, 2,3 are the coordinates of the observer, and

to the area is ascribed to the interphase surface, and the t2,a =1, 2, 3 are the Lagrangian coordinates; the law
location of the surface is considered as an independent of motion {deformation) of the medium is x = xi{g @},
degree of freedom.! The problem of a continuous descrip- The demsily p is expressed in terms of the determinant
tion of the interphase layer was considered by van der A = det{axl/ 3£ 4) by the formula p =pA~1, where 5(:%)
Waalg,? who first used the model of a substance with a is a specified function of the Lagrangian coordinates.
weakly nonlocal equation of statei): Let the free—energy density F be a known function of P

Ve ,and T. The equilibrium conditions follow from the

pF(p Vo T) = pF(e T) + elp THVoY[2 W ationl equation:
where Flo, Vp, T) is the specific free energy, o is the 5[ pFdv+86W=0 T=T, ()
density, T is the temperature, (Vp)? =V'p Vjp, Vj is the oo . ) o
operator of covariant differentiation in the metric gjj of The \tamatlons'dxl(ga) of the law of motion with fixed Lag-
the observer, Flp, I} is the specific free energy of the rangian coordinates are taken as independent.
homogeneous substance,’ and (o, T) is a positive func- The standard variational procedure’ leads to the equi-
tion, monotonic in p. We shall assume that the quantity librium equations ViFji =0 and to the following expression

A = (ep/ F)V/?, having the dimensions of length, is much for the functional 5W:
smaller than the characteristic size of the region cccupied

by the medium. If the function F is convex in p, the pres- fw = [ (P Vet - PnaxN)do {#
ence of the second term in (1) has practically no effect ad
bepause of the smallness of A. To model liquids ex- where nl are the components of the normal vector to the
. G .
periencing first-order phase transitions, van der Waais surface 3V, and P* and Py are given by the following
proposed the use of functions F that are nonconvex in p, equations of state:
.€., for the van der Waals gas® aF ) ‘ . y aF

e.g O gas P,=p: P,'*::‘ﬁ'a;-*'ﬂf' m =_p5...€.-.- pr

F(p T} = f(T}-ap - RTIn(l/p - b), (2 3V i N

~ aF aF

where @, b, and R are constants. The van der Waals 2= pt aF ‘g T,p+ Pt v’(T)
theory has recently been justified in the statistical theory o Vs 3Vip
of inhomogeneous liquids® and has been used to describe N )
both plane®®€ and curved®? interphase boundaries. How- I o obtain the boundary conditions we shall specify the
ever, these works lacked general equilibrium equations functional 6W when V is the entire region occupied by the
for media with energy given by (1); in particulaz, the ex- medium:
pression for the stress tensor in the interphase zone was e o= (b, kS S+ Rbx'Wlo = [ Poidn,do. (3)
not obtained. 3 dn - v
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where Py is the {ixed pressure at the boundary of the re-
gion Let the surface 8V be specified by the equations
A =il u"}):_ AR :_gijrlArlB is the metric induced an
the surface, I3 = 311 /3uf, A, B =1, 2. We define the
wnsor uj by the formulas uf‘&AB =Tig A CcOmparison
of (4) and (5} leads to the foliowing boundary condition

{o1 the equilibrium equations:

Pruy =0 Pty - VaPrmeud) s —Pan; (8)

We note that a stress tensor depending on the density

gradients was evidently first considered by Kortewegl?
(see also Ref. 13).

3. Although the stress tensor is not spherical in the
generzl case, its structure is special. In view of this we
have:

Assertion 1. The equilibrium equations vin'i: 0
have the general integral

ar ; ar v o ( BF ) 3} @
RS = pV; \—— ) = po = cons

P ap 3 V, o iF I 3 V,- o 0

Remark. An analegous assertion is also true fox

the case when the free—energy density depends on higher
derivatives of the densify. Tet A = pF(g Vip 9T, .. T)
then

3A " A v ( 3A )
4 =(A ﬂ‘ﬁ:) ‘e {av'p P av ,Vio

A
R (_ﬁ_a_ﬁ_._.> - 1 ve - [ aA _VP(W )
PR,V Ve IV Vip 3V, V¥ V.p
dh
. V% p - | 0———— ~ .]GDV,V,—;)—
£ AV, V9,0

and the equality V7" = -pV;(6Af8p) = 0. is valid, where
6/6p is the variational derivative. For specific flows
of the medium under consideration one can easily obtain
generalizations of the Bernoulli and Cauchy —Lagrange
integrals with the pressure function replaced by A/ 0p .

3. We now consider spherically symmetric equilibri-
um configurations. We take the simplest expression (1}
&3 F. The equilibrium equation in spherical coordinates
has the form

&P d { JBF 1, Biep) dp)’
A B L gL
Rk (% 27w \ar
(d‘p 2 dp)] 2e ci,o)2 (8}
- pE = — = ——{—}
dR* R dR R \dR

To describe nuclei (localized density inhomogeneities)

with a characteristic size much less than |V{1/? it is
natural to go over to the problem in an infinite region.
According to (6), one should seek the solutions in the class
of sufficiently smooth functions such that {Vp ] — 0 as
R— =. The pressure at infinity is fixed by the second
boundary condition: p*(2£/3p)l,, = Po = A=) patPe. To) =
plo}. Integrating (8), we obtain the relation Fo) - P(=) =

1{ «(dp/dRY dR/R , which goes over into the classical
[}

formula of Laplace! if the density gradient is localized in
the viclnity of a certain R =R*.
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Let us write out the integral (7):

(a‘“‘p 2 a’p)
el—7 +— —
dR? R d
As R — w0, we obtain p7(3F/dp) — Po p(3Ff3p) + F = 1o, and
therefore py(Pg, Ty has the meaning of the chemieal poten-

tial. Thus the problem reduces to infegration of (9); the
stresses are then recovered from the known function p(R):

Prr = —P - e(dp/dRY  Pgy = Py, = -F

For nonconvex functions F(p, Ty of the type under
consideration {e.g., the van der Waals functian (2) at tem-
peratures below the critical temperature] there exist
spinodal poinis Py and P, defined by the conditions (Fig.1):
BESUP L, o, = P12 TFR(I0Yp, e, = 0. A qualitative
investigation of the hehavior of the integral curves of Eq.
{9) permits us to prove the following assertion:

3 dp\? F]
b L2 (——") = == pF-udl (9
2 dp dR ap

Assertion 2. For Py < Py, < P, there
exists a unique inhomogeneocus "soliton™
solution of Egq. (9},

1ot us give brief explanations. We set & = £4(Ty
for simplicity. We define the equilibrium pressure Pg (T,
for the given temperature T; using Maxwell's rule:
aF ) BF
gt — = Po(Ty) (p—+F)
ap ot ap
The case when the denser phase i3 located at the center

corresponds to the interval Py =< Py = P,. The dashed
lines in Fig 2 show the infegral curves of the equation

= w5 To)

el 0]

¥
dP/dR =0, where P= -;—1- (%) — p{F — jtg), With Py lying

within the interval indicated above. A bifurcation {a co-

Hp
3 i

FIG. 1

4

FiG 2
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aleacence of a center and a saddle poiut} occurs at Py =
p,, while at Py = P{ a separatrix joining both saddle
points arises. Equation (9) can be rewritten in the form

@ (s
dR

21
, S0 —
4R R ) that P decreases as R —e and the

integral curve of Eq. (9) will inferseet the lines P =const.
We- shall indicate some properties of the critical nuclei.
I at point pg the function g =—p{F — p, +Py/p) has a

3tF
o)

large R we obtain p ~ (I/R)exp(—aR/v/€,) With increasing
degeneracy (e — 0, corresponding to approach to the crit-
ical point or to the spinodai, i.e., the boundary of meta-
stability) the density gradients decrease and the nucleus
ceases to be a concentrated formation. For values of P,
near Py the density gradients are localized in the vicinity
of R = R*, the latter quantity being determined from the
classical formulas of Gibbs.! As Py —- P¢ the density at
the center (R = 0) tends to its maximum value, while the
effective "radius? of the nucleus tends to infinity so that
the phase boundary approaches a plane.

2 H

maximum g ~ _ (p - pe) a'zo

,thenfor

ta ,“M

These conclusions are confirmed by the results of
numerical integration of Eq. (9) for a function F(g, I} of
special form.?

Let us present an approximate solution, asymptotical—
ly exact in the limit P~ P3 (P;— P,):

R@) =V T =
S N de
b VIRTF hoyere) . {10)

where p(0) is the root (differing from py) of the equation
p(Flp, TY — py(Pg. Tp) + Py = 0. For near-equilibrium
configur ations an explicit expression can be obtained for
R*, Let R* correspcond to the maximum of dp/dR. Then
R* = R(p%, where p* is determined from the equation
p(3F[3p) *+ F = ua. po<p" So(0) The width of the inter-
phase zone i5 specified in the standard manner:

_fa = 0)

T defdR),

- 2{0) = pa
" VI (Fatet To) - Ho)*Fol

The construction of the approximate solution from a spe-
cified function F(p, T) and fixed Py, Ty, and £4(T) thus
reduces to finding the roots of nonlinear equations and
calculating integrals. The values obtained for the maxi-
mum density p{0) give a lower bound for the correspond-
ing quantity.

4. In the investigation of the problem in an infinite
region the variational formulation (3) requires regulariza-
tion, since the integrals in (3} diverge. It is not difficult
to verify that the corresponding variational problem in R?
has the form 61 =0,1= [ Gdv & = p(F - u) + Po. Equa-

b
tion (9) is then written more compactly: 6G/6p =0. In
considering the funetional I, we go over from specifica-
tion of the tatal mass to specification of the chemical
potential at infinity. For homogeneous states the problem
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reduces to seeking the extrema of the Gibbs function
GIV, Ty Py =F(V, Ly +PgV.

We shall consider the problem of the stability of the
solutions under study. Configurations corresponding to
the minimum of the functional I will be called stable. In
this case it is easily proven that the density distributiong
obtained are unstable. Fhis fact is known in field theory
as the Derrick—Hobart theorem.™ Tor the proof it is
sufficient Lo consider the single-parameter family of per-
turbations concentrated in the vicinity of large gradients
of the density p(R) =p R/ a), where p(R) is the soluticn
being investigated for stabilify and @ is a parameter.

The instabilify of critical nuclei has also been g8-
tablished in the classical theory of nucleation.! Dis-
cussions in terms of the radius of the nucleus (a collec-
tive coordinate} do not have precise meaning in the vicin-
ity of the spinodal points, and if is natural to consider the
energy scale of the critical fluctuations: [ Wyl =
T (16F] - uolohds where || - [ denotes the difference of
e

the values for the homogeneous solution and the inhomo-
geneous solution that coincides with it at infinity, The
calculation of § W, || is the fundamental problem in the
determination of the nucleaticn rate. Using the approxi-
mate solution {10}, we obtain the estimate

% po[Filpo, To) — e} — 20[F(e. To) — to] — Po
fwWeob = 47edl? p{u) o[ £(p \/-_}_}[p(}:_‘#u) E ;01 |
» dp' :
n{u) 2o(F - o) + Fol
In an investigation of the problem of a small nucleus

in a finite volume the solutions obfained zhove can be
used as the inner agsymptotic form.

The author thanks Academician L. L Sedov, V. L.
RBerdichevskii, A. N. Golubyatnikov, and V. A. Zhelnoro-
vich for useful discussion of the work and for remarks
which are taken into account in the writing of this note.

dp.

Yan expression differing from (1) by a2 divergence term was considered
in Ref 2.
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