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\long with adiabatic chemical and phase transitions, 
'lich J.re nonequilib:rium and are accompanied by ent1 opy 

; : nduction at the front, it is approp1iate to analyze iso-· 
:..::•. r:nal equilibrium phase ttansitions. By this we under-· 
~:.U1d the generalization to the dynamic case of the static 
; :·i;~l!cm, analyzed by Gibbs, 1 of the eq_uilibtium of con- ... 
·.~.ioo.s phases. Such pt'oblems arise, fat· example, in the 
k-5cription of processes of .slow crystallization in a cool-· 
~:-lf; medium 

In the present note we obtain the complete set of con­
hticns at a moving fiont of an equilibrium phase transi.­
~cn in a heat-conducting, nonlinearly elastic medium .. ro 
:."i.e u::.:ual conditions of continuity of the fluxes of mass, 
":Jomcntum, and ene:rgyl 1-ve add a relation which is a 
.:rneraliz.ation of the well kno\lffi condition of continuity 
(f. the chemical potential and serves for determining the 
:·docitrof the fr·ont. The stxucture of the discontinuity 
ts constructed on the basis of the nonlocal equation of 
~t.W! .. 

L Let the phases be charactezized by different forms 
o( dependence of the intemal-energy function on its ar-· 
rum<!nts (the deformation tensoz and entropy) .. Usually 
Che phase transition is localized in a narrO\..,. region of 
.sµa.cc and can be modeled by the surface of a discon-· 
ti.:luit) of the charactezistics of the medium .. The foliov.t­
~ universal conditions:?. are valid at the discontinuity: 

[p(D - t>n)u' + P~n" J~"' 0: (1) 

(2) 

(3) 

Here p is the density. D is the velocity of the discontinuity, 
,.tare the components of the velocity vector of the medium, 
~ = vivi• Vn = viui, ni are the components of the unit out-· 

~ •.ard. (with respect to one of the phases) not mal to the 
,}: diacontinuity surface, Pk are the components of the de-· 
!if: fonnatton tensor, U ands are the specific intexnal en-

. ,,,_ ~- a.nd entropy, respectively, qi = - K Vi r are the com­
~ .-6 ~nt.s of the heat ,-flux vector> K is the coefficient of 
, '.;.:thermal conctuctivify, r is the temperature, and R is the 

., "'tropy Production at the discontinuity .. The symbol [fl:'.: 
... 4eootes the difference bet\veen the values of f on each side 
. Cl( the discontinuity surface 

For- an equilibrium phase tr an.sition we formulate a 

model which reduces to the asswnptions 

[7 J'. = 0 

R = 0 

The necessity of analyzing additional conditions at the 
discontinuity is connected with the fact that: 

(4) 

(5) 

a} I'he energy equation contains second derivatiyes 
of the temperature; 

b) to solve the problem one must find the lavJ of mo­
tioo of the phase interface (a problem with a free bound­
ary) 

Eliminating the quantity [qin;l! from (2) and (3), we 
obtain 

(6) 

We tr·ansform this condition using the Hadamard consi.st­
ency relation. Let xiW" , t) be the !aw of motion of the 
medium, where ~o: are the Lagrangian coo1·dinates, t is 
the time, and i = 1, 2, 3> a = l, 2, 3 Continuity of the 
functions xi at the discontinuity" gives 

where 

x~ ~ Jx' /a('", 
axi 

.J = -ot 

Then for a nonzer'O mass flux through the ph.ase boundary 
we obtain fr·om (6) the relation genezaliz.ing the condition 
of continuity of the chemical potential: 

(7) 

It is obvious that only one of the three conditions (7) is 
independent In the case of static equilibxiurn we arrive 
at the condition 

which \Vas obtained in ReL. 3 by the Gibbs method by vary-· 
ing the position of the phase boundary in the Lagrangian 
coordinates (also see Refs 4 and 5) . 

The conditions (1), (2), (4}. and (6) com.prise a com­
plete set of relations at the phase boundary The Stefan 
conditions6 for an incomi: res.sible medium are obtained 
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:~ .. Let us consider the problem of the structure of m 
equilibrium phase boundary .. The question of the method of 
describing the medium within the front is flUldamental .. 
First let us discuss the isothermicity condition {4). 

If fOr the external problem we adopt the simplest heat­
transfer model, which reduces to the use of the Fourier 
law, the natural boundary condition at the front for· the ex-· 
ternal problem \Vil! be the assignment of the temperature 
and (independently) the heat flux. It is obvious that if the 
description of the heat-transfer· process in the internal 
problem is also based on the use of the Fourier law, con-· 
s istent data will be obtained at the exte mal boondary .. In 
particular, boundary conditions of the type 

T = T, 

cannot be obtained in this way, since the conditions 

dT I 
dx ...... -·-;:q~ 1'-+ It x - ±oa as 

are incompatible if q-1-;:it O .. Therefore, in the analysis of 
the structure we shall take the quantity q as an indepen­
dent var'iable, setting T = const, with.out singling out the 
dependences of the heat-flux vector on the other charac­
teristics of the med.iwn and their derivatives of different 
orders. Here it is implied that \Ve take the limit K - oo, 
ctr/ dx-· o, since the heat flux q remains finite .. 

Let us consider the dimensionless quantity K = p0Va 
U0L0 K-·1TQ1, where Pn' Vn, U0, and r 0 are the character­
istic density, velocity, specific internal energy, and tem­
perature, respectively, in the interphase layer, and Ln is 
the \Vici.th of the layer; the quantity K characterizes the 
ratio of the convec_tive to the conductive heat flux .. In vie\v 
of the smallness of the parameters V 0 and L0 \Ve can take 
K << !, and this results in a model with lfin£in.ite thermal 
conductivity .. " We note that the adopted isothermal m<Xlel 
agrees \Vith the fundamental assumption (5) of equilibrium, 

As is knmvn,2 the dissipation connected \Vith heat trans­
fer is written in the form (internal problem) 

• d (I ) Rr = J q - - d.> 
_,., d.x T 

Therefore, the condition r = const results in RT = 0 even 
for a nonzero heat flux q. 

3. A.ccording to the general approach developed by 
L .. L Sedov's school, the model of the medium is as­
signed if the dependence of the internal- (free-) energy 
function on its arguments is kno\vn, the nonholomic part 
is isolated in the variational equation,2 and the conditions 
at the discontinuities are assigned.. ro describe the struc-· 
ture of an equilibrium phase transition in a fluid we use a 
model medium in which derivatives of the density are in-· 
troduced into the expression for the free energy.1-9 One 
can show that the simplest expression has the foxm8•9 

F(p '1 p T) = f(p, 1) + E(P 1) ( '1 p)' (8) 

where i is some positive function which is monotonic in 
p , md f is positive and nonconvex in p . For a van der 
\Vaals fluid, for example, 
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\V ithout d\velli:ng on the basis for the expression (8}. we 
note that it describes the natural nonlocal na.tur'8 (diS­
played at small distances) of the equation of state. 

Using the standard variational procedure,2 we ob~­
tain the equations for the isothermal, plane, stationary 
flow of a viscous fluid: 

where 

a/ 
p =pl -

ap 
d'p 

' ' - .. ep dx.1 , 

u is the velocity, andµ is the coefficient of viscosity .. 

!'he energy equation has the form 

~ [ pu ( lj + ; T ~
2

·) - µu :: + q] = 0, 

1101 

(!U 

where U = F - T(a FI a r) is the internal energy and q is 
the heat flux .. Integrating Eq .. (10), we obtain 

• aw 
p· -ap 

where 

_ P1 ~ (dP\ "l _ 

ap dx I 
dp 

=Po 
dx 

ml 
w=t--

2p2 
m0 = pu = const, Po = con"SI 

(12) 

For µ = O the system is conservative and Eq. (12) is 
integrated in quadratures.. The solution of interest to us, 
in the form of a ttstep," exists for a special choice of the 
integration constants. For functions f(p, r) of the type {9) 
under consideration one can sho\v that for ) m0 ! < MQ there 
exist Pa= P; and p 1 andp 2 for which 

r) I r I ( " +-' = (" + ~) 
p P1 p P1 

a p;)I - (w +- = o 
Op p P, p, 

\Ve now obtain the solution of the problem of the struc~ 
ture of the discontinuity by fixing the constantµ~ =(cf; + 
Pt/ p) IP in the energy integral.. The physical meaning of 
the quanhties Pt andµ~ becomes obvious if we note that 
as X--<·±oo 

PTpu2 -+P~ 
p 

f +­
p 

u' 
+-

2 

I'b.us, the follo\ving conditions at the discontinuity are ob­
tained for µ = 0: 

[p(D - u.)J'.. = 0 [P + p(D - u.)' I'. = O 

[ 
p (D-u.)']·-o I+ - T -
p 2 -

(13) 

Ihe last of these relations signifies the continuity of the 
generalized chemical potential at the front; it is equiv­
alent to the condition R = O. 
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Tue introduction of dissipation (µ ~ 0) destroys the 
;. :nmctr~/ o[ the phases and results in irreversibility of 
~,, uansition \Ve re,vritc Eq .. (12), using the new fWlc-

:·~ \(p) = dp/ d.'" 

; ( Po) µm 0 
:fl+~+-,-y 

'P p p 

a€ 
1 

dy 
--y-2fy-

3p dp 
= 0 (14) 

.... c:111 sho\V that for each value of P 0 from the interval 
:• p 11) there exist p 1 and p 2 such that 

•r the first-order equation (14) \Ve set up the boundary 
Jnditions y(p 1) = O and y(p2) = O; this permits a unique 

.;...wrn1in:ition of the value of the parameter P 0 = P; for 

.hich a solution exists,, In this case, if p {-cxi} = p 2• 

P, 
-p. 

(15) 

.. (du ) ' f -· dx 
mo ""'"' dx 

µ RT 

m, 

b the given case the condition R = O is not satisfied and 
:t must be replaced by the condition R = Ro > 0, \Vhere ~ 
~ cllculated from the solution of the problem of the .struc­
::.:re [see (15)]. We note, ho\vever, that for lm0 1 -o(.,/?), 
;i.here f: max. £(P), we have R0 "" o(l) and viscous dis-

(P,. P,) 

!ipation can be neglected.. Therefore, in the presence of 
1iscosity the condition R = O is approximate and is ap­
plicable for the description of slO\Vly moving boundaries,, 

Let us explain the method of obtaining the solu­
Uoo The function g = <j; + P 0/ p with P 0 E (P 02 • P 01) has 
the form shown in Fig., l,. The equilibrium positions A and 
C correspond to saddles on the phase plane (p, dp / dx) 
11hl\e the points Band D correspond to centers (µ = O) 
or foci {µ :;;:! O).. Through the choice of the parameter P 0 
ooc can make sur·e that a separatrix connecting the two 
Uddlcs exists. This requirns that g(A) = g(C) ifµ = O 
"1d m;[g(A) - g(C)] > o ifµ " o. We note that in the con­
ICIYative case with p 02 < p 0 < Prj and with P 0* < P 0 < P 01 
there will exist soliton solutions corresponding to self­
closurc of the separatrix of one of the saddles, which for 
~ = O can be interpreted as a description of the nuclei of 
1 ocw phase developing in the metastable region .. With 
P, = P01 and with p 0 = p 02 , however, bifurcation occurs 
1coo..lcsccnce of the saddle and the focus B) and the non-· 
lrivial solutions drop out. Physically this means that 
cniJ one phase can exist for the given values of the pa-, 
~ters A similar bifurcation occurs with an increase 
~the parametet m0, and this allows one to speak only of 

3 !()'.l;\y• moving fronts (I m0! < M~ .. The exact values of 
the PJ.ra.meters can easily be found in the case of a van 
~r \\a.'.J..ls fluid (9) We point out that one cannot continu­
OJ.s!)' be at the point D, although discontinuous transitions 
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'DY 
0 ''" ,,,, 'if 

:'IG l. Chiracrerisric form of the 

function g_ = f Pn/P - m~; Zp 2 with 

I rnijl · \1ij and p• > P0 > P~2 

of the type C -· D, cor"Iesponding to the solution of the 
problem of an isothermal discontinuity in a gas, are pos­
sible. 

5 .. As g -· 0 the continuous solutions obtained con­
verge uniformly to a discontinuous solution .. The condi­
tion of isotherinicity makes it possible to separate the 
thermal and purely mechanical problems Thus, Eq. (11) 
allo\Vs one to find the function q(x) from the known func­
tion p(x) .. The corresponding condition at a discontinuity 
-has the form 

(D-v)']' + " 
2 

(16) 

!'he condition of continuity of the chemical potential at 
the front allows us to rewrite (16) in the more usual form 
[qJ:': = ft.m 0, where ft. = T[SJ:'. is the latent heat of the tran­
sition. Thus, it is the resultant heat flux \vhich deter_: 
mines the rat.e of motion of the front (the mass fllLx) .. For 
[q]~ = 0, \Ve have m 0 = 0 and u = O, i.e., we obtain the solu­
tion of the problem of the structure of a stationary equi-· 
librium front. 9 

As applications of tile relations under consideration 
\Ve point out the problems of des er ibi.ng the slo\v (D :::::: 
cm/yr) propagatior: of the fronts of phase and chemical 
transformations in the Earth10 that accompany the heating 
or cooling of the planet. 
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