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\long with adiabatic chemical and phase transitions, 
'lich J.re nonequilib:rium and are accompanied by ent1 opy 

; : nduction at the front, it is approp1iate to analyze iso-· 
:..::•. r:nal equilibrium phase ttansitions. By this we under-· 
~:.U1d the generalization to the dynamic case of the static 
; :·i;~l!cm, analyzed by Gibbs, 1 of the eq_uilibtium of con- ... 
·.~.ioo.s phases. Such pt'oblems arise, fat· example, in the 
k-5cription of processes of .slow crystallization in a cool-· 
~:-lf; medium 

In the present note we obtain the complete set of con
hticns at a moving fiont of an equilibrium phase transi.
~cn in a heat-conducting, nonlinearly elastic medium .. ro 
:."i.e u::.:ual conditions of continuity of the fluxes of mass, 
":Jomcntum, and ene:rgyl 1-ve add a relation which is a 
.:rneraliz.ation of the well kno\lffi condition of continuity 
(f. the chemical potential and serves for determining the 
:·docitrof the fr·ont. The stxucture of the discontinuity 
ts constructed on the basis of the nonlocal equation of 
~t.W! .. 

L Let the phases be charactezized by different forms 
o( dependence of the intemal-energy function on its ar-· 
rum<!nts (the deformation tensoz and entropy) .. Usually 
Che phase transition is localized in a narrO\..,. region of 
.sµa.cc and can be modeled by the surface of a discon-· 
ti.:luit) of the charactezistics of the medium .. The foliov.t
~ universal conditions:?. are valid at the discontinuity: 

[p(D - t>n)u' + P~n" J~"' 0: (1) 

(2) 

(3) 

Here p is the density. D is the velocity of the discontinuity, 
,.tare the components of the velocity vector of the medium, 
~ = vivi• Vn = viui, ni are the components of the unit out-· 

~ •.ard. (with respect to one of the phases) not mal to the 
,}: diacontinuity surface, Pk are the components of the de-· 
!if: fonnatton tensor, U ands are the specific intexnal en-

. ,,,_ ~- a.nd entropy, respectively, qi = - K Vi r are the com
~ .-6 ~nt.s of the heat ,-flux vector> K is the coefficient of 
, '.;.:thermal conctuctivify, r is the temperature, and R is the 

., "'tropy Production at the discontinuity .. The symbol [fl:'.: 
... 4eootes the difference bet\veen the values of f on each side 
. Cl( the discontinuity surface 

For- an equilibrium phase tr an.sition we formulate a 

model which reduces to the asswnptions 

[7 J'. = 0 

R = 0 

The necessity of analyzing additional conditions at the 
discontinuity is connected with the fact that: 

(4) 

(5) 

a} I'he energy equation contains second derivatiyes 
of the temperature; 

b) to solve the problem one must find the lavJ of mo
tioo of the phase interface (a problem with a free bound
ary) 

Eliminating the quantity [qin;l! from (2) and (3), we 
obtain 

(6) 

We tr·ansform this condition using the Hadamard consi.st
ency relation. Let xiW" , t) be the !aw of motion of the 
medium, where ~o: are the Lagrangian coo1·dinates, t is 
the time, and i = 1, 2, 3> a = l, 2, 3 Continuity of the 
functions xi at the discontinuity" gives 

where 

x~ ~ Jx' /a('", 
axi 

.J = -ot 

Then for a nonzer'O mass flux through the ph.ase boundary 
we obtain fr·om (6) the relation genezaliz.ing the condition 
of continuity of the chemical potential: 

(7) 

It is obvious that only one of the three conditions (7) is 
independent In the case of static equilibxiurn we arrive 
at the condition 

which \Vas obtained in ReL. 3 by the Gibbs method by vary-· 
ing the position of the phase boundary in the Lagrangian 
coordinates (also see Refs 4 and 5) . 

The conditions (1), (2), (4}. and (6) com.prise a com
plete set of relations at the phase boundary The Stefan 
conditions6 for an incomi: res.sible medium are obtained 
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:~ .. Let us consider the problem of the structure of m 
equilibrium phase boundary .. The question of the method of 
describing the medium within the front is flUldamental .. 
First let us discuss the isothermicity condition {4). 

If fOr the external problem we adopt the simplest heat
transfer model, which reduces to the use of the Fourier 
law, the natural boundary condition at the front for· the ex-· 
ternal problem \Vil! be the assignment of the temperature 
and (independently) the heat flux. It is obvious that if the 
description of the heat-transfer· process in the internal 
problem is also based on the use of the Fourier law, con-· 
s istent data will be obtained at the exte mal boondary .. In 
particular, boundary conditions of the type 

T = T, 

cannot be obtained in this way, since the conditions 

dT I 
dx ...... -·-;:q~ 1'-+ It x - ±oa as 

are incompatible if q-1-;:it O .. Therefore, in the analysis of 
the structure we shall take the quantity q as an indepen
dent var'iable, setting T = const, with.out singling out the 
dependences of the heat-flux vector on the other charac
teristics of the med.iwn and their derivatives of different 
orders. Here it is implied that \Ve take the limit K - oo, 
ctr/ dx-· o, since the heat flux q remains finite .. 

Let us consider the dimensionless quantity K = p0Va 
U0L0 K-·1TQ1, where Pn' Vn, U0, and r 0 are the character
istic density, velocity, specific internal energy, and tem
perature, respectively, in the interphase layer, and Ln is 
the \Vici.th of the layer; the quantity K characterizes the 
ratio of the convec_tive to the conductive heat flux .. In vie\v 
of the smallness of the parameters V 0 and L0 \Ve can take 
K << !, and this results in a model with lfin£in.ite thermal 
conductivity .. " We note that the adopted isothermal m<Xlel 
agrees \Vith the fundamental assumption (5) of equilibrium, 

As is knmvn,2 the dissipation connected \Vith heat trans
fer is written in the form (internal problem) 

• d (I ) Rr = J q - - d.> 
_,., d.x T 

Therefore, the condition r = const results in RT = 0 even 
for a nonzero heat flux q. 

3. A.ccording to the general approach developed by 
L .. L Sedov's school, the model of the medium is as
signed if the dependence of the internal- (free-) energy 
function on its arguments is kno\vn, the nonholomic part 
is isolated in the variational equation,2 and the conditions 
at the discontinuities are assigned.. ro describe the struc-· 
ture of an equilibrium phase transition in a fluid we use a 
model medium in which derivatives of the density are in-· 
troduced into the expression for the free energy.1-9 One 
can show that the simplest expression has the foxm8•9 

F(p '1 p T) = f(p, 1) + E(P 1) ( '1 p)' (8) 

where i is some positive function which is monotonic in 
p , md f is positive and nonconvex in p . For a van der 
\Vaals fluid, for example, 
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\V ithout d\velli:ng on the basis for the expression (8}. we 
note that it describes the natural nonlocal na.tur'8 (diS
played at small distances) of the equation of state. 

Using the standard variational procedure,2 we ob~
tain the equations for the isothermal, plane, stationary 
flow of a viscous fluid: 

where 

a/ 
p =pl -

ap 
d'p 

' ' - .. ep dx.1 , 

u is the velocity, andµ is the coefficient of viscosity .. 

!'he energy equation has the form 

~ [ pu ( lj + ; T ~
2

·) - µu :: + q] = 0, 

1101 

(!U 

where U = F - T(a FI a r) is the internal energy and q is 
the heat flux .. Integrating Eq .. (10), we obtain 

• aw 
p· -ap 

where 

_ P1 ~ (dP\ "l _ 

ap dx I 
dp 

=Po 
dx 

ml 
w=t--

2p2 
m0 = pu = const, Po = con"SI 

(12) 

For µ = O the system is conservative and Eq. (12) is 
integrated in quadratures.. The solution of interest to us, 
in the form of a ttstep," exists for a special choice of the 
integration constants. For functions f(p, r) of the type {9) 
under consideration one can sho\v that for ) m0 ! < MQ there 
exist Pa= P; and p 1 andp 2 for which 

r) I r I ( " +-' = (" + ~) 
p P1 p P1 

a p;)I - (w +- = o 
Op p P, p, 

\Ve now obtain the solution of the problem of the struc~ 
ture of the discontinuity by fixing the constantµ~ =(cf; + 
Pt/ p) IP in the energy integral.. The physical meaning of 
the quanhties Pt andµ~ becomes obvious if we note that 
as X--<·±oo 

PTpu2 -+P~ 
p 

f +
p 

u' 
+-

2 

I'b.us, the follo\ving conditions at the discontinuity are ob
tained for µ = 0: 

[p(D - u.)J'.. = 0 [P + p(D - u.)' I'. = O 

[ 
p (D-u.)']·-o I+ - T -
p 2 -

(13) 

Ihe last of these relations signifies the continuity of the 
generalized chemical potential at the front; it is equiv
alent to the condition R = O. 
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Tue introduction of dissipation (µ ~ 0) destroys the 
;. :nmctr~/ o[ the phases and results in irreversibility of 
~,, uansition \Ve re,vritc Eq .. (12), using the new fWlc-

:·~ \(p) = dp/ d.'" 

; ( Po) µm 0 
:fl+~+-,-y 

'P p p 

a€ 
1 

dy 
--y-2fy-

3p dp 
= 0 (14) 

.... c:111 sho\V that for each value of P 0 from the interval 
:• p 11) there exist p 1 and p 2 such that 

•r the first-order equation (14) \Ve set up the boundary 
Jnditions y(p 1) = O and y(p2) = O; this permits a unique 

.;...wrn1in:ition of the value of the parameter P 0 = P; for 

.hich a solution exists,, In this case, if p {-cxi} = p 2• 

P, 
-p. 

(15) 

.. (du ) ' f -· dx 
mo ""'"' dx 

µ RT 

m, 

b the given case the condition R = O is not satisfied and 
:t must be replaced by the condition R = Ro > 0, \Vhere ~ 
~ cllculated from the solution of the problem of the .struc
::.:re [see (15)]. We note, ho\vever, that for lm0 1 -o(.,/?), 
;i.here f: max. £(P), we have R0 "" o(l) and viscous dis-

(P,. P,) 

!ipation can be neglected.. Therefore, in the presence of 
1iscosity the condition R = O is approximate and is ap
plicable for the description of slO\Vly moving boundaries,, 

Let us explain the method of obtaining the solu
Uoo The function g = <j; + P 0/ p with P 0 E (P 02 • P 01) has 
the form shown in Fig., l,. The equilibrium positions A and 
C correspond to saddles on the phase plane (p, dp / dx) 
11hl\e the points Band D correspond to centers (µ = O) 
or foci {µ :;;:! O).. Through the choice of the parameter P 0 
ooc can make sur·e that a separatrix connecting the two 
Uddlcs exists. This requirns that g(A) = g(C) ifµ = O 
"1d m;[g(A) - g(C)] > o ifµ " o. We note that in the con
ICIYative case with p 02 < p 0 < Prj and with P 0* < P 0 < P 01 
there will exist soliton solutions corresponding to self
closurc of the separatrix of one of the saddles, which for 
~ = O can be interpreted as a description of the nuclei of 
1 ocw phase developing in the metastable region .. With 
P, = P01 and with p 0 = p 02 , however, bifurcation occurs 
1coo..lcsccnce of the saddle and the focus B) and the non-· 
lrivial solutions drop out. Physically this means that 
cniJ one phase can exist for the given values of the pa-, 
~ters A similar bifurcation occurs with an increase 
~the parametet m0, and this allows one to speak only of 

3 !()'.l;\y• moving fronts (I m0! < M~ .. The exact values of 
the PJ.ra.meters can easily be found in the case of a van 
~r \\a.'.J..ls fluid (9) We point out that one cannot continu
OJ.s!)' be at the point D, although discontinuous transitions 
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'DY 
0 ''" ,,,, 'if 

:'IG l. Chiracrerisric form of the 

function g_ = f Pn/P - m~; Zp 2 with 

I rnijl · \1ij and p• > P0 > P~2 

of the type C -· D, cor"Iesponding to the solution of the 
problem of an isothermal discontinuity in a gas, are pos
sible. 

5 .. As g -· 0 the continuous solutions obtained con
verge uniformly to a discontinuous solution .. The condi
tion of isotherinicity makes it possible to separate the 
thermal and purely mechanical problems Thus, Eq. (11) 
allo\Vs one to find the function q(x) from the known func
tion p(x) .. The corresponding condition at a discontinuity 
-has the form 

(D-v)']' + " 
2 

(16) 

!'he condition of continuity of the chemical potential at 
the front allows us to rewrite (16) in the more usual form 
[qJ:': = ft.m 0, where ft. = T[SJ:'. is the latent heat of the tran
sition. Thus, it is the resultant heat flux \vhich deter_: 
mines the rat.e of motion of the front (the mass fllLx) .. For 
[q]~ = 0, \Ve have m 0 = 0 and u = O, i.e., we obtain the solu
tion of the problem of the structure of a stationary equi-· 
librium front. 9 

As applications of tile relations under consideration 
\Ve point out the problems of des er ibi.ng the slo\v (D :::::: 
cm/yr) propagatior: of the fronts of phase and chemical 
transformations in the Earth10 that accompany the heating 
or cooling of the planet. 
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