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1long with adiabatic chemical and phase transitions,

nich are nonequilibrium and are accompanied by entropy
. roduction at the front, it is appropriate to analyze iso-
v rmal equilibrium phase transitions. By this we undez-
suand the generalization to the dynamic case of the static
- roblem, analyzed by Gibbs,! of the equilibrium of con-"
wzsous phases, Such problems arise, for example, in the
\seription of processes of slow crystallization in a cool-~
g medium,

In the present note we obtain the complete set of con-
utions at 2 moving {ront of an equilibrium phase trangi~
umnina heat-conducting, nonlinearly elastic medium. To
the usual conditions of continuity of the fluxes of mass,
momentum, and energy® we add a yelation which is a
ceneralization of the well known condition of continuity
of the chemical potential and serves for determining the
melocity of the front. The structure of the discontinuity
s constructed on the basis of the nonlocal equation of
slae.,

1. Let the phases be characterized by different forrns
of dependence of the intemal-energy function on its ar-
guments (the deformation tensor and entiopy}. Usually
the phase transition is localized in a narrow region of
dpace and can be modeled by the surface of a discon~
tauity of the characteristics of the medium. The follow-
iog universal conditions® are valid at the discontinuity:

P -u3" =0 [o(@ vt Pink)z = o 8
vl ) ;
N z . ik 1t = HET
{pD v.,)(U + 2) * Pyl = oingls {2
g'n; 7"
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Here p is the density, D is the velocily of the discontinuity,
are the components of the velocity vector of the medium,
v = vivi, vy = Vini, n; are the components of the unit out~
¥ard (with respect to one of the phases) normal to the
. dscontinuity surface, Pf, axe the components of the de~
% lormaticn tensor, U and § are the specitic internal en-
S "%y and entropy, respectively, q; = ~«V;T are the com-
= Poents of the heat ~flux vector, « is the coefficient of
the rmal conduetivity, T is the tempezature, and R is the
oo ooy production at the discontinuity. The symbol (f1F
& the difference betwesn the values of { on each side
the discontinuity surface.

For an equilibrium phase tansition we fozmulate a
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model which reduces to the assumptions
{4}
(5}

[rjir =0
R=0

The necessity of analyzing additional conditions at the
discontinuity is connected with the fact that:

a) The energy equation contzing second derivatives
of the temperature;

b} to solve the problem one must find the law of mo-
ﬁog: of the phase interface (a problem with a fres bound-
ary).

Eliminating the quantity [qin] from (2) and (3), we
obtain

1
[o(D - uva) (U— TS + :—) + Pinfu)t = 0. (6)

We transform this condftion using the Hadamard consist-
ency relation. Let xi(;2, t) be the law of motion of the
medium, where £¥ are the Lagrangian coordinates, ¢ is
the time, and{ =1, 2,3, @ =1, 2, 3. Continuily of the
functions % af the discontinuity gives

i)t = Nae, [ = Ny,

where

. . ox .
X, a3, o= o = xgrti ne = —(D-vy)
Then for a nonzero mass flux through the phase boundary
we obtain from (6) the relation generalizing the condition

of continuity of the chemical potential:

K Loous ’3) pra + (0D~ 5) + Pinxl ) =0 (7
1

It is obvious that only one of the three conditions (7) is
independent. In the case of static equilibrium we arrive
at the condition

WU~ T$)pny ~ Pimxh]l = 0
which was obtaiped in Ref. 3 by the Gibbs method by vary-
ing the position of the phase boundary in the Lagrangian
coordinates {also see Refs. 4 and 3}

The conditions (17, (2}, (4}, and {8) comprise a com-

plete set of relations at thie phase boundary. The Stefan
conditions® for an incomy vessible medium are obtained
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2. Lot us consider the problem of the structure of an
equilibrivm phase boundary. The gquestion of the method of
describing the medium within the front is fundamental.
First let us discuss the isothermicity condition {4).

If for the external problem we adopt the simplest heat-
transfer model, which reduces fo the use of the Fourier
law, the natural boundary condition at the front for the ex-
ternal problem will be the assignment of the temperature
and (independently} the heat flux. It is obvious that if the
description of the heat-{ransfexr process in the internal
problem is also based on the use of the Fouriex law, ¢con-
sistent data will be obtained at the external boundary. In
particular, boundary conditions of the type

T=T, g=4q:.

cannot be obtzined in this way, since the conditions

=T, % - -’-.l;-qs as X - Em

are incompatible if q, = 0. Therefore, in the analysis of
the structure we shall take the quanfity q as an indepen-
dent variable, setting T = const, without gingling out the

dependences of the heat-flux vector on the other charac-
teristics of the medium and their derivatives of different
orders. Here it is implied that we take the limit x — <,
dT/dx — 0, since the heat flux g remains finite,

Let us considex the dimensionless quantity K = pVy
ULy ~1T7!, where pg, Vi, Uy, and Ty are the character-
istic density, velocity, specific infernal energy, and tem-
perature, respectively, in the interphase layer, and L is
the width of the layer; the quantity K characterizes the
ratio of the convective to the conductive heat flux. In view
of the smallness of the parameters V; and L, we can take
K « 1, and this results in a model with "infinite thermal
conductivity.®™ We note that the adopted isothermal model
agrees with the fundamental assumption (5) of equilibrium.

As is known,? the dissipation connected with heat trans-
fer is written in the form (internal problem)

Rr= | d(})d
T“glqu T x

Therefore, the condition T =const results in R =0even
for a nonzero heat flux q.

3. According to the general approach developed by
L. I Sedov's school, the model of the medium is as-
signed if the dependence of the internal- (free-} epergy
function on its arguments is known, the nonholomic part
is isolated in the variational equation,? and the conditions
at the discontinuities are assigned. To describe the struc-
ture of an equilibrium phase transition in a fluid we use a
model medium in which derivatives of the density are in-
troduced into the expression for the free energy.’”™ One
can show that the simplest expression has the form®-?

Flp Vp TY = flp. T) + elp. TH( Vo) (8)
where £ is some positive function which is monotonic in

p»and f is positive and nonconvex in p. For a van der
Waals fluid, for example,
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Without dwelling on the basis for the expression {8}, we
note that it describes the natural nonlocal nature (dig-
played at small distances) of the equation of state,

Using the standard variational procedure,’ we ob-
tain the equations for the isothermal, plane, stationary
flow of a viscous fluid:

d .q 4 R A
‘d—x(pu)—ﬂ dx(f’+pu B 0

o)
where
2 2
P=pl_af_ *pIE(d_p) _2Ep2dp
3p ap \dx dx?
u is the velocity, and ¢ is the coefficient of viscosity.
The energy equation has the form
d (U . P u? du . ] 0
= e ) e g — =0,
dx {p“ p 2 dx 7 ay

where U = F — T(aF/ 87T) is the internal energy and q is
the heat flux. Integrating Eq. (10}, we obtzin

1 , 0¢ dpy? 2510’29 png  dp_
ph'a? - -é_p_ ) - dx? gt dx (19
where
]
v =f-— mg = pu = const, Py = const

20t

For u =0 the system is conservative and Eq. (12) is
integrated in quadzatures. The solution of interest to us,
in the form of a "step,® exists for a special choice of the
integration constants. For functions £{p, I) of the type (9)
under consideration one can show that for |mg| < M, there
exist P, = Py and p ¢ and p, for which

IR GEy R

We now obtain the solution of the problem of the struc-
ture of the discontinuity by fixing the constant pj =(§ +
P3/p)|p, in the energy integral. The physical meaning of
the qua.n%:ities P} and p} becomes obvious if we note that
as X —-%

Ay P2

A2

P .
Prput ~ B [t T

Thus, the following conditions at the discontinuity are ob-
tained for g =02

B -v)]" =0 [P+pDd - w)]I=0

o 2 -

The last of these relations signifies the continuity of the
generalized chemical potential at the fromt; it is equiv-

~alent to the condition R =0.
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e introduction of dissipation {u = 0) destroys the
" mmetry of the phases and results in irreversibilify of
. pransition We rewrife Eq. {12}, using the new func-
san v ip) =do/dx

2 Py WM, de ; dy _
Sy v —] t -— —2evy-— =10 (14)
W (V ' 2 ) 'y Y ’ dp
- can show that for each value of P, fxrom the inferval

: ., Py) there exist py and p, such that

3/ Po
.3, (@ 12 L =9
3 P i

. ¢ the first-order equation (14) we set-up the boundary
snditions y{p,) =0 and y(py} = 0; this permits a unique
siermination of the value of the parameter Py = Py for
.nich a solution exists. In this case, if p{—=) =p,,

P £ 2: ydp
(w—“-) -(w +~i)t =amy [ =
2 - P A,y ] P
u - du 2 RT
R
My . NdX My

b the given case the condition R =0 is not satisfied and

5 must be replaced by the conditicn R = Ry > 9, where R,

s calculated from the solution of the problem of the struc-

wre [see {15)]. We note, however, that for Imel ~e(v%),

shere F= max }e(p), we have Ry ~ o(1) and viscous dis-
PYRN

sipation ca(.n be neglected. Therefore, in the presence of

viseosity the condition R =0 is approximate and is ap-

plicable for the description of slowly moving boundaries.

{15)

+. Let us explain the method of obtaining the solu-

Uon. The function g = ¢ + P,/ p with P& (Py, Py has
the form shown in Fig. 1. The equilibrium positions A and
C correspond to saddles on the phase plane (p, dp /dx)
»hile the peints B and D correspond to centers (u = 0}
orfoci {(u = 0). Through the choice of the parameter P,
me can make sure that a separatrix connecting the two
faddles exists. This requires that g{a) =g{C) if ¢ =0
md myg(A) = g(C)) >0 if u # 0. We note that in the con-
servitive case with Py, < Py < P§ and with Pf* < Py < Py
Sere will exist soliton solutions corresponding to self-
tlosure of the separatrix of one of the saddles, which for
=y =0 can be interpreted as a description of the nuclei of
40ew phase developing in the metastable region. With

Py = Py and with P, = Py, however, bifurcation occurs
‘coalescence of the saddle and the focus B) and the non~
trivial solutions drop out. Physically this means that

®ly one phase can exist for the given values of the pa-
fumeters. A similar bifurcation ogeurs with an increase
:‘”ho Parameter mg, and this allows one o speak only of
$lowly* moving fronts (| my] < My. The exact values of
e parameters can easily be found in the case of a van
®r Waals fluid (9). We point out that one cannot continu-
ously be at the point D, although discontinuous transitions

g
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FIG. [. Characreristic form of the
fanction g = f - Py p~mf, 25" with
Imyl © My and P* > Pg > Py,

9 o e T

of the type C — D, corresponding to the solution of the
problem of aun isothermal discontinuity in a gas, are pos-
gible.

5. As E — 0 the continuous solutions obtained con-
verge uniformly to a discontinuous solution. The condi-
tion of isothermicity makes it possible to separate the
therrnal and purely mechanical problems. Thus, Eq. (11)
allows one to find the function q(x} from the known func-
tion pix). The corresponding condition at a discontinuity
"has the form

(D - Un ): ’

2

. P
[Q]_=mc[U +‘p— + (16)

The condition of continuity of the chemical potential at

the front allows us to rewrite (16} in the more usual form
lqlf = Amg, where A = T{51Y is the latent heat of the tran-
sition. Thus, it is the resultant heat flux which deter-
mines the rate of moticn of the front {the mass flux). For
[qlf =0, we have m, =0 andu = 0, i.e., we obtain the solu-
tion of the problem of the structure of a stationary equi-
librium front?

As applications of the relations uander consideration
we point out the problems of describing the slow (D ~
e/ y1) propagatior of the fronts of phase and chemical
transformations in the Earth!® that accompany the heating
or cooling of the planet.
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