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Nonlinear elasticity of incompatible surface growth
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Surface growth is a crucial component of many natural and artificial processes, from cell proliferation
to additive manufacturing. In elastic systems surface growth is usually accompanied by the development of
geometrical incompatibility, leading to residual stresses and triggering various instabilities. In a recent paper
[G. Zurlo and L. Truskinovsky, Phys. Rev. Lett. 119, 048001 (2017)] we presented a linearized elasticity theory
of incompatible surface growth, which provides a quantitative link between deposition protocols and postgrowth
states of stress. Here we extend this analysis to account for both physical and geometrical nonlinearities of an
elastic solid. This development reveals the shortcomings of the linearized theory, in particular its inability to
describe kinematically confined surface growth and to account for growth-induced elastic instabilities.
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I. INTRODUCTION

A variety of natural and artificial processes rely on active
mass deposition on the surface of a solid body. This class of
phenomena is quite broad, including such diverse processes
as growth of plants [1,2], cell motility [3,4], construction of
retaining walls [5,6], formation of planets [7], crystallization
from solution [8–10], and three-dimensional (3D) printing
[11,12]. Surface growth is understood in this context as a
continuous addition of new layers of mass on the external
boundary of a solid. From the perspective of elasticity theory,
the fundamental interest here is in the fact that the accreted
mass points arrive without a prescribed reference state, which
must emerge as an outcome of the manufacturing protocol.

Despite considerable recent interest in the mechanics of
surface growth [13–21], the associated residual stresses have
not been systematically studied. In other words, the main
focus was on the Euclidean (compatible) growth. To com-
plement these studies, here we focus on the case when the
growth induced reference state is non-Euclidean, in the sense
that it cannot be realized in three dimensions without generat-
ing residual stresses. The underlying “geometric frustration”
[22–25], which is ultimately shaped by the deposition process,
may be beneficial (as in growing plants [26]) or detrimental
(as in civil engineering structures [27]). These general ideas
were implied in the early attempts to explain the buildup of
“growth stresses” in the surface accretion of trees [28], to
optimize concrete pouring protocols [29], and to improve the
quality of industrial winding [30].

The first systematic theoretical study of the effects of
incompatibility in surface growth was conducted by the Rus-
sian school [31–36], with a largely parallel development and
subsequent extension of the theory in the West [37–46]. These
studies raised the awareness of the presence of a “historical
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element” in problems of incompatible surface growth by
showing that accumulated inelastic strains keep a detailed
memory of the deposition process. In defiance of these ef-
forts, however, the relation between the accretion protocol
and the ensuing state of geometric frustration remains poorly
understood. The main difficulty is that this relation is inher-
ently nonlocal in both space and time, due to the long-range
character of elastic interactions, and the unavoidable coupling
between incremental adjustments of the elastic configuration.

This problem was addressed in two recent papers [47,48],
where we have developed a linearized theory of incompatible
surface growth focused on the deposition-protocol depen-
dence of the residual stress. The analysis in the linear case
turned out to be relatively simple, primarily because the
geometry could be decoupled from elasticity. In the present
paper we generalize this theory by taking into account both
geometrical (e.g., finite rotations) and physical (e.g., finite
stretches) nonlinearities of an elastic solid.

Geometric nonlinearities are particularly relevant when the
kinematics of the growth process cannot be linearized as,
for instance, in the case of actin polymerization against a
solid wall, where the identification of the reference and the
actual states is incompatible with the very presence of the
incoming mass flux [4,49]. Physical nonlinearities are crucial,
for instance, when, due to extreme dependence of the elastic
moduli on prestress, growth induced inhomogeneity can lead
to dramatic spatial heterogeneity of the elastic response [50].
The use of a nonlinear theory becomes, of course, imperative
when one deals with soft solids like biological tissues or
synthetic gels [20,51].

In this paper we formulate a general theory of large-strain
continuous surface growth. To illustrate the specific effects
of nonlinearity we present a systematic analysis of the cases
of polar and spherical symmetries, where partial differential
equations reduce to ordinary differential equations and at
least some of the computations can be performed analytically.
Several case studies were chosen to show the details of the
implementation of the general approach.
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Our first example deals with winding protocols producing
a disclination-type incompatibility; we then show how such
singular incompatibility reveals itself when a two-dimensional
(2D) body grown by this method is allowed to relax into
the 3D space. Our second example illustrates mass accretion
under prescribed external pressure, emphasizing extreme sen-
sitivity of the embedded incompatibility to small changes in
the deposition protocol. In the last two examples we consider
outward and inward surface growth against rigid constraints.
Such problems are out of reach for geometrically linearized
theory and we use these examples to show that the account of
physical nonlinearities allows one to predict the emergence of
growth induced material instabilities.

The paper is organized as follows. In Sec. II we de-
velop the concept of inelastic surface growth and we discuss
the geometrical meaning of incompatibility. In Sec. III we
compare various deposition protocols and we formulate the
corresponding conditions on the growth surface. In Sec. IV
we present the incremental formulation of the accretion prob-
lem in the general nonlinear setting. In Sec. V we use the
nonlinear theory to obtain its linearized version developed
in [47,48]. The specialization of the general theory for the
case of spherical symmetry is discussed in Sec. VI. The case
studies, illustrating various effects of physical and geometrical
nonlinearity, are presented in Sec. VII. Finally, Sec. VIII
contains our conclusions.

II. PRELIMINARIES

Consider a 3D body B̊ equipped with an arbitrary set of
(Lagrangian) coordinates x and with a metric tensor G(x)
allowing one to measure distances in B̊. Suppose that G
is compatible, in the sense that there exists a deformation
(embedding) of B̊ in the Euclidian space B = y(B̊) such
that G = ∇yT∇y, where y = y(x). Suppose also that B̊ is
equipped with a reference metric G̊(x) which does not have
to be compatible and may carry information about the local
configuration of defects.

The elastic response is calibrated by the distance be-
tween G and G̊, so we can introduce an elastic energy den-
sity e(G, G̊) � 0, such that e(G̊, G̊) = 0. In equilibrium the
(Piola-Kirchhoff) stress tensor S = ∂e/∂∇y must satisfy the
conditions

DivS(x) + f (x) = 0 B̊
(1)

S(x)n̊(x) = s(x) ∂B̊

where n̊ is the normal to ∂B̊. Here we have assumed that the
body B̊ is loaded by surface tractions s(x) and by body forces
f (x).

Suppose now that the body B̊t is growing due to addition
of points on the evolving boundary ∂B̊t (see Fig. 1). This
process can be described by prescribing a function ϑ̊ (x) the
level set ϑ̊ (x) = t of which defines the configuration of the
referential surface at time t . The normal to this boundary is
n̊ = ||∇ϑ̊ ||−1∇ϑ̊ and its normal velocity is D̊ = ||∇ϑ̊ ||−1.
The fact that the function ϑ̊ (x) is prescribed lays aside the
possibility that there is a feedback between the actual config-
uration of the growing body and the evolution of the boundary

FIG. 1. A schematic representation of two successive reference
configurations for the growing body with t1 < t2. The configuration
corresponding to t = t1 is shown by a dashed line in the snapshot
corresponding to t = t2.

∂B̊t , as is the case, for instance, during solidification from a
fluid state. Such feedback deserves a separate study while here
we focus exclusively on the case of externally driven growth
surfaces.

Given that inertial terms can be neglected, the deformation
of the growing body y(x, t ) must satisfy a one-parametric
family of equilibrium equations

DivS(x, t ) + f (x, t ) = 0 B̊t
(2)

S(x, t )n̊(x, t ) = s(x, t ) ∂B̊t

where s(x, t ) and f (x, t ) can be now time dependent. If the
reference metric G̊(x, t ) is known and if the energy density e
satisfies suitable conditions [52], the system (2) can be solved
at each instant.

To simplify the problem we can assume that the reference
metric G̊(x) is time independent, which means that it is fixed
for each material element at the stage of deposition and is
not evolving afterwards. The challenge is to link physically
realizable “controls” on the evolving surface with particular
distributions of G̊(x) in the grown body [53].

The reference metric G̊ carries information about how
the body is assembled, which is contained in the Ricci
tensor R(x, y) = ∑

i〈R(x, ei )y, ei〉, a contraction of the
Riemann-Christoffel tensor R(x, y)z = ∇x∇yz − ∇y∇xz −
∇[x,y]z, where x, y, and z are arbitrary vectors, {ei} is an
orthonormal basis in R3, and ∇ is the Levi-Civita connection
induced by G̊ (see [54] for details).

If R(G̊) ≡ 0 there exists a map g̊ such that G̊ = ∇g̊T∇g̊
[55] and the body is unstressed in the absence of loading
(s = 0, f = 0). Indeed, the equilibrium equations in this case,

DivS(x, t ) = 0 B̊t
(3)

S(x, t )n̊(x, t ) = 0 ∂B̊t ,

have a homogeneous solution S(∇y,∇g̊T∇g̊) = 0 with y ≡ g̊.
Such growth is compatible and the map g̊ only affects the
stress-free shape of the body g̊(B̊t ) (see, for instance, [20]).

If instead R(G̊) �= 0, then it is not possible to find a smooth
deformation y such that S(∇y, G̊) = 0 and the unloaded body
is prestressed. Since the tensor R(G̊) identically satisfies a
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set of three scalar differential constraints (Bianchi identities),
Div(R − S G̊/2) = 0, where S = ∑

i, j〈R(ei, e j )e j, ei〉, only

three independent components of R(G̊) characterize the distri-
bution of growth related defects [24,51,56,57]. The presence
of such defects is a sign of geometric frustration, which can
be viewed as an embedded “information,” revealed through
residual stresses. When R(G̊) is known, the reference metric
G̊ can be reconstructed from three additional conditions that
define its compatible part, which is responsible for the final
shape of the body and is relevant in many biological problems
[20] and in engineering applications related, for instance, to
residual actuation [58].

III. DEPOSITION PROTOCOLS

The process of “manufacturing” of the reference state on
the growth surface can be modeled by nonstandard boundary
conditions defining the “growth protocol.” A direct prescrip-
tion of the functions G̊(x) on the growth surface would imply
that the arriving mass is endowed with its own reference state
prior to deposition. A more realistic assumption, however, is
that the reference state emerges as a result of the physical
actions that one can control through the deposition machinery.
Typical examples of natural processes where G̊(x) is not
assigned a priori include brick layering [40], 3D printing
[11], and, in some cases, also biological accretion [13,59].
The prescription of the tangential components of G̊(x) can
be interpreted as a strain control growth [60], however this
special case will not be specifically addressed in this paper.

A. Stress control

In view of the mechanical nature of the “active agent” in-
volved in the execution of the deposition protocol, it is natural
to try to formulate the corresponding boundary conditions in
terms of the deposition stress S(x) = S(x, ϑ̊ (x)) [61].

The tensor function S(x) is a priori partially constrained by
the applied tractions Sn̊ = s and by the fact that the angular
momentum is balanced, S(∇y)T = (∇y)ST. This implies that,
out of nine scalar components of S, six are essentially known.
The remaining three can be still used to at least partially
constrain the distribution of embedded inhomogeneity, and
will constitute our first set of active controls.

To be more specific, consider the decomposition of the
deposition stress

S(x) = Sa(x) + Sp(x), (4)

where the “passive” contribution (fully defined by normal
tractions) is Sp = s ⊗ n̊ + n̊ ⊗ s − (s · n̊)n̊ ⊗ n̊ and where the
“active” component (representing tangential projection of the
stress tensor) must satisfy San̊ = 0 (see Fig. 2). Fixing the
three independent components of Sa(x) can be then consid-
ered as a stress-control part of the deposition protocol.

As we here show in our examples, the stress control can
be performed not only through the Piola stress S(x) but also
through the Cauchy stress σ(y). The two are related through
S = σcof(∇y), where [cof(A)]T = A−1 det A, and the differ-
ence between them is an effect of geometrical nonlinearity.

FIG. 2. Schematic representation of the deposition protocol for
an arriving unloaded “brick” which is placed on the growth surface
after being subjected to “passive” tractions s = Sn̊ and “active”
surface stresses Sa.

B. Kinematic control

The other three controls can be, for instance, of kinematic
origin and involve constraints on the current position of the
growing surface, which amounts to prescribing the functions
ȳ(x) = y(x, ϑ̊ (x)). Such constraints can be imposed passively,
as in the case of growth against a fixed wall, or actively, as in
the case of growth under an oscillating piston.

Another important case when the controls may involve
the field ȳ(x) is that of solidification, where the buildup
of pressure at the growth interface depends on the current
position of the solidification front [38]. In those cases one can
use the fact that the map ȳ completely characterizes the areal
stretch α = ||cof (∇ȳ)n̊|| and the normal n = α−1cof (∇ȳ)n̊
of the current surface ∂Bt .

Note that the control of the actual position of the growth
surface y(x, ϑ̊ (x)) implies the knowledge of the reference
position of this surface, which is defined by the function ϑ̊ (x).
Knowledge of the latter is equivalent to prescribing the rate of
mass delivery at the referential growth surface ṁ = �̊D̊, where
�̊ is the referential density.

We can also express the arriving mass flux in terms
of the actual parameters as ṁ = �̄α(D − ¯̇y · n), where �̄ =
�̊(det ∇y)−1 is the actual density and D = D̊(∇ȳ)n̊ · n is the
Eulerian velocity of the growing surface. Using the (commu-
tation) relation [62]

∇ȳ − ∇y = ||∇ϑ̊ ||ẏ ⊗ n̊ (5)

we may rewrite the expression for D in the form J̄α−1D̊ +
¯̇y · n̊ where J̄ = det ∇y. In the special case when the position
of the growing surface is fixed in the actual configuration
(D = 0), the Eulerian growth rate takes a simpler form ṁ/α =
−�̄(¯̇y · n̊).

Finally we remark that if the functions ȳ(x) are not con-
strained directly on the growth surface we can always use the
freedom of choosing the Lagrangian coordinates of the arriv-
ing material particles to set ȳ(x) = x. This will correspond
to the choice of the reference configuration coinciding at the
moment of deposition with the instantaneous actual config-
uration, and will partially specify the reference metric. Such
“pseudo-linearization” of the deformation geometry would be
of course impossible in many realistic cases, for instance, in
problems involving growth against rigid obstacles.
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IV. INCREMENTAL PROBLEM

We now show that if the function ϑ̊ (x) is given the six con-
trols (ȳ(x), Sa(x)), combined with the classical mechanical
conditions on the growth surface, are sufficient to ensure the
attainment of a particular reference metric distribution G̊(x)
in the grown body.

Suppose, for simplicity, that the constitutive relation S =
S(∇y, G̊) can be inverted, allowing one to express function-
ally the (time-independent) reference metric in terms of the
(time-dependent) current values of stress and strain, to obtain
G̊ = G̊(∇y, S). Such inversion, however, does not solve our
problem directly, because the projection of such relation on
the growth surface involves ∇y rather than ∇ȳ. Indeed, the
(commutation) relation (5) indicates an essential coupling
of the equilibrium problems (2) at different time instants.
The functions ẏ(x) will then depend on the whole deposition
protocol, making the relation between G̊(x) and the controls
(ȳ(x), Sa(x)) fundamentally nonlocal. The simplest way to
deal with such path dependence is to consider an incremental
reformulation of the problem.

We start with the straightforward representations

∇y(x, t ) = ∇y(x) +
∫ t

ϑ̊ (x)
∇ẏ(x, s) ds,

(6)

S(x, t ) = S(x) +
∫ t

ϑ̊ (x)
Ṡ(x, s) ds.

In (6) we can use the relation Ṡ = A(∇y, G̊) ∇ẏ where A =
∂2
∇ye(G, G̊) is the tangential elasticity tensor, which depends

on the reference metric. We can also write DivS = DivS̄ +∫ t
ϑ̊ (x) DivṠ ds − Ṡ∇ϑ̊ , and since body forces can be written as

f (x, t ) = f (x) +
∫ t

ϑ̊ (x)
ḟ (x, s) ds (7)

the equilibrium condition DivS + f = 0 transforms into the
incremental field equation for the stress increment, together
with a boundary condition on incremental tractions [32,47]:

DivṠ + ḟ = 0 B̊t
(8)

Ṡn̊ = D̊(DivS + f ) ∂B̊t

The boundary condition (8)2 shows that if the new mass
points are deposited on ∂B̊t in a state of mechanical unbalance
(DivS + f �= 0) they are instantly reequilibrated by activating
the incremental elastic displacements ẏ(x, t ).

The knowledge of the functions ∇y(x, t ) and S(x, t ) at
each time step allows one to use the relation G̊ = G̊(∇y, S)
to compute the reference metric of the newly adhered layers.
This information is needed to update the tangential elasticity
tensor A, which can be then used to solve the next incremental
equilibrium problem.

V. LINEARIZATION

It is instructive to compare the nonlinear theory presented
above with its linear counterpart [47,48]. Introduce the dis-
placement field u(x, t ) = y(x, t ) − x and assume that both the
displacements and the displacement gradients are small [63].

Then the analysis of the current metric G(x, t ) can be replaced
by the study of the linearized strain ε(x, t ) = sym∇u(x, t ),
and instead of the reference metric G̊(x) one can consider
the linear reference strain ε̊(x). In this approximation, the
elastic constitutive relation takes the simple form S = Cεe,
where εe = ε − ε̊ is the elastic strain. The Hookean elasticity
tensor C will be taken as positive definite and space-time
independent.

While in the nonlinear theory the function ȳ(x) can be
appreciably different from x, in the linear setting we must have
ȳ(x) � x. This implies that out of our six controls three are
automatically fixed and we have only the surface stress Sa(x)
to work with. This is, of course, consistent with the fact that
in the linear theory only the three independent components
of the incompatibility of the reference strain η̊ = CurlCurlε̊
affect the solution of the elasticity problem [64]. A funda-
mental advantage of the linear formulation is that the relation
between the incompatibility in the newly accreted points and
the solution of the incremental problem can be made explicit
[47]:

η̊ = η − CurlCurl [sym(u̇ ⊗ ∇ϑ̊ )], (9)

where the tensor η = −CurlCurl(C−1S) can be viewed as a
measure of the incompatibility in the arriving material. If
instead the reference incompatibility η̊ is known, the stress
distribution at each moment of time t can be found directly by
solving the boundary-value problem

DivS + f = 0 B̊t

CurlCurl(C−1S) + η̊ = 0 B̊t (10)

Sn = s ∂B̊t .

Such a formulation is, of course, not possible in the nonlin-
ear setting, where the knowledge of the full tensor G̊(x) is
required to find the stress distribution S(x, t ) at each stage of
mass accretion.

In the incremental problem the equilibrium equations (8)
remain the same with Ṡ(x, t ) = C∇u̇(x, t ). An important
difference, though, is that the incremental displacement field
is defined on a fixed configuration of the body, which is
controlled at each moment of time by the function ϑ̊ (x).
Otherwise, the procedure of solving a one-parametric family
of incremental problems remains the same as in the nonlinear
case, with the prescription of the tensor Sp(x), defined by the
tractions s(x), and by fixing the three extra components of the
surface stress Sa(x), which control the incompatibility η̊(x).

While the linearized theory preserves some of the complex-
ity of the full nonlinear formulation, it underrepresents several
important effects. For instance, in the linear theory the refer-
ence and actual configurations are identified, which makes it
impossible to deal with problems involving confined growth
in fixed domains. Another problem is that in the linearized
theory we assume that the elasticity moduli are fixed, while in
the nonlinear theory the whole deposition history is encoded
both in G̊ and in the tensor field A(x, t ). The implied elastic
inhomogeneity, accumulated during accretion, is particularly
relevant for biological materials where the hardening nonlin-
earity may be extremely strong [50]. Strong inhomogeneity
of elastic properties can also become the origin of material
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instabilities [65] that can, of course, serve by themselves as
potential targets in the design of surface growth protocols.

VI. RADIAL SYMMETRY

To illustrate the above general theory, consider now more
in detail the accretion process under the condition of radial
symmetry (both in two and in three dimensions).

Assume that the evolving reference configuration is a part
of a ball B̊t = {x | ψ0 � r � ψt } in Rn where r = ||x||, where
n = 2 for disks and n = 3 for spheres. The function ψt =
ψ0 + D̊ t will define the position of the growth surface at time
t , where ψ0 is its initial position. For simplicity, the referential
growth velocity D̊ will be taken as constant. We can then write
ϑ̊ (r) = (r − ψ0)/D̊, where D̊ = 1/ϑ̊ ′.

Denote the unit vector pointing in the radial direction
by e = x/r. Then the radially symmetric deformation can
be written as y(x, t ) = χ (r, t )e(x). The ensuing deformation
gradient is

∇y(x, t ) = λr (r, t )e(x) ⊗ e(x) + λθ (r, t )P(x) (11)

where λr (r, t ) = ∂rχ (r, t ) and λθ (r, t ) = χ (r, t )/r are the
stretches in radial and azimuthal directions, and P = I − e ⊗
e is the projection tensor. In view of radial symmetry, the most
general form of the time-independent reference metric is

G̊(x) = γ 2
r (r)e(x) ⊗ e(x) + γ 2

θ (r)P(x). (12)

For the case of a disk (n = 2), the Ricci tensor of G̊ reduces
to the Ricci scalar (twice the Gaussian curvature K) [54]:

Sd = 2K = 2
γθγ

′
r + rγ ′

rγ
′
θ − γr (2γ ′

θ + rγ ′′
θ )

rγ 3
r γθ

. (13)

For a 3D sphere (n = 3) the Ricci tensor reduces to two
independent components:

Rs
1 = 2

γθγ
′
r + rγ ′

rγ
′
θ − γr (2γ ′

θ + rγ ′′
θ )

rγrγθ

Rs
2 = γ 3

r + rγθγ
′
r (rγθ )′ − γr

[
γ 2

θ + r2γ ′2
θ + rγθ (4γ ′

θ + rγ ′′
θ )

]
γ 3

r

.

(14)

To determine the unknown functions γr (r) and γθ (r) we
need to prescribe two auxiliary conditions on the growth
surface. In the case of radial symmetry (for both n= 2, 3)
the vector function ȳ reduces to a scalar function χ̄ (r) and, in
view of the representation S̄ = s̄r (r)e ⊗ e + s̄θ (r)P, the active
stress Sa reduces to its hoop component s̄θ (r). The additional
conditions prescribing the growth protocol may then take the
form of restrictions imposed on the functions χ̄ (r) and s̄θ (r)
with the other component of the deposition stress s̄r (r) fixed
passively. Note that in the problem of inward accretion against
a fixed wall we have n̊ = −e, so that the mass flux ṁ = �̄α ¯̇χ ;
for outward accretion, n̊ = e and ṁ = −�̄α ¯̇χ .

To formulate the incremental problem when the functions
χ̄ (r) and s̄θ (r) are known, we first need to specialize (6) for

the case of spherical symmetry:

λr/θ (r, t ) = λ̄r/θ (r) +
∫ t

ϑ̊ (r)
λ̇r/θ (r, s) ds,

(15)

sr/θ (r, t ) = sr/θ (r) +
∫ t

ϑ̊ (r)
ṡr/θ (r, s) ds

where, from (5), the deposition stretches are

λ̄r (r) = χ̄ ′(r) − ϑ̊ ′(r) χ̇ (r)
(16)

λ̄θ (r) = χ̄ (r)/r.

To compute the rates λ̇r = ∂χ̇ and λ̇θ = χ̇/r we need to
introduce the incremental moduli:

ṡr = Arr λ̇r + Arθ λ̇θ

(17)
ṡθ = Aθr λ̇r + Aθθ λ̇θ .

These moduli can be expressed in terms of the current values
of stretches λr/θ (r, t ) and stresses sr/θ (r, t ) which, as we have
mentioned before, depend on the whole accretion history.

Since G̊(x) is time independent, we can time differentiate
the inverse constitutive equation G̊(∇y, S) to obtain Ṡ =
Ã(∇y, S)∇ẏ, with Ã = −(∂SG̊)−1(∂∇yG̊). In the case of ra-
dial symmetry, the implied inversion of the elastic constitutive
relation can be easily accomplished when the elastic energy is
quadratic in strain. In view of isotropy, we can then write

e(G, G̊) = E

2(1 + ν)

(
tr
(
ε2

e

) + ν

1 − 2ν
(trεe)2

)
. (18)

Here the elastic strain εe can be chosen in different ways,
for instance, in the “linear” form εlin

e = (G − G̊)/2 defining
Saint Venant–Kirchhoff material [23,66] or in the “logarith-
mic” form ε

log
e = [log(GG̊−1)]/2 defining Hencky material

[67–69]. Note that in the case of linear strain εlin
e a finite

energy is needed to squeeze a volume element into a point,
while this energy is infinite when we use the logarithmic strain
ε

log
e .

For a sphere the elastic model (18) with linear strains εlin
e

gives

γr =
√

λ2
r − 2sr/(Eλr ) + 4sθ ν/(Eλθ )

(19)

γθ =
√

λ2
θ + 2srν/(Eλr ) + 2sθ (ν − 1)/(Eλθ ).

If, instead, we use the logarithmic strain ε
log
e , we obtain

γr = λr exp [(2νsθλθ − srλr )/E ]
(20)

γθ = λθ exp {[sθλθ (ν − 1) + νsrλr]/E}.
Since the inelastic strains are time independent, by time
differentiation of (19) and (20) we obtain the incremental
constitutive equations. In the case when we use the lin-
ear strain measure εlin

e , the tangential elasticity tensor Ã
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has components

Ãrr = Eλ2
r (1 − ν)/[(1 + ν)(1 − 2ν)] + sr/λr

Ãrθ = Ãθr = Eνλrλθ/[(1 + ν)(1 − 2ν)] (21)

Ãθθ = Eλ2
θ (1 − ν)/[(1 + ν)(1 − 2ν)] + sθ /λθ

while, if we use the logarithmic strain ε
log
e ,

Ârr = E (1 − ν)
/[

λ2
r (1 + ν)(1 − 2ν)

] − sr/λr

Ârθ = Âθr = Eν/[λrλθ (1 + ν)(1 − 2ν)] (22)

Âθθ = E (1 − ν)
/[

λ2
θ (1 + ν)(1 − 2ν)

] − sθ /λθ .

We now have all we need to formulate the sequence of
incremental equilibrium problems. Specialization of the equi-
librium equations (8) to the case of radial symmetry gives

∂ ṡr

∂r
+ n − 1

r
(ṡr − ṡθ ) = 0. (23)

The boundary condition (8) on the growth surface takes the
form

ṡr = D̊

(
dsr

dr
+ n − 1

r
(sr − sθ )

)
. (24)

The problem then reduces to solving a one-parametric family
of linear elasticity problems which are nonlinearly coupled
through the evolving spatially inhomogeneous elastic moduli
(17) and the variable forcing on the boundary (24).

Note that often it may be more convenient to specify
the deposition protocol in Eulerian rather than Lagrangian
coordinates. In this case we can still formulate the incremental
problem in terms of Piola-Kirchhoff components of stress;
however, the boundary conditions (24) would have to be mod-
ified. Thus, if we can control at deposition the components
of Cauchy rather than Piola-Kirchhoff stress, the incremental
boundary condition describing the radially symmetric growth
will take the form

ṡr − 1

r
σ θ χ̇ = D̊

(
σ ′

r λ̄θ + χ̄ ′

r
(σ r − σ θ )

)
(25)

in the case of a disk (n = 2) and

ṡr − 2

r
σ θ λ̄θ χ̇ = D̊

(
σ ′

r λ̄θ + 2χ̄ ′

r
(σ r − σ θ )

)
λ̄θ (26)

in the case of a sphere (n = 3). Here σ̄r/θ (r) are the com-
ponents of the Cauchy stress on the growing surface, where
in the case of a disk (n = 2) the relation between Cauchy
and Piola-Kirchhoff stresses reads sr = σrλθ and sθ = σθλr ,
while, in the case of a sphere (n = 3), sr = σrλ

2
θ and sθ =

σθλrλθ . Observe that the boundary conditions (25) and (26)
couple the controlled stress σ r, σ θ and the controlled shape
χ̄ (r), which is a purely nonlinear effect.

VII. CASE STUDIES

To illustrate different aspects of the developed general
theory, we now elaborate a few explicit case studies, which are
all relevant for applications. Our main goal here is to highlight
the effects of physical and geometrical nonlinearities, and
to illustrate path dependence of the surface growth process.
Our examples show that the deposition protocol is effectively

FIG. 3. (a) Schematic presentation of the 2D winding growth set
up with controlled traction force. (b) Winding protocols required to
embed the diagonal reference metrics with γr = 1.2, γθ = 1 (solid)
and γr = 1, γθ = 1.2 (dashed). Red, nonlinear Hencky model with
E = 1 and ν = 0.3; blue, its linearization. In all plots a = 0.1 and
re = 2.

remembered by the grown body through the accumulated
incompatibility, the inhomogeneity of the incremental moduli,
and the shape of the body liberated from the constraints. In
all examples we assume that the function ϑ̊ (x) is prescribed,
leaving aside the problem of the feedback received by the
growth mechanism from the current state of stress.

A. Winding of 2D disks

Consider a process of winding of an infinitesimally thin
tape on a rigid mandrel. Suppose that the growth process takes
place in two dimensions so that the emerging hollow disk is
constrained to remain in plane. Assume that the winding is
accomplished by pulling the adhering tape with a controlled
tangential force. If the adhering layers have thickness h and
the tangential force is F , we assume that in the double
limit h → 0, F → 0 the hoop stress σ̄θ = F/h remains finite
[see Fig. 3(a)]. The growing disk D = {x | a � ||x|| � ψ}
(with ψ � re) can be parametrized by the referential radius
ψ of the external circle where the tape deposition takes place.

We begin with the simplest inverse problem: given that
the acquired reference metric G̊ = diag(γ 2

r , γ 2
θ ) is homoge-

neous, find the corresponding deposition protocol. Somewhat
counterintuitively, this metric can be nontrivial, being locally
compatible and globally incompatible. Indeed, in view of (13),
we have Sd = 0 whenever

γr = k(rγθ )′, (27)

and, if γr = γθ = const with γr = kγθ for some k �= 1, the
Gaussian curvature K is equal to zero everywhere except for
the origin, where the polar coordinate system is singular and
the curvature has a delta-function-type singularity. Physically
such target configuration corresponds to a disk with a removed
(k > 1) or inserted (k < 1) wedge [with opening angle 
θ =
−2π (k−1 − 1)] [70,71].

Observe next that the prescription of a reference metric
implicitly constrains the choice of the Lagrangian coordinates
for the reference configuration of the growing body. If we
assume, in addition, that the normal tractions on the growth
surface are absent [sr (ψ,ψ ) = 0], we can solve the sequence
of incremental problems and compute both the current hoop
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stress s̄θ (ψ ) = sθ (ψ,ψ ) and the current radius of the disk
χ̄ (ψ ). With this information at hand, we can express the
Cauchy hoop stress σθ = sθ /λr in terms of the current position
of the growth surface, to obtain the function σθ (χ ) controlling
the winding process. Our computational results are illustrated
in Fig. 3(b) for the case of 2D Hencky material with logarith-
mic strain ε

log
e .

Note that to obtain discs with positive embedded Gaussian
curvature (γr > γθ ) the controlled traction force must be
positive, whereas to embed negative curvature (γr < γθ ) it
must be negative. This is consistent with the fact that disks
with positive curvature are obtained by removing a wedge:
indeed, by wrapping through pulling we deposit less mass
per length than in the case of zero force wrapping. Instead,
pushing produces an opposite result and leads to disks with
negative curvature.

To understand these numerical results more deeply, we
can compare them with the analytically transparent linearized
theory. To this end we set γr/θ = 1 + ε̊r/θ and assume that the
inelastic strains ε̊r/θ are small. The linearization of the scalar
Ricci curvature (13) gives the compatibility condition in the
bulk:

ε̊′′
θ + 2ε̊′

θ − ε̊′
r

r
= 0, (28)

which can be also rewritten as (rϕ̊)′ = 0, where ϕ̊ = ε̊′
θ +

(ε̊θ − ε̊r )/r. Therefore ϕ̊ = c/r where c is an arbitrary con-
stant and if c �= 0 there will be a curvature singularity at
the origin (signifying the presence of an inserted or removed
wedge).

We reiterate that even though the inelastic strains ε̊r/θ are
homogeneous the residual stresses in this case will be different
from zero. Indeed, if u is a radial displacement, the total
strains εr = u′ and εθ = u/r can be additively decomposed
as εr/θ = er/θ + ε̊r/θ , where the elastic strains er/θ are consti-
tutively related to stresses by er/θ = (σr/θ − νσθ/r )/E , where
ν is the Poisson ratio and E is the Young modulus in the 2D
case. Since in equilibrium σ ′

r + (σr − σθ )/r = 0, the residual
stresses in a traction-free disk can be determined by solving
the equation (r3σ ′

r )′ = −Er2ϕ̊ with ϕ̊ = (ε̊θ − ε̊r )/r. If ε̊θ �=
ε̊r the solution will be obviously nonzero even for a hollow
disk with zero boundary conditions σr (a) = σr (re) = 0.

We can now use the linearized theory to address the pecu-
liar behavior of the winding tension σθ (ψ ) in the nonlinear
theory [see Fig. 3(a)]. Solving the linear equilibrium problem
with boundary conditions u(a, ψ ) = 0 and σr (ψ,ψ ) = 0, we
obtain σθ (ψ ) = E{(ε̊r − ε̊θ )[ψ2 − 2a2(1 − 2ν) log(a/ψ )] −
a2[ε̊r + ε̊θ (3 − 4ν)]}/(2[a2(1 − 2ν) + ψ2)(1 − ν2)]. In par-
ticular, at ψ → ∞ we have

σ∞
θ = E (ε̊r − ε̊θ )

2(1 − ν2)
(29)

whereas in the limit ψ → a we obtain

σ a
θ = − E ε̊θ

1 − ν2
. (30)

These analytical results confirm the general trends observed in
the numerical solution of the nonlinear problem and show to
what extent the linearized theory overestimates the necessary
winding tension (see Fig. 3).

FIG. 4. Stress-free 3D configurations of prestressed 2D disks:
(a) exact result for γr = 1.2 and γθ = 1 and (b) approximation with
m = 2, A = 0.55 for γr = 1 and γθ = 1.2.

B. Isometric embedding of 2D disks into three dimensions

To illustrate the growth induced incompatibility produced
by winding, we now allow the grown disk to detach from its
(imaginary) 2D substrate and take a relaxed shape in three di-
mensions. Such an isometric embedding ψ : R2 �→ R3 leads
to the full relaxation of elastic energy and must therefore
satisfy the system of equations G̊ = ∇ψT∇ψ, where (γr, γθ )
is the homogeneous diagonal reference metric acquired in the
process of controlled growth discussed above. We remark that
such relaxed shapes may serve by themselves as the target of
controlled surface manufacturing [25,72].

Note first that the relaxed shape of the disk in three dimen-
sions depends crucially on the sign of its Gaussian curvature
which is proportional to the effective wedge opening 
θ =
−2π (γθ/γr − 1). As we show below, for γr > γθ the isomet-
ric embedding takes the form of a circular cone, whereas for
γθ > γr it is known as an excess cone (or anticone) [73,74].

We begin with the trivial case γr = γθ , when the isomet-
ric embedding is confined to two dimensions and ψ(x) =
g(r)e(x) : R2 �→ R2. Here e is the unit vector in the radial
direction, and g(r) = rγθ = rγr . Clearly, in this case, the
relaxed configuration of the disk is just another flat disk.

If γr > γθ , the Gaussian curvature is positive and, even
if the functions γr and γθ are r dependent, we can write a
universal embedding ψ(x) = ρ(r)e(x) + ζ (r)k where the unit
vector k is perpendicular to the reference plane. The unknown
functions ρ(r) and ζ (r) must satisfy γ 2

r = ρ ′2 + ζ ′2 and γθ =
ρ/r, so that for an homogeneous metric we have ρ = rγθ and
ζ = r(γ 2

r − γ 2
θ )1/2 + c, with c an integration constant. The

latter expression shows that ζ is real only if γr > γθ . The
corresponding relaxed shape is shown in Fig. 4(a).

When γr < γθ the embedded curvature is negative and the
reconstruction of the 3D relaxed surface is not straightforward
[25,73,75]. An approximate construction can be built based on
the auxiliary surface ψ(x) = rρ(θ )e(x) + rζ (θ )k (see [74]),
the induced metric of which is also diagonal (γ̃ 2

r (θ ), γ̃ 2
θ (θ ))

with

γ̃ 2
r (θ ) = ρ2(θ ) + ζ 2(θ )

(31)
γ̃ 2

θ (θ ) = γ̃ 2
r (θ )

{
1+ζ ′2(θ )

/[
γ̃ 2

r (θ )−ζ 2(θ )
]}−ζ 2(θ ).

Generically, this metric is not homogeneous and is there-
fore, strictly speaking, incompatible with the homogeneous
reference metric generated by the winding process. How-
ever, we can require that one of its components is homoge-
neous γ̃r (θ ) = γr and the other one meets the original ansatz
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FIG. 5. Stress-free 3D configuration of a prestressed 2D disk
with γr = 1 and γθ = 1.2: approximate solution with m = 30,

A = 0.032.

on average so that 1
2π

∫ 2π

0 γ̃θ (θ ) dθ = γθ . To meet this con-
straint, the physical meaning of which is that the image of a
constrained reference circle has a prescribed perimeter in the
relaxed state [74], we can, for instance, assume that ζ (θ ) =
A sin(mθ ), where m > 1 is an integer.

The integral condition provides a link between A and m
and for the case of homogeneous γr, γθ the amplitude of the
oscillation decreases with increasing wave number m (see
Fig. 5). The resulting smooth embedding is, of course, only an
approximation of the relaxed surface which can be expected
to be rather rough [76]. However, lower-order modes, like the
one shown in Fig. 4(b), will be energetically favored if, for
instance, small bending stiffness is taken into consideration.

C. Outward growth under controlled pressure

Our next example concerns outward accretion of a hollow
sphere under controlled pressure, which is physically relevant
in the context of pressurized freezing [38]. The goal of this
example is to illustrate the possibility of extreme path depen-
dence of the accretion process.

We assume that the reference configuration is a hol-
low sphere B̊t = {x | A � ||x|| � ψt � B}, where A and B
are the initial and final radii. The current configuration is
Bt = {y | a � ||y|| � χ̄ (ψt )}, which shows that the internal,
nongrowing surface is forced to remain on a rigid bead of
radius a.

We further assume that the growth protocol is characterized
by the following conditions on the accretion surface:

σ̄r (ψt ) = σ̄θ (ψt ) = −p[χ̄ (ψt )]

χ̄ (ψt ) = ψt .
(32)

The second condition (32) is just the simplest assumption that
the reference configuration for the arriving material particles
coincides with the actual configuration. Instead, on the non-
growing part of the boundary we impose the hard constraint
χ (A, t ) = A.

For determinacy, we assume that

p(z) = β

(
z − χ̄ (A)

χ̄ (B) − χ̄ (A)

)m

(33)

where β and m are prescribed constants. All members of this
“family” begin (ψ0 ≡ A) and end (ψT ≡ B) at the same level
of pressure while exhibiting superlinear or sublinear growth
depending on whether m > 1 or m < 1.

Our numerical simulations for the Hencky material (with
strain ε

log
e ) show appreciable protocol (history) sensitivity,

FIG. 6. Effect of different pressure protocols on the outcome of
the outward accretion with controlled pressure. In all figures, solid
curves correspond to m = 3 and dashed curves correspond to m =
1/3. (a) Blue, radial; red, azimuthal components of stress at the end
of the accretion process for the two pressure protocols showed in
the inset. (b) The final distribution of the two components of Ricci
curvature. (c) The final distributions of the elastic moduli; the color
code is the same as in Fig. 9. The parameters are β = 0.2Pa, ν = 1/3,
A = a = 0.5, B = 1.

which can be seen in the final stress distribution [see Fig. 6(a)]
and in the final inhomogeneity of tangential elastic moduli
[see Fig. 6(c)]. The most striking effect concerns the final
distribution of incompatibility. As we see in Fig. 6(b), a
seemingly insignificant change in the control of pressure
during deposition can lead to either divergence of the two
components of curvature at the inner boundary of the body
(for m < 1) or their convergence to finite values (for m > 1).
In other words our computations show that the embedded
curvature lacks continuity with respect to the parameter m.
The origin of this dramatic effect can be explained already in
the framework of a more transparent linearized theory.

Note first that in 3D linearized theory the metric is compat-
ible if two conditions are satisfied simultaneously: (rϕ̊)′ = 0
and (r3ϕ̊)′ = 0 where again ϕ̊ = ε̊′

θ + (ε̊θ − ε̊r )/r. The solu-
tion of these equations is ϕ̊ = 0 and, since the equilibrium
problem for the stress distribution in the unloaded 3D body is

(r4σ ′
r )′ = −2Er3ϕ̊/(1 − ν)

σr (ri) = σr (re) = 0,
(34)

hollow spheres behave quite differently than hollow disks,
where there can be residual stresses even if the regular part
of the curvature vanishes.

The 3D linearized problem of surface accretion under
a general pressure distribution p(z) can be solved explic-
itly. We now assume that a = A. If we again replace time
by the radius ψ of the growing surface, the solution to
the problem (23) with incremental boundary conditions
u̇(a, ψ ) = 0 and σ̇r (ψ,ψ ) = −p′(ψ ) is u̇(r, ψ ) = c1(ψ )r +
c2(ψ )/r2 with c1(ψ ) = (1 + ν)(2ν − 1)ψ3 p′(ψ )/{E [2(1 −
2ν)a3 + (1 + ν)ψ3]} and c2(ψ ) = −a3c1(ψ ). The resulting
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stress distribution takes the form

σr (r, ψ ) = −p(r) +
∫ ψ

r

s3[r3(1 + ν) + 2(1 − 2ν)a3]p′(s)

r3[s3(1 + ν) + 2(1 − 2ν)a3]
ds

σθ (r, ψ ) = −p(r) +
∫ ψ

r

s3[r3(1 + ν) − (1 − 2ν)a3]p′(s)

r3[s3(1 + ν) + 2(1 − 2ν)a3]
ds.

(35)

In particular, these expressions show that the case a = 0 is
trivial in the sense that the stress in the growing sphere is
necessarily hydrostatic.

The distribution of residual stresses in a hollow sphere of
internal radius ri and external radius re is given by (34). The
expression for ϕ̊(r) can be found by solving the linearized
problem of surface accretion with ri = a:

ϕ̊(r) = 3(1 − ν)(1 − 2ν)a3

Er3(1 + ν) + 2(1 − 2ν)a3
p′(r). (36)

This expression confirms that no incompatibility can result
from a growth process unless the sphere is hollow (a �= 0)
and the applied pressure varies along the deposition process.
If we substitute (33) into (36) and expand the result in small
δ = (r − a)/a, we obtain ϕ̊(δ) ∼ δm−1, which shows that the
curvature either diverges or tends to zero in proximity of the
inner radius depending on whether m < 1 or m > 1. This is
exactly what we found numerically in the case of nonlinear
Hencky material (with strain ε

log
e ) [see Fig. 6(b)].

D. Inward growth on a rigid bead

Consider now accretion on a rigid spherical surface, mim-
icking the process of inward actin polymerization stimulated
biochemically on a specially treated spherical bead [18,49,77]
[see Fig. 7(b)]. A similar process with cylindrical symmetry
would be the growth of a tree where new mass is deposited
between the existing trunk and the bark [1,42]. We use this
example to highlight the essential role of geometrical nonlin-
earity because the linearized setting of such a problem is not
even meaningful.

Indeed, in our problem the reference configuration B̊t =
{x | ψt � ||x|| � ψ0} and the actual configuration Bt =
{y | χ (ψt , t ) � ||y|| � χ (ψ0, t )} are fundamentally different
[see Fig. 7(a)], because the current radius of the growing
surface is fixed χ (ψt , t ) = a while its reference radius ψt

continuously evolves. As a result, the reference and actual
domains cannot coincide, which is the natural starting as-
sumption of any geometrically linear elasticity theory.

In physical terms, we assume that the growth process
starts at a surface of a rigid spherical bead and that the
arriving material is being continuously “squeezed” between
the emerging grown body and the original rigid surface (the
actual mechanism of mass delivery is obviously disregarded).
While the growing body is expanding away from the bead and
its external radius χ (ψ0, t ) is an increasing function of time,
the reference radius of the growth surface ψt is a decreasing
function of time.

To determine both the current state of stress and the two
unknown components (γr (r), γθ (r)) of the reference metric,

FIG. 7. Inward accretion over a rigid bead. (a) Schematic 2D
representation of the 3D reference and current configurations. The
red circle is the trace of the growing surface in both configurations;
ψ0 is the initial reference radius and a is the current fixed radius
of the growing surface. (b) Electron microscopy images of an inward
growing actin layer showing also outward progression of the external
nongrowing surface [77].

we impose three boundary conditions on the growth surface:

σ̄r (ψt ) = σ̄θ (ψt ) = −p(ψt )
χ̄ (ψt ) = a.

(37)

The first of these conditions states that the attachment stress
is hydrostatic with time-dependent pressure which is con-
trolled externally. In deviation from the previous example, we
assume that the pressure control is not direct but is rather
an outcome of the control of the Eulerian velocity of the
arriving material ¯̇χ (ψt ) = ṁ/(�̄α). Essentially this means the
control of a volumetric inflow rate, which in the context of
actin polymerization appears to be more realistic than the
full control of the attachment stress [18,49]. On the exterior
surface of the growing body we assume the no tractions
condition, sr (ψ0, t ) = 0.

To find the evolution of pressure at the growth surface, we
finally make use of (26). When this condition is specialised to
the case of hydrostatic deposition, it reads

ṡr + 2pλ̄θ

¯̇χ

r
= −D̊p′λ̄2

θ .

This expression can be used to update the value of pressure on
the growth surface in the incremental way, starting from the
initial value p(ψ0) = 0.

The succession of incremental problems can be solved
numerically and we illustrate the final stress distribution in
Fig. 8(b). Note that the deviatoric stress is maximal at the
external (nongrowing) surface of the body, which, in principle,
should lead to surface instabilities [78]. The parameters were
tuned to match the numerical results obtained for a growing
network of actin rods, biased to polymerize on contact with a
spherical bead [49]. The pressure buildup at the rigid surface,
the final distribution of the components of the Ricci tensor,
and the residual inhomogeneity of the elastic moduli are
shown in Fig. 9.

E. Growth induced material instabilities

The aim of our last example is to show that incompatible
mass accretion can lead to material instabilities. Since the
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FIG. 8. (a) Schematic representation of the incompatibility de-
veloping in the inward accretion problem. An ideal compatible
referential tiling (above) is accreted as an incompatible tiling (below)
with the gaps elastically compensated by the growth stresses. The
typical distributions of the radial (blue), hoop (red), and deviatoric
(dashed) components of these stresses are shown in (b). Here χ̃ =
(χ − a)/(ψ0 − a) is a dimensionless radius in the current configura-
tion. The parameters are a = 1, ψ0 = 9, ψT = 4.5, ṁ/(�̄α) = 0.05,
E = 5 × 10−3Pa and ν = 0.3.

latter are not related directly to geometrical effects, this exam-
ple stresses the importance of physical nonlinearity in surface
growth problems.

Suppose that the reference configuration is given by B̊t =
{x | ψ0 � ||x|| � ψt } where now it is the outward surface
of a hollow sphere that is growing. The current configura-
tion is Bt = {y | χ (ψ0, t ) � ||y|| � χ̄ (ψt )}, and we assume
again that the growing surface is constrained by a rigid wall
χ (ψt , t ) = a. In other words, we assume that the mass is
continuously squeezed between the existing surface of the
body and the rigid spherical cavity (see Fig. 10). Once again,
the actual and the reference configurations cannot coincide at
any time, which makes the geometrical linearization of the
problem meaningless.

FIG. 9. Inward accretion over a rigid surface. (a) Pressure
buildup in the process vs the placement of the referential growing
surface, displacing from ψ0 to ψT . (b) The final distribution of the
two components of Ricci curvature and (c) the rescaled elastic mod-
uli in the referential domain r ∈ (ψT , ψ0). Here, Âαβ = Ãαβ/A0

αβ ,
where A0

αβ are the moduli (22) evaluated at sr =sθ =0, λr =λθ =1.

FIG. 10. (a) Schematic representation of the inward accre-
tion inside a rigid spherical cavity. The red circle is the trace of
the growing surface in the current and reference configurations;
the red arrow indicates the growing direction. (b) Distribution of the
determinant of the acoustic tensor for three consecutive placements
of the growing surface. For ψt > ψ∗ = 5.82, strong ellipticity is
lost at the internal (nongrowing) radius r∗ = A. Black, blue, and
red curves describe the determinant for ψ1 = 5.85, ψ2 = 5.94, and
ψ3 = 6.1, respectively. Inset: Plot of the determinant in a wider
range, showing the full blown behavior in the negative region. Here
E = 1Pa, a = 3, A = ψ0 = 5, D̊ = 1, and ṁ/(�̄α) = 0.2.

On the growth surface we maintain the same conditions as
in the previous example:

σ̄r (ψt ) = σ̄θ (ψt ) = −p(ψt )
χ̄ (ψt ) = a,

(38)

and, again, instead of prescribing pressure directly, we assume
that the growth is controlled through the Eulerian velocity of
the arriving material ¯̇χ (ψt ) = −ṁ/(�̄α). Also, similarly to the
case of inward growth, we assume the zero tractions condition
on the internal surface, sr (ψ0, t ) = 0.

The ensuing sequence of incremental problems can be
solved numerically and our focus now will be on the material
stability of the grown body. More specifically, we consider
the case of linear strain tensor εlin

e (Saint Venant–Kirchhoff
material) and check whether the strong ellipticity condition
[79] may be violated during accretion.

We recall that the strong ellipticity condition requires that
A(m ⊗ k̊) · (m ⊗ k̊) > 0 where A = ∂S/∂F is the instanta-
neous elasticity tensor and m and k̊ are unit vectors. To
ensure this condition it is sufficient to check that the acoustic
tensor Q(m), the action of which on a vector a is defined by
Q(k̊)a = A(a ⊗ k̊)k̊, is positive definite [63]. To locate the
domain of potential material instability we must then search
for the possibility that the determinant det Q(k̊) is negative for
some k̊ [80].

The results of a typical numerical experiment are shown
in Fig. 11, where ψt is the increasing radius of the growth
surface. Before a critical radius of the growth surface is
reached, strong ellipticity is ensured on the whole domain. At
the critical threshold the strong ellipticity is first lost at the
nongrowing (traction-free) surface. As the growth surface ad-
vances, the domain where the strong ellipticity is lost spreads
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FIG. 11. Stress distribution in the sphere for ψ = 5.85. (b) The
minimized determinant of the acoustic tensor in a wider range,
showing the full blown behavior in the negative region.

behind getting progressively closer to the growth surface. It
should be mentioned, however, that while strong ellipticity
may be formally lost our incremental equilibrium problems
are constrained to maintain radial symmetry. For this reason,
our numerical tests do not show instability even after the
unconstrained problem becomes ill posed.

VIII. CONCLUSIONS

A large-strain theory of incompatible surface growth is for-
mulated here in terms of the highly unusual boundary condi-
tions. These conditions are prescribed on a free surface which
can move along the reference coordinates. The significance of
our formulation is in the account of geometric and constitutive
nonlinearities of an elastic body, which are necessary to
adequately reproduce both finite rotations and finite stretches.
The theory is presented in a general 3D setting, with the
main focus on path dependence of the incompatible accretion
process, and its goal is to develop the means to control the
acquired incompatibility by tailoring the deposition protocol.

We showed that if both stresses and displacements can
be independently controlled at the growing surface, one can
ensure pointwise manipulation of the resulting reference met-
ric which keeps a detailed memory of the deposition process.
The relation between the embedded Ricci tensor of the refer-
ence metric and the time dependence of the control parameters
was shown to be nonlinear and nonlocal. It emerges from a so-
lution of a one-parametric family of incremental equilibrium
problems for linear elastic bodies with evolving geometry and
varying elastic inhomogeneity.

The problem simplifies in the case of small deformations
when geometry decouples from elasticity, which becomes lin-
ear with time-independent and homogeneous elastic moduli.
While even in this case the incremental elastic problem is
characterized by nonstandard boundary conditions, the ac-
quired incompatibility can be expressed analytically in terms
of the incremental strain rates, which simplifies considerably
the dependence of the deposited reference metric on the sur-
face controls. The main shortcoming of the linearized theory
is its inability to deal with kinematically confined growth, and
to account for the possibility of elastic instabilities induced by
the growth process.

We illustrated the general theory by a series of examples
emphasizing the role of finite strains in the surface growth of
soft solids. Our examples highlight the inherent path depen-
dence of the incompatible growth and emphasize the effects
of geometrical and physical nonlinearities in ensuring partic-
ular outcomes of the physically realizable growth protocols.
Through these examples we showed that geometrical frustra-
tion developing during deposition can be indeed fine-tuned
and that a particular behavior of a system in physiological
or industrial conditions can be engineered by embedding into
the material a particular incompatibility. The proposed general
theoretical framework can be used to guide biomimetic design
and additive manufacturing of the “information-rich” solids.

The fact that one can engineer the incompatibility in a
grown solid body, and regulate in this way the associated dis-
tribution of residual stresses, is of crucial importance for the
understanding of biological processes where solids are typi-
cally functionally prestressed. Our analysis also highlights the
possibility to manufacture non-Euclidean elastic solids with a
particular stiffness distribution. Such solids can be designed
to undergo specific elastic instabilities and to exhibit specific
patterning in the technologically relevant conditions [81–86].
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