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Abstract. This paper addresses the non-uniqueness pointed out by Ericksen in his classical analysis of the 
equilibrium of a one-dimensional elastic bar with non-convex energy [1]. Following some previous work in this 
area, we suitably regularize the problem in order to investigate this degenerancy. Our approach gives an explicit 
framework for the the study of the rich variety of finite-scale equilibrium microstructures for the bar in a hard 
loading device, and their stability properties. In this way we clarify the role of interracial energy in creating finite- 
scale microstructures, by considering the combined effect of the oscillation-inducing and oscillation-inhibiting 
terms in the energy functional. 

Sommario. 11 lavoro riguarda la non unicit~ messa in luce da J.L. Ericksen nella sua analisi dell'equilibrio di barre 
elastiche con energia non convessa. Seguendo le linee di precedenti lavori, per investigate questa degenerazione 
si ricorre ad una regolarizzazione del problema e si d~t un esplicito quadro di riferimento per lo studio della ricca 
varieth delle microstrutture di scala finita e della loro stabilitY. Si chiarisce in particolare il ruolo dell'energia di 
interfaccia nella creazione di microstrutture di scala finita considerando l'effetto combinato di termini inibitori e 
favorevoli all'insorgere di oscillazioni nel funzionale energia. 

Key words: Microstructures, Interface energy, Non convex variational problems, Phase transitions, Solid mechan- 
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1. In troduct ion  

Experimental observations of stress- and deformation-induced phase transitions and twinning 
in solids reveal fine layered microstructures in a great variety of  configurations. Typical 
examples of observed phase arrangements include rather regular patterns due to piecewise 
homogeneous layering of  twins in fine bands (see Figure 1). Ericksen's analysis [1] of  the 
highly non-unique absolute minimizers for a one-dimensional elastic bar with a non-monotone 
stress-strain relation showed how nonlinear elasticity could be used for the modeling of  
p h e n o m e n a o f  this kind. Later development of  these ideas, especially in a three-dimensional 
context, greatly improved the understanding of the-mechanisms leading to the formation of  
fine microstructures in solid-to-solid transformations (see [2] for a recent review). However, 
the absolute minimization of the elastic energy cannot predict some important features of the 
transitions, and for this reason it is interesting to investigate also the local minimizers of the 
energy. 

In this paper we briefly report about the result of a forthcoming work [3], in which 
we give a framework for the detailed investigations of  the variety of  stable and metastable 
equilibria of a simple system, for a wide range of  imposed boundary conditions. We consider 
a one-dimensional bar containing a 'mixture'  of two homogeneous elastic components. One 
component may describe the austenitic phase of a multiphase elastic material, while the 
other corresponds to a homogenized fine layering of different variants of  the martensitic 
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Fig. 1. (a) Multiply winned nanometer size plate of NisAI3 growing in B2 austenite (from Schryvers et al. [12]. 
(b) Internal martensitic twins in a CuAlt4Ni4,2 (wt %) shape-memory single crystal (from Tan and Xu [13]). 

phase of the same substance. The bar interacts with an elastic substratum which mimicks 
the three-dimensional boundary conditions constraining surface displacements. This includes 
microstructural refinement, whereas the 'surface tension' contribution to the energy drives 
the system to minimizing the number of phase interfaces (a similar model has already been 
considered in the literature, (see [4], [5]). We develop our main considerations under fairly 
general constitutive assumptions, and we find that the elastic and phase-equilibria for the 
bar in a hard loading device can be obtained by piecing together smooth solutions of ODEs, 
according to appropriate jump and boundary conditions. This allows for the study of the 
energy landscape in the infinite dimensional space, which can be made explicit at least in the 
case of a quadratic energy density for each phase. 

The expectation that our elementary model will in fact give interesting insight about finite- 
scale microstructures is supported by the analysis of S. Mtiller [4], [5]. For a special case of 
boundary conditions and under the assumption of a smooth two-well energy, he determined 
the asymptotic behaviour for the number of interfaces in the absolute minimizer, in the limit 
of vanishing surface tension and finite stiffness of the substratum. What is most remarkable, 
he could also prove the periodicity of the minimizers, which of course is not the case for the 
general boundary conditions we consider. 

Our analysis complements S. MUller's in that we focus on the local minimizers of the energy 
and extend the range of boundary conditions. This allows Us to address a number of interesting 
questions that are still quite unclear regarding the general theory of phase transitions in solids, 
and about which the existence of finite-scale metastable microstructures is likely to have great 
relevance. One issue is for instance the markedly hysteretic behaviour which is typical for 
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solids undergoing phase transformation. As is well-known, the study of absolute minimizers 
cannot account for the hysteresis in the load-deformation curves observed experimentally 
[6], [7], [8], while the material getting locked in metastable states is a likely cause of such 
phenomena. A clear suggestion about this comes for instance from the calculations regarding 
a discrete system of bistable elements (snap-springs) by Fedelich and Zanzotto [9]. Other 
questions that our model allows us to address include the formation of finite nuclei as a 
mechanism for microstructure refinement, and the assessment of the enrgy barriers between 
different equilibrium configurations. 

2. The Model 

2.1. ENERGY 

Denote by u(z)  the displacement of the reference point z of a bar [0, 1] containing a 'mixture' 
of  two homogeneous elastic components, say '+ '  and ' - '  (the two 'phases' of the material); 
their energy densities are given by smooth convex functions of the strain ur: 

f = f+(u')  and f = f_(u ' ) .  (2.1) 

We suppose that the total energy functional is given by the sum of three terms: 

/01 Jo' /o' E = [ x f - ( u ' )  + (1 - x)f+(u')]dz, + a (u") 2dz + 3 u 2dz, (2.2) 

where X denotes the volume fraction of the ' - '  phase, the first term in (2.2) gives the amount 
of elastic energy stored in the bar as the integral of the energy density per unit reference length. 
We assume that the two components are seperated; therefore, in (2.2) we assume that X is the 
characteristic function of the subset of [0, 1] occupied by the ' - '  component. The second term 
in (2.2) is a gradient-dependent 'interfacial' energy, in which a > 0 is a constant providing an 
internal length-scale proportional to a 1/2. Finally, the third term in (2.2) describes the energy 
stored in an elastic substratum due to the deformation of the bar, which introduces a further 
length-scale, proportional to 3-1/2. 

2.2. THE FUNCTIONAL 

We carry out our study under some simplifying assumptions. First, in order to concentrate 
our attention only on the physically most relevant solutions, we only allow for arrangements 
in which the region occupied by each phase is a finite union of intervals. Thus we consider a 
finite number N ofpoints ci in [0, 1], i = 1 , . . . , N ,  such that ci < ei+l(co =-- 0, CN+l =- 1), 
and require X in (2.2) to be the characteristic function of the subsets [0, cl] U [cz, c3] tO . . .  or 
[Cl, eel O [c3, ca] tO . - .  of [0, 1 ]. Each point ci gives the position of a phase-boundary in the 

bar, where a switching of components, that is, of energy functions (see (2.1)), occurs. 
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Confining our attention to extremals and competitors with a finite number of transition 
points replaces the unknown function X in (2.2) by finite sets of variables c l , . . . ,  ON; their 
number N then acts as a discrete parameter. The energy functional becomes explicitly 

Eo[u], 
E,[u, c,], 

E = EN[U, Cl,...,CN], 

(N = 0, 1,2, . . . )  

(2.3) 

whose infinitely many 'branches' are each given by 

L f C i + l  
EN[u, C h . . . , c g ]  = h'~J~>]/ [f~(u')+C~(U") 2 +/~u2]dx. (2.4) 

In the integral (2.4) it is understood that the functions f_ and f+ are taken alternately in each 
interval [ci, ei+l]. 

2.3. BOUNDARY CONDITIONS 

The (symmetric) boundary conditions to be met by all displacements in the hard device are 
given by 

u(O) = -d/2,  u(1) = d/2. (2.5) 

In (2.5) the parameter d has the meaning of a normalized measure of the imposed displace- 
ments at the ends of the pinned bar. Since we are indeed considering the normalized interval 
[0, 1], d can also be interpreted as a measure of the average strain in the bar. 

3. Local and Absolute Minimization of the Energy 

3.1. LOCAL MINIMIZATION: ELASTIC AND PHASE-EQUILIBRIA 

The particular structure of our energy functional naturally lends itself to a step-wise mini- 
mization which breaks down the process into several stages. 

Let d and N be given; we first look for minimizers [u, cl] of EN with fixed N. These will 
in turn be obtained by first calculating the extremals of EN with fixed N. Such extremals are 
the phase-equilibria of the bar, which belong to separate branches in the space of admissible 
displacements ('u-space'); each branch is indexed by the number N of phase-boundaries, 
and is parameterized by d ('N-branches' of equilibria). Extremals in an N-branch only give 
candidate minimizers, and it is necessary to investigate separately the stability of each phase- 
equilibrium. After this is determined, total minimization of (2.3) is achieved by considering 
also competitors belonging to different N-branches, i.e. with a different number of transition 
points. 
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In order to study the stability of phase-equilibria, we take advantage of two features 
of our model: the convexity of f+ and f_ and the description in terms of ei. This indeed 
decouples, for each N, a relevant finite-dimensional part of the problem, where all the non- 
convexity is present, from the remaining infinite-dimensional setting in which the problem 
is convex. This decoupling has a clear physical meaning (possibility of 'frozen' or 'slow 
moving' interfaces). 

Owing to the convexity of f+ and f_,  the displacement u can be minimized out of 
EN; doing so amounts to introducing, before actually considering phase-equilibria, another 
important class of configurations: the elastic equilibria of the bar. These are extremals of the 
energy (2,4) with the constraint that the position of the interfaces ci be fixed in [0,1]. 

Now, given any ei, N ,  and d in their appropriate ranges, it is possible to show that up 
to symmetries not affecting the energy, a unique elastic equilibrium Ud,c~ exists, which the 
convexity hypotheses guarantee is the absolute minimizer of the energy against competitors 
with the same N and ci. 

For each N, u is minimized out of EN so as to obtain E~v(ci, d), which describes the 
energy landscape of the bar in elastic equilibrium: 

E~v( ci , d) = EN[Ud,c, , ci], forN = 0, l, . . . .  (3.1) 

The uniqueness of elastic equilibria implies that, for each N, E~; is a single-valued function 
of the imposed deformation and of the position of the interfaces. 

The investigation of the stability properties of phase-equilibria belonging to an N-branch 
can now be done through the study of the minimizers of the functions E~v , N = 0, 1 , . . . ,  each 
of which just depends on a finite number of variables. Finding the extremals of EN[uc~, ci] 
in the class of all elastic equilibria, with variations of the points ci (for fixed N), we indeed 
obtain the values of the ci's giving phase-equilibria as critical points of E~v, whose stability 
can be assessed as usual. This allows us to eliminate the variables ci from (3.1), and to 
obtain the energy E~* of extremals as a function of d only. Denote by ud the phase-equilibria 
belonging to an N-branch, and by ci(d) the position of the interfaces in Ud as functions of d; 
the phase-equilibrium energy of the bar in the elastic foundation is: 

E ~ ( d )  = E~e(ci(d) ,d)= EN[Ud, Ci(d)], forN = 0, l, . . . .  (3.2) 

Its d-derivative E~(d )  gives the phase-equilibrium stress-strain relation of our system. For 
any given N, phase-equilibria at given d are in general, unlike elastic equilibria, not unique 
(nor are they always minimizers). Each N-branch of phase-equilibria thus splits into 'sub- 
branches' with same N; this in turn means that each N-branch of the phase-equilibrium energy 
E~* and of the stress-strain diagram will be multi-valued. 

3.2. ABSOLUTE MINIMIZATON; PHASE DIAGRAM 

The final minimization of the energy now takes place among all the branches of E~*. Taking 
into account also the presence of the physical parameters a and/3 which affect the features of 
the functions introduced above, absolute minimization now gives an integer-valued function 
N(d ,  a,/3) - a 'staircase' for each d, or for each a and/3. In each appropriate region of the 
(d, a,/3)-space, N (d, a,/3) indicates which one among the N-branches of solutions is the most 
stable: this is the phase-diagram of the bar. By means of N(d,  a,/3), the absolute-minimum 
energy is obtained, as a single-valued function: 

E***( d, a,/3) = E~r*(d,~,;~)( d , a,/3); (3.3) 
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its d-derivative g***(d, a,/3) gives the generalized Maxwell line in the stress-strain diagram 
E~(d).  The functions E~v*(d ) and E***(d) (and their d-derivatives) will be referred to as the 
'macroscopic' or 'effective' energy (and stress-strain relations) of the bar. 

3.3. EXPLICIT CONDITIONS FOR EXTREMALS 

By using some classical arguments of variational calculus, it is possible to see that the 
extremals are obtained by piecing together smooth solutions of ODEs, according to suitable 
jump conditions. Explicitly, in our problem the conditions characterizing the phase-equilibria 
[u, ei] subject to (2.5) are the following (see Figure 2 for the case of quadratic energies as in 
Section 4): 

(i) The displacement u is of necessity at least of class C z in [0,1], and the intervals 
[c~, ei+l], i = 0 , . . . ,  N, it satisfies the Euler-Lagrange equation: 

2 , ~ u " '  - y g ( , ~ ' ) u "  + 2/~, ,  = o (3.4) 

where it is understood that JS~ or f5  are taken in each interval, as in (2.4). 



[u"~ch = 0 

[[f~(u') - 2~u'"~c h = 0 

and 
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(ii) At the transition points eh, h = 1 , . . . ,  N,  the following must hold: 

(balance of moments), 
(3.5) 

(balance of stresses, including couple stresses), 

(Maxwell condition) 

where [[A]]~ = A(x +) - A ( x - ) d e n o t e s  the discontinuity at x of any quantity A. 
(ii) In addition to the imposed boundary conditions (2.7), the extremals must also satisfy: 

(3.6) 

u"(O) = O, u"(1) = O. (3.7) 

We recall the further jump conditions at the transition points that hold because all displacement 
are C1: 

(3.8) [[u']]o h = O, [[u]]ch : 0 (smoothness conditions). 

Conditions (3.4--3.8) and (2.5) characterize phase-equilibria, while elastic equilibria do not 
necessarily satisfy the 'Maxwell condition' (3.6); this means that there is a jump in energy at 
the transition points. Equation (3.6) is an explicit form of the critical-point condition for the 
'finite-dimensional' elastic energy E~r defined in (3.2): 

OE[v - [[f~]]Ch = O. (3.9) 
OCh 

4. The case of Quadratic Energies 

4.1. COMPUTATION OF THE EXTREMALS 

In the case of quadratic energies finding phase equilibria becomes an algebraic problem, and 
it is possible to calculate some exact solutions. 

Let us assume that the non-dimensional energy density functions of both phases are 
symmetric parabolae ('bilinear material'): 

A(u') = a)< (4.1) 

In (4.1) the elastic modulus is the same for both components, and a and - a  are strains 
giving the different stress-free stable equilibrium configurations for the two phases. The 
multi-valued energy (4.1) was originally suggested by Eshelby [10], and has been widely used 
in the literature. 

Equation (3.4) is now linear, and can be solved explicity: the infinite-dimensional part 
of the problem thus uncouples, and finding extremals reduces to the solution of a system of 
algebraic equations. This in tum splits into 'a linear subsystem' plus a nonlinear one, reflecting 
the splitting of the problem into its convex (quadratic, in this case) and non-convex parts 
noticed earlier. Given ci, the general solutions of (3.4) in each seperate single-phase interval 
[ci, ci+l] are given by linear combinations of suitable expotentials with constant coefficients 
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Fig. 3. (a) The  calculated N-b ranches  o f  the effective energy E~v* (d)  for the c a s e o f  symmetr ic  boundary condi t ions  
(2.7), for c~ = 0.01 and]~ = 10: . . . . . . .  N = 0; . . . . .  N : 1; ~ N = 2 (sub-branch o fcen t ro - symmet r i c  
extremals);  . . . . .  N = 2 (sub-branch o f  non-centro-symmert ic  extremals).  (b) The corresponding branches  
in the effect ive stress-strain curves ~ * ( d ) :  . . . . . . .  N = 0; . . . . .  N = 1; ~ N = 2 (sub-branch o f  
cent ro-symmetr ic  extremals);  . . . .  N = 2 (sub-branch o f  non-cent ro-symmetr ic  extremals).  

ah,i with i = 0, 1 , . . . ,  N, and h = 1 , . . . ,  4, because (3.4) is linear of the fourth order. These 
solutions must satisfy the boundary conditions (2.5) and (3.7), and are matched at the N 
transitions points ci by means of the jump conditions (3.5-3.8). The phase-equilibrium values 
for the ci's are then obtained by using the N equations (3.6), which, owing to (4.1), become 
explicitly 

u'(ci) = 0. (4.2) 

This means that the Maxwell condition (3.6) requires in this case the strain to be zero at the 
transition points cl (see Figure 2). The jump and boundary conditions (3.5-3.8) give a linear 
system of4 (N + 1) algebraic equations in 4(N + 1) unknowns ah,i. For any generic choice 
of the parameters ci within the appropriate ranges, the solutions 

ah,i = ah , i ( c l , . . . , cN ,  d , a , ~ ) , i =  0 , 1 , . . . , N , h  = 1 , . . . , 4 ,  (4.3) 

of this linear system are calculated, and the elastic equilibria of the bar are thus completely 
determined. The coefficients ah,i turn out to depend linearly on d. 

The nonlinearity is all concentrated in the problem of finding phase-equilibria, which 
amounts to solving the N nonlinear algebraic equations (4.2), with unknowns c l , . . . ,  CN. The 
functions 

ci = el(d, a,/~), i = 1, 2 , . . . ,  N, (4.4) 

giving the solutions of the N equations (4.2) select, for each d, the phase-equilibrium values 
for the positions of the transition points. In general, they are non-unique, so that (4.4) is 
multi-valued. 

5. Some Examples 

In this section we present some explicit results obtained from the equations in Sections 3 and 
4. In all the computations we have set a = 1 (see (4.1)) and have used (small) values of c~ and 



Finite-Scale Microstructures and Metastability in One-Dimensional Elasticity 585 

fl such that the condition 1 - 4aft > 0 is satisfied. This implies that all four characteristic roots 
of  the Euler-Lagrange equation (3.4) are real and distinct. All the effective energy functions 
are even due to the symmetry of the energies in (4.1). 

5.1. PHASE-EQUILIBRIA WITH NO INTERFACES (N = 0) 

The phase-equilibria in the 0-branch coincide with the elastic equilibria, and constitute a 
family of non-homogeneous solutions of the linear equation (3.4) that are always stable. 
There is a unique solution in u-space, belonging to the 0-branch, for all d (for d = 0 it 
gives the homogeneous solution with identically zero displacements). Nonetheless, the energy 
E~(d) = E~)*(d) (see (3.1-3.2)) is double-valued; its profile can be seen in Figure 3(a) (dashed 
line), where only the lowest energy portion of each branch is shown. The corresponding 
effective stress-strain relation ~ * ( d )  is presented in Figure 3(b)(dashed line). 

Notice that the minima of E~(d) are always above zero: this happens due to the energy 
stored in the substratum. In the case of vanishing fl (and arbitrary a)  we obtain a family of 
homogeneous deformations whose energy profile reproduces the two original parabolae. 

5.2. PHASE-EQUILIBRIA WITH ONE INTERFACE ( N  = 1) 

Extremals in the 1-branch have one transition point e E [0, 1]; the multi-valued function (4.3) 
with N = 1, giving the position c(d) of the interface for such phase-equilibria, determines 
the structure of the 1-branch of extremals, which are non-unique for any generic d within a 
bounded interval of the d-axis (also determined by the c - d relation). 

The 1-branch E~*(d) of the effective energy is represented in Figure 3(a) by the triangular 
curve (chain-dot dashed line). For vanishing a and/3 the lower side of the triangle follows 
the convex envelope of the original parabolae. The 0- and 1- (and indeed all) branches of 
extremals, intersect in u-space at the trivial homogeneous solution u ~ 0. Thus all energy 
branches meet at d = 0, as shown in Figure 3(a) for N = 0, 1,2. This is due to the absence 
of the spinodal region in the energy (4.1). Notice that u _= 0 is the only common point of 
intersection of all branches of extremals in u-space, which also implies that all the energy 
branches meet at d = 0, as shown in Figure 4(a) for N -- 0, 1,2. This is due to the absence 
of the spinodal region in the energy (4.1). In fact, the bifurcation diagram similar to the one 
shown in Figure 3(a) is less singular around the point d = 0 in the case of a smooth double-well 
energy with a spinodal region. For example, for fl = 0, one can show that for the model based 
on a smooth energy density the branch of the effective energy corresponding to the monotone 
extremals (the analog of our E~*(d)) has a triangular shape similar to the l-branch shown in 
Figure 3(a). However, it bifurcates from the homogeneous branch of the effective energy (the 
analog of our E~*(d)) and then reconnects with it at two different points (see Figure 4), rather 
than at one point (d = 0), as in the case of the biparabolic energy that we are considering. 
Also notice that moving away from the solution u _= 0 (for d = 0) along the 1-branch entails 
the creation and growth of an infinitesimal nucleus of new phase from one of the ends of the 
bar, without overcoming an energy barrier ("second order transition"). 

Figure 5 presents the effective energy E~(e, d) (see(3.1)) as a function of c for fixed d. 
One can see that the phase-equilibria giving the lower side of the energy triangle E~*(d) in 
Figure 3a (chain dot dashed line) are all stable, for they are local minima of E~(c, d). The two 
upper sides of the triangle are unstable because they correspond to local maxima of E~(c, d) 
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F i g .  4 .  Schematic diagram showing the effect of the spinodal region on the bifurcation patterns for/3 = 0. (a) 
Effective energies E~* (d) and E~* (d) and effective stresses ~ *  (d) and ~ *  (d) for the case of a smooth two-well 
energy density. (b) The analogous curves corresponding to the branches of homogeneous and monotone equilibria 
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(saddle points in u-space). Notice that even for N as low as 1 there are 'oscillations' in the 
elastic equilibrium energy of the bar. 

5.3. PHASE-EQUILIBRIA WITH TWO INTERFACES ( N  = 2) 

Extremals on the 2-branch have two transition points el and c2 and their bifurcation patterns 
in u-space are given by the (multi-valued) functions el (d) and ez(d) (see (4.3) for N = 2); 
these also determine the range of existence on the d-axis and the number of phase-equilibria 
that exist in the 2-branch for each d. The plot of the 2-branch of the equilibrium energy 
E~*(d) is shown in Figure 3(a). The multi-valued function E~*(d) is composed of roughly 
triangular branches (solid lines) corresponding to centro-symmetric solutions, with bifurcating 
sub-branches (dotted lines) that correspond to non-centro-symmetric solutions. 

At d --- 0 all sub-branches of E~*(d) meet at the trivial solution, and they also meet the 
0- and 1-branches of the energy, as already noticed. Clearly, the energy branches intersect 
at points other than d = 0; however, this does not mean that the corresponding branches of 
extremals intersect in u-space, for in fact at these points the different extremals are physically 
apart and there are energy barriers between them (notice the stress drops at those points in the 
effective stress-strain diagram). The system passing from one equilibrium to the other (for 
the same d ~ 0) reflects the phenomenon of finite nucleation at the ends or at the interior of 
the bar. 

Stability can again be assessed from the analysis of the function E~(cl, ez, d) for fixed d. It 
is possible to see that the lowest energy portion of the symmetric sub-branch is stable, i.e. the 
corresponding solutions are the minima of E~(e 1 ,, c2, d). All the other extremals, corresponding 
to the maxima or saddle points of E~(el, e2, d) (all are saddle points in u-space), are unstable 
phase-equilibria. 
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Fig. 6. Maxwell construction for sufficiently small ~ and ft. (a) Absolute-minimum energy E***(d, a,, fl) with 
non-smooth oscillations. (b) The saw-like discontinuous Maxwell line E*** (d, c~, fl) in the overall stress-strain. 

It is interesting to notice that in the various one-dimensional models which extend Erick- 
sen's earlier analysis but neglect surface energy, the energy infimum as a function of total 
strain is the convex envelope of the original phase energy densities and one observes infinite 
refinement of the microstructures. In our case, however, finite-scale microstructures occur 
as minimizers; moreover, since surface energy is present, the effective energy is higher than 
in the equivalent system in which surface energy is not considered, and there is a loss of 
convexity. We can see from our examples that the macroscopic energy is nonetheless at least 
locally convex, at the expense of  reduced smoothness (see Figure 6(a)). The corresponding 
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effective stress-strain relation (Maxwell line) is a curve that is only piecewise continuous, with 
'jumps' and locally non-negative moduli as in Figure 6(b); see also [9]. This non-smoothness 
is a result of the branching of the local minimizers, and should be expected in models with a 
smooth energy (and spinodal region) as well. This is a possible interpretation for the wiggles 
that are observed in yield and recovery lines in the (quasistatic) uniaxial tension experiments 
on bars made of multiphase shape-memory alloy (see for instance [6]). 

It is also worth noticing how the previous analysis shows that after minimizing out the 
elastic fields, the energy of an N-branch of equilibria, as a function of the positions of the 
interfaces, exhibits multiple local extrema (different extrema correspond to different phase 
equilibria in u-space) - see Figure 5. Their number dramatically increases with N. The energy 
of the bar can thus be viewed as having multiple macro-oscillations. On the other hand, in 
more realistic three-dimensional models more complicated multilayered configurations are 
considered, which are indeed observed experimentally (see Figure l(b)). Each next level 
of microstructure affects the energy by the same mechanism discussed here, and this pro- 
duces extra meso-oscillations of a finer scale in the effective potential, and several internal 
sub-levels of microstructure might produce several sub-levels of oscillations in the energy. 
Finally at microlevel (the level of the lattice) the energy as a function of the positions of the 
interfaces has micro-oscillations represented by, say, Pierls barriers. The fact that energy curves 
with various internal scales of oscillations should be considered (also in relation to 
some macroscopic aspects of the behaviour of bodies) has only recently been appreciated 
in the literature. For example, based on the experimental analysis of the 'tip-splitting' mecha- 
nism for twin layers, oscillations were added ad hoc by Abeyaratne et al. [11] to the effective 
energy, which appears to be among the key elements in their model for the hysteretic behaviour 
observed in biaxial stretching tests on shape-memory alloys. In general, it is reasonable to 
relate hysteresis to the possibility that the system gets locked in metastable equilibria; for 
instance, the potential wells created by meso-oscillations (which this model does not take into 
account) could make elastic equilibria at least metastable. This effect might be of importance 
in the interpretation of the recent experimental tests exploring the interior of the hysteresis 
loop by Fu et al. [7] and Ortin [8]. 
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