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ABSTRACT

This paper addresses the non-uniqueness pointed out by Ericksen in his classical analysis of the equilibrium
of a one-dimensional elastic bar with non-convex energy. According to Ericksen, for the bar in a hard
device, the piecewise constant functions delivering the global minimum of the energy can have an arbitrary
number N of discontinuities in strain (phase-boundaries). Following some previous work in this area, we
regularize the problem in order to resolve this degeneracy. We add two non-local terms to the energy
density : one depends on the high (second) derivatives of the displacement, the other contains low (zero)
derivatives. The low-derivative term (scaled with a constant f8) introduces a strong non-locality, and
simulates a three-dimensional interaction with the loading device, forcing the formation of layered micro-
structures in the process of energy minimization. The high-derivative (strain-gradient) term (scaled with a
different constant «), represents a surface energy contribution which penalizes the formation of phase
interfaces and prevents the infinite refinement of microstructures. In our description we consider the
positions of interfaces as variables. This singles out in a natural way an infinite number of finite-dimensional
subspaces, where all the essential nonlinearity is concentrated. In this way we can calculate explicitly the
local minimizers (metastable states) and their energy, which turns out to be a multi-valued function of the
interface positions and the imposed overall strain d. Our approach thus gives an explicit framework for
the study of the rich variety of finite-scale equilibrium microstructures for the bar and their stability
properties. This allows for the study of a number of properties of phase transitions in solids ; in particular
their hysteretic behavior. Among our goals is the investigation of the phase diagram of the system, described
by the function N(d,a, ) giving the number of phase-boundaries in the absolute minimizer. We observe
the somewhat counterintuitive effect that the energy at the global minimum, as a function of the overall
strain, generically develops non-smooth oscillations (wiggles). Copyright > 1996 Elsevier Science Ltd
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1. INTRODUCTION

Experimental observations of stress- and deformation-induced phase transitions and
twinning in solids reveal fine layered microstructures in a great variety of configur-
ations, and in the last two decades there has been a considerable effort to describe
these and related phenomena in terms of elasticity theory. In general, this approach
is based on the absolute minimization of a non-(quasi) convex elastic energy for the
material, representing a far-reaching generalization of the van der Waals fluid. The
relevance of these ideas in the elastostatics of crystalline solids has become clear since
Ericksen’s analysis (1975) of the highly non-unique minimizers for an elastic bar with
a non-monotone stress—strain relation.

The formation of microstructures (phase and twin mixtures) in “non-elliptic”
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elasticity reflects the fact that the energy functional is not lower semi-continuous, and
thus lacks minimizers. The refinement of phase mixtures can be interpreted as a
manifestation of the material striving, by means of minimizing sequences of defor-
mations which develop rapid oscillations, to reach the infimum of its elastic energy
while meeting the imposed boundary conditions. Typical examples of observed phase
arrangements include rather regular patterns due to piecewise homogeneous layering
of twins in fine bands (see Fig. 1). Some basic features of the microstructures (including
their phase fraction and orientation) are captured by the existing theory [see James
(1992) for a recent review]. However, the absolute minimization of the elastic energy
cannot predict some important features like the finite scale of the phase-layering
because it forces, instead, an infinite refinement of the microstructure.

While there are also dynamic reasons for the occurrence of finite-scale micro-
structures [see for instance Ball et al., (1991); Friesecke and McLeod (1994)], a
classical way to regularize the problem and obtain finite-scale oscillations in the
equilibria is to introduce a strain-gradient contribution (‘“‘surface energy’) in the
potential, which penalizes the formation of regions with rapid changes in strain.

Elastic plus surface energy minimization has been considered by various authors,
especially in connection with layered patterns involving two phases. Although the
microstructures have mostly been dealt with as essentially one-dimensional in charac-
ter [see for instance Khachaturyan (1983)], recent results by Kohn and Miiller (1992)
show that near the boundaries, energy minimization by fine layering is at least a two-
dimensional phenomenon. One consequence of this is that the energy scaling is
different from that usually assumed. While the above considerations seem to weaken
the relevance of one-dimensional models, the observed patterns are, at least locally
and away from boundaries, grossly one-dimensional in character, and we adopt here
this simplifying assumption.

Indeed, we consider a one-dimensional bar containing a “‘mixture” of two homo-
geneous elastic components. For instance, one component may describe the austenitic
phase of a multiphase elastic material, while the other corresponds to a homogenized
fine layering of different variants of the martensitic phase of the same substance. The
bar interacts with an elastic substratum which mimics the three-dimensional boundary
conditions constraining surface displacements. This induces microstructural refine-
ment, whereas the “‘surface tension” contribution to the energy drives the system to
minimizing the number of interfaces. A similar approach has already been considered
in the literature [see Miiller (1990, 1993)].

In this paper we give a framework for the detailed investigation of the variety of
stable and metastable equilibria that become available to the system, for a wide range
of imposed boundary conditions. Our aim is to clarify the role of interfacial energy
in creating finite-scale microstructures, by considering the combined effect of the
oscillation-inducing and oscillation-inhibiting terms in the energy functional.

We develop our main considerations under fairly general constitutive assumptions,
and we find that the elastic and phase-equilibria for the bar are obtained by piecing
together smooth solutions of ODEs, according to appropriate jump and boundary
conditions. This altows for the study of the energy landscape in an infinite dimensional
space, which can be made explicit at least in the case of quadratic energy density for
each phase.
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Fig. 1. Multiply twinned nanometer size plate of Ni;Al, growing in B2 austenite. From Schryvers et al.
(1994).
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The expectation that our elementary model will in fact give interesting insight about
finite-scale microstructures is supported by the analysis of Miiller (1993). For a special
case of our boundary conditions, and under the assumption of a smooth two-well energy,
he determined the asymptotic behavior for the number of interfaces in the absolute
minimizer, in the limit of vanishing surface tension and finite stiffness of the substratum.
What is most remarkable, he also could prove the periodicity of the minimizers, which
of course is not the case for the general boundary conditions we consider.

Our analysis complements Miiller’s in that we focus on the local minimizers of the
energy. This allows us to address a number of interesting questions that are still quite
unclear regarding the general theory of phase transitions in solids, and about which
the existence of finite-scale metastable microstructures is likely to have great relevance.
One issue is the markedly hysteretic behavior which is typical for solids undergoing
phase transformation. As is well known, the study of absolute minimizers cannot
account for the hysteresis in the load-deformation curves observed experimentally
(Miiller et al., 1991; Fu et al., 1992 ; Ortin, 1992), while the material getting locked
in metastable states is a likely cause of such phenomena. A clear suggestion about
this comes for instance from the calculations regarding a discrete system of bistable
elements (snap-springs) by Miiller and Villaggio (1979) and Fedelich and Zanzotto
(1992). The investigation of the hysteretic behavior in solid-to-solid transformations
is also the subject of recent work by Abeyaratne ez al. (1994), Ball ez al. (1994), and
Kinderlehrer and Ma (1994). Other questions that our model addresses include the
formation of finite nuclei as a mechanism for microstructure refinement, and the
assessment of the energy barriers between different equilibrium configurations [cf.
also Truskinovsky and Zanzotto (1995)].

In Section 2 we motivate our choice of the energy functional and show how finite
spatial oscillations are forced in the equilibria by the competition among the two-
well elastic energy of the material, the energy of the elastic foundation (low-derivative
contribution and strong non-locality, scaled with a constant ), and the interfacial energy
(high-derivative regularization and weak non-locality, scaled with another constant o).

In Section 3 we formulate the model in which a multi-valued strain energy is used
to describe the material as a mixture of two phases. We introduce a finite system of
transition points where the material switches energy branches : this splits the problem
into a infinite-dimensional convex part and finite-dimensional non-convex part. Physi-
cally, this corresponds to the uncoupling of the fast, purely elastic modes, from the
slower “‘reconstructional modes” related to the displacement of the interfaces in the
reference configuration.

The difference between elastic and phase-equilibria is accordingly discussed in
Section 4, where we also perform the step-wise minimization procedure of the energy
based on the splitting of the problem. In the same way, we show that the study of
stability can be reduced, in our case, to a finite-dimensional problem.

By using the classical methods of variational calculus we derive in Section 5 the
conditions of elastic and phase-equilibrium. In Section 6 we discuss the main sym-
metries of the system and in Section 7 we introduce a constitutively simplified frame-
work, in which the two branches of the elastic energy density are given by two
parabolas. This simplification allows us to carry all the computations through with
minimal difficulty.
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In Section 8 we find explicitly the extremals of the energy for the bar in a hard
device with zero, one and two interfaces, and discuss their most significant properties.
For simplicity, we limit our examples to equilibria with just a few interfaces, observing
even in these cases a great variety of morphologies when the imposed overall strain ¢
and the physical parameters « and f are varied. In Section 9 we discuss some impli-
cations of our model and make a few final remarks.

We dedicate this paper to Professor J. L. Ericksen on his seventieth birthday.

2. MOTIVATION

In his paper “Equilibrium of bars™ (1975), Ericksen considered a classical problem
of equilibrium for a bar in a hard device, which reduces to the minimization of the
energy functional

E = Jlf(u/)dx, 2.1

with boundary conditions

where u is the displacement and d the overall imposed strain. If f{(u') is convex, the
problem is known to have a unique classical solution which, however, cannot account
for phenomena such as phase transitions in solids. In order to discuss material
instabilities, Ericksen assumed, following earlier ideas by van der Waals about fluids,
that the energy density be non-convex [see Fig. 2(a)]; without loss of generality one
can consider

flry = 1@y 11, @3
He showed that for d in [— 1, 1] the solutions of the minimization problem based on
(2.1-2.3) exhibit a dramatic lack of uniqueness. In fact, any continuous displacement
1 giving a measurable mixture of the two states #” = + 1 (with the portion of the bar
in each state prescribed by d), is a solution. What is left unspecified are details of the
partition of the bar into phases, among which is &, the number of interfaces. These
details depend on various physical aspects of the phenomenon, which are missing in
the model (2.1-2.3).

Some mechanisms that can narrow the non-uniqueness and bring a desired selection
principle were identified long ago. For instance, the problem can be regularized by
introducing a penalization for the formation of (sharp) interfaces. This method again
dates back to van der Waals and leads to considering a dependence of the energy
density on the higher derivatives. The simplest functional with which to substitute
2.1) is

E= J L) +o(u”)?]dx, (2.4)
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Fig. 2. Three possible energy density functions and the corresponding stress—strain relations. (a) A smooth

non-convex energy. (b) The smooth and convex energies of the two components of a mixture, each defined

for all strains. (c) The same energy as in (b) in which the multi-valuedness is eliminated : it can be considered
as a non-smooth approximation for the energy in (a).

where « is a positive coefficient giving rise to an internal length-scale in the system.
The analysis of the minimization problem based on (2.4) and (2.2) and (2.3) shows
that the absolute minimizer is now unique, but the number N of interfaces is exactly
equal to one (Carr et al., 1985). This does not always reflect the experimental obser-
vations (see Fig. 1) : the reason is that the mechanism favoring multiple interfaces is
still missing in this approach [see, however, Parry (1989)].

An alternative to the model based on (2.1) and (2.3) comes from the observation
that periodic microstructures arise in situations that are at least two-dimensional.
Indeed, in two- or three-dimensional models the interaction with the environment
causes the development of oscillations in the solutions because the displacements are
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much more severely constrained by the boundary conditions than in one-dimensional
problems. In order to obtain an analogous effect, one can place the one-dimensional
bar on an elastic foundation. Then (2.1) and (2.3) are substituted by

E= Jl [fu) + Bu?)dx, 2.5

where the positive constant f models the stiffness of the “elastic matrix”. The solution
of the minimization problem based on (2.5) and (2.2) for d = 0 is known from the
times of Bolza [see for instance Young (1980)]. In this case, the absolute minimizer
does not exist, and the minimizing sequences exhibit finer and finer mixtures of the
two phases with #" = + 1. One can say that in this model the number N of interfaces
becomes infinite, which is again not satisfactory if the goal is the description of a
realistic microstructure as the one shown in Fig. 1.

It is thus quite natural to consider a combination of the two previous models ; that
is, to replace (2.1) with the functional

E= J [fu') +ou”)* + pu’dx, (2.6)
0

and view Ericksen’s bar as a limit for « » 0 and f — 0. Owing to the interaction
between the two terms depending on a« and § in (2.6), one can expect to obtain
equilibrium configurations with different N = N(d, «, f). Miiller (1990, 1993) con-
sidered the special case f = 1 and d = 0. One of the goals of this paper is to obtain
some information about the phase diagram of the system in (d, %, f)-space, by finding
the stability domains for equilibria with different N.

The fact that this diagram is non-trivial can be illustrated by the following elemen-
tary analysis. Consider the special case d = 0. and observe that the Euler—Lagrange
equation

2o’ —[f ()] +2Bu =0 2.7)

for the minimization problem (2.6) with (2.2) and (2.3), has a trivial solution # = 0.
In order to study the linear stability of this solution, introduce a perturbation as

u*(x) = i A, exp(k,x). 2.8)
p=1

It is standard to show that a non-trivial solution of the linearized version of (2.7)
exists if

kiane= + (—f”(O) +(/"(0)° — 162P) "2>"’2 2.9)
ERLY 2\1
and
an*n* + B = —1f(0)n’n’. (2.10)

This means that there exists an infinite number of instability modes of the trivial
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solution parametrized by an integer n. Equation (2.10) gives the stability boundary
of this solution in («, f)-space (at d = 0). The result is a piecewise linear curve whose
corners indicate transitions between regimes with a different number of oscillations:
it suggests that for sufficiently small « and f, there exist separate stability regions for
equilibria with different numbers of “interfaces”. The occurrence of stability diagrams
of piecewise smooth nature is not surprising ; in fact the linearized version of (2.7) with
S"(0) = —1 reproduces the classical equation for a beam on an elastic foundation, if
the longitudinal force p ~ o' and the thickness &~ fa~' are considered as
parameters. The piecewise smooth (p, h)-bifurcation diagrams for the beam are well
known in the engineering literature. An analogous effect is observed also in the theory
of shells [see, for instance, Graff e al. (1985)).

A simple argument, similar to the one used by Khachaturyan (1983) in a different
context, gives us the asymptotics for N(d, «, ) originating from (2.6) for small ¢ and
B such that f » o' (which means large N) and d = 0. Consider a mixture of two
states that minimizes the energy (2.6) in the limit for « — 0 and § — 0 and d = 0. One
expects that #" =1 or ' = —1 everywhere except for the narrow transition layers
(modeling the “interfaces™) whose thickness is proportional to o', Inside the thin
interface layer the role of the elastic foundation is negligible so the following Euler—
Lagrange equation holds: a(x”)’* = f{x’), and the corresponding contribution to the
energy is [see, for example, Miiller (1993)]

.[ [f) +a(u)?)dx = Za"/zj fw)'dw.

It follows that the ““surface” plus elastic energy concentrated inside each layer is
proportional to «'’>. By considering solutions with N interfaces (N large), we obtain

Jﬂ [fu)+a(u)]dx ~ a' > N. 210

In order to estimate the elastic energy accumulated in the substratum, we can suppose
that the interfaces are almost equidistant from each other. Then the period of the
microstructure is of the order of N~!, and since ¥’ = + 1, it is not hard to see that,
for large N

Jlﬂuzdx~(ﬁ/12)N3. (2.12)

Furthermore, in this limit the “elastic” energy of the bar is negligible outside the
transition layers. Hence the total energy is reduced to the contribution (2.11), which
is proportional to N, plus the term (2.12) that goes to zero as N goes to infinity. The
energy minimum is achieved when

o'?N = const SN 7, (2.13)
or

N, a,B) ~ B'7Pa1®, (2.14)
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This gives the desired asymptotics. Miiller (1993) has given a detailed derivation of
this estimate in the special case § = 1, which also includes a proof of the periodicity
of the absolute minimizer (a property true only for 4 = 0). We notice that (2.14) is
an example of intermediate asymptotics in the sense of Barenblatt (1995) since the
function N(0, 2, ) has no classical limit for « — 0 and § — 0 this is the main reason
of the non-uniqueness pointed out by Ericksen. Indeed,

N@O, o f) ~ ', (2.15)
where
7= P2, (2.16)

this means that in the limit of small « and f the system behaves differently according
to how such a limit is reached, *‘remembering” the limit of the ratio fo~'".

We conclude from this argument that the boundaries of the stability domains for
equilibrium microstructures with different (large) N in the (x, f) phase diagram for
d = 0 can be described by the simple asymptotic relation

x=Cp, (2.17)

with C a positive constant.

The above consideration clearly suggest that the model based on the elastic energy
(2.6) has a variety of equilibria characterized by a finite number of internal transition
layers, which is the feature we sought for. However, from a physical standpoint there
still are some limitations in the setting of the problem that should be taken into
account, in order that the model be capable of giving an adequate description of the
following important aspects of solid-to-solid transitions.

(i) There is experimental evidence that phase-boundaries can be locked while the
elastic field relaxes, and that they will not adjust their positions in the reference
configuration simultancously with it, demonstrating. in fact, a considerable delay.
Experiments in which partial unloading (under controlled ) is performed on shape-
memory alloys can be interpreted as if “elastic equilibria™ (with “frozen’ interfaces)
and “‘phase-equilibria’ (with “‘relaxing’ interfaces) are distinguished (Fu et al., 1992).

(if) The model with strain energy (2.3) describes a material with displacive trans-
formations and is most relevant for a one-dimensional description of twinning. It
assumes that one lattice can be transformed continuously into another and that
there is an unstable spinodal region with f"(«") < 0. However, in solid-to-solid phase
transitions other phenomena are often observed which are not well described by a
single-valued energy function such as (2.3). These include the fine mixtures involving
interfaces between austenite and twinned martensite, or the solid-state trans-
formations in which not only the lattices are deformed, but also the chemical com-
position or other parameters like polarization and the degree of order, experience a
discontinuity at the interface.

The model should thus be based on a multi-valued energy and should allow for a
clear separation of internal variables describing the positions of the interfaces in
the reference configuration [see also Parry (1987)]. The simplest one-dimensional
generalization of (2.3) along these lines is a model with a double-valued energy
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= 2.18
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[see Fig. 2(b)] where the functions f, (') and f_ («’) are smooth and convex. Although
in this paper we concentrate on the model based on (2.18), we notice that another
model with

Sy = min{f, ).f. (W)} (2.19)

can be obtained as an “approximation” of a smooth two-well energy [compare Fig.
2(a) and 2(c)]. We show in Section 5 that in our one-dimensional case the equilibria
assuming (2.18) are the same as with (2.19). Moreover, the most important con-
clusions about the equilibrium microstructures for the model based on the smooth
energy (2.3) are still true for (2.18) and (2.19), even though these last do not have a
spinodal region. Notice, however, that the stability properties of the equilibria in all
these three models are likely to be different. Furthermore, we recall that since (2.19)
is a single-valued function while (2.18) is not, there are major differences in the three-
dimensional case since, for instance, the three-dimensional analog of (2.18) allows for
“elastically equilibriated” ellipsoids (see Eshelby, 1956; Kaganova and Roitburd,
1987), while the three-dimensional analog of (2.19) does not (see Lifshitz, 1948;
Rosakis, 1992).

3. THE MODEL

3.1. Energy

Denote by u(x) the displacement of the reference point x of a bar [0, L] containing
a “‘mixture” of two homogeneous elastic components, say “+" and “—" (the two
“phases” of the material) ; their energy densities are given by smooth convex functions
of the strain «’, whose generic plots are represented in Fig. 2(b) [see (2.18)]

f=/i) and f=f (u); (3.1
corresponding stress—strain relations, given by
o=0,W)=f ) and o=0_ () =[f"(),

are also shown in Fig. 2(b).
We suppose that the total energy functional is given by the sum of three terms

The term E, gives the amount of elastic energy stored in the bar as the integral of the
energy density per unit reference length

E, = f[xﬁ @)+ =0 @)ldx, (3.3)

0

where y denotes the volume fraction of the **—” phase. We assume that the two
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components are separated ; therefore, in (3.3) y is the characteristic function of the
subset of [0, L] occupied by the “ —’’ component.
The term E, is a gradient-dependent contribution

E, = onL(u”)zdx, (3.4)

0

with o > 0 a constant which provides an internal length-scale proportional to o'
Finally, we take the form of E; in (3.2) to be as follows

E; = jL {Jl G(x, y)u(x)u(y)dx}dy. (3.5)

0 0

This non-constitutive term describes the energy stored in an elastic substratum due
to the deformation of the bar [see Fosdick and Mason (1994) or Brandon and Rogers
(1994) for models with a constitutive spatial non-locality]. The simplest assumption
regarding the kernel G is G(x, y) = Bé(x--y), with § > 0 a constant describing the
stiffness of the elastic foundation (a continuous system of non-interacting, linearly
elastic springs) and ¢ indicates the Dirac function. The term E; thus takes the form

E, = ﬂr uidx; (3.6)

this introduces a further length-scale, proportional to ',
For the purpose of defining non-dimensional variables, let us consider the elastic
modulus u of one of the phases, and set

X =

=

/L, a=u/L, f,=2f./p, E=2E/Lp. (3.7)
This leaves two essential non-dimensional parameters in our model:
a=2u/L*u, f=2BLnu. (3.8)

The explicit form of the total energy functional (3.2) becomes
1
Elu,y] = f D () + (1 =0 £ () + 2(u)* + Pu?ldx, (3.9
0

where all the superimposed bars on the new variables have been dropped. Notice that
although we assume the original parameters « and f§ to be small, the normalized ones
in (3.8) depend on the size L of the bar and are not necessarily small. Thus, for small
enough samples, a in (3.9) can be large.

Our present goal is obtaining information about the stable and metastable equilibria
of the bar with energy (3.3) in a hard device

w(0) =a, u(l) =b. (3.11)

This means finding the displacement fields v and the characteristic functions y such
that [u, x] constitute (local) minimizers of the functional (3.9) under condition (3.11).
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3.2. Phase mixtures

We will carry out our study under some simplifying assumptions. First, in order to
concentrate our attention only on the physically most relevant solutions, we restrict
our attention to arrangements in which the region occupied by each phase is a finite
union of intervals. Thus we consider a finite number N of points ¢; in [0, 1],
i=1,...,N,suchthat ¢; < ¢;, ,(cy = 0,¢n,, = 1), and require the function y in (3.9)
to be as follows

X=X lokaeslo.. OF U= Afe) ealofenglo.. s (3.12)

where [0, ¢|] U e 3] U .. or [e,¢5) Vs, ¢s] U ... are alternating unions of intervals
in [0, 1] whose ends are at the points ¢;,i = 0,1, ..., N+ 1. Each such point gives the
position of a phase-boundary in the bar, where a switching of components [that is, of
energy functions (3.1)] occurs. Notice that because of (3.4), (3.12), prescribes that
the initial interval [0, ¢(] be occupied by the ** — " phase, while (3.12), prescribes [0, ¢|]
be occupied by the * + " phase. In general, these two alternatives are not equivalent ;
however, we will see that they become symmetry-related under some assumptions
regarding the energy functions (3.1) (see Section 6).

Confining our attention to extremals and competitors with a finite number of
transition points, we replace the unknown function y in (3.9) by a finite set of variables
¢y, - . »Cx, Whose number N acts as a discrete parameter.

3.3. The functional

By (3.9) and (3.12), the energy functional becomes explicitly

E, [u].
Elu, ],
E= : (3.13)
Exlu, ey, ... cxl
(N=0,1,2,..))
whose “‘branches” are each given by
Exluci.....edd = Eluy,, .= ﬁo j U W) by + Bl (3.14)

where x. . denotes any of the characteristic functions introduced in (3.12). Each
parameter ¢; ranges in [0, 1], subject to the condition ¢; < ¢, ,. In the integral (3.14),
itis thus understood that the functions f_ and f, are taken alternately in each interval
[Ci’ Ciy l]-

In general, (3.13) and (3.14) are defined for any displacement u (necessarily in C')
whose second distributional derivative is square integrable in [0, 1]; however, we
make, after (3.12), a second simplifying assumption and confine our attention to a
subclass of more regular functions. Indeed, any admissible displacement field « for
the functional (3.13) will be required to be at least C', piecewise C? in [0, 1]. This is in
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the same spirit as (3.12), which also restricts the allowed arrangements of phases in
the bar. We will discuss the competitors in more detail in Section 5.

3.4. Boundary conditions

The boundary conditions to be met by all displacements in the hard device are
given in general by (3.11). However, in the calculations that follow we will confine
ourselves to the discussion of solutions to the symmetric problem

u0) = —di2, u(l) =d2. (3.15)

In (3.15) the parameter d has the meaning of a non-dimensional measure of the
imposed displacements at the ends of the pinned bar. Since we are indeed considering
the normalized interval [0, 1], d can also be interpreted as a measure of the average
strain in the bar.

Notice that a difference arises between this problem and, for instance the one with
boundary conditions

u(©0) =0, u(l)=d. (3.16)

This originates from the loss of translational invariance in the system due to the non-
purely constitutive nature of the contribution (3.5) and (3.6) to the energy. The fact
that the boundary conditions (3.15) are symmetric introduces a ‘‘geometric” symmetry
in the system ; this will be discussed in more detail in Section 6. Some results regarding
the non-symmetric boundary conditions (3.16) will be briefly presented in Section 7.

4. LOCAL AND ABSOLUTE MINIMIZATION OF THE ENERGY

4.1. Local minimization: elastic and phase-equilibria

The particular structure of our energy functional naturally lends itself to a stepwise
minimization which breaks down the process into several stages.

Let 4 and N be given; we must test any candidate local minimizer [u,c]
(i=1,...,N) of the energy (3.13) against any admissible competitor in which «, ¢;, as
well as N (but not d) are varied. In order to do so, we will at first look for minimizers
[u, ;] of Ey[u, c] with fixed N. These, in turn, will be obtained by first calculating the
extremals of Ey in (3.14) with fixed N. Such extremals are the phase-equilibria of the
bar, which belong to separate branches in the space of admissible displacements
(“‘u-space™); each branch is indexed by the number N of phase-boundaries, and is
parametrized by d (**N-branches’ of equilibria).

Extremals in an N-branch only give candidates for minimizers of the energy with
fixed N and it is necessary to investigate separately the stability of each phase-
equilibrium. After this is determined, total minimization of (3.13) is achieved by next
considering competitors belonging to different N-branches, i.e. with a different number
of transition points.

In order to study the stability of phase-equilibria, we take advantage of two features
of our model : the convexity of /, and f_ and the description in terms of the transition
points ¢, This, in fact, decouples for each N a relevant finite-dimensional part of
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the problem where all the non-convexity is present, from the remaining infinite-
dimensional setting in which the problem is convex. This decoupling has a clear
physical meaning since the interfaces can be “‘frozen™.

Owing to the convexity of /, and f_, the displacement « can be minimized out of
E\[u, ¢] : doing so amounts to introducing, before actually considering phase-equi-
libria, another important class of configurations: the elastic equilibria of the bar.
These are extremals of the energy (3.14) with the constraint that the position of the
interfaces ¢; be fixed in [0, 1].

We will see that for given ¢, N, and d in their appropriate ranges, there exists a
unique elastic equilibrium u,, (up to symmetries not affecting the energy), which the
convexity hypotheses guarantee is the absolute minimizer of the energy against com-
petitors with same N and ¢

For each N, the displacement u can then be minimized out of £, in (3.14), thereby
obtaining E%(c;, d), which describes the energy landscape of the bar in elastic equi-
librium

E¥(c,d) = Ey[u,..c], for N=0,1,... 4.1)

The uniqueness of elastic equilibria implies that, for each N, E¥ is a single-valued
function of the imposed deformation and of the position of the interfaces.

The investigation of the stability properties of phase-equilibria belonging to an V-
branch can now be done solely through the study of the minimizers of the functions
E%, N =0,1,...,each of which just depends on a finite number of variables. Finding
the extremals of Ey[u, ,¢,] in the class of all elastic equilibria with variations of the
points ¢; ( for fixed N), we obtain the functions ¢,(d) giving phase-equilibria as critical
points of E%, whose stability can then be assessed as usual. This allows us to eliminate
the variables ¢; from (4.1), so as to obtain the energy E#* of extremals as a function
of d only. Indeed, denote by u, the phase-equilibria belonging to an N-branch, and
by c(d) the equilibrium positions of the interfaces in u, as functions of d; the phase-
equilibrium energy of the bar in the elastic foundation is [see (3.14) and (4.1)]

E¥*(d) = Ef(c,(d).d) = Exlug.c(d)]. for N=0.1,.. . (4.2)

Its d-derivative Z¥*(d) gives the (phase-equilibrium) effective stress—strain relation of
our system. For any given N, phase-equilibria at given d are, in general, and unlike
elastic equilibria, not unique (nor are they always minimizers). Each N-branch of
phase-equilibria thus splits in “sub-branches’ with the same N this in turn means
that each N-branch of the phase-equilibrium energy £¥* and of the stress—strain
diagram will be multi-valued.

4.2. Absolute minimization ; phase diagram

The final minimization of the energy now takes place among all the branches of
E%*. Taking into account the presence of the physical parameters x and f8, the absolute
minimization now gives an integer-valued function N{(d, 2, ). In each appropriate
region of (d,x, B)-space. N(d, o, B) indicates which one among the N-branches of
solutions is the most stable (this constitutes the phase-diagram of the bar). By means
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of N(d,«, B), the absolute-minimum energy of the bar is obtained as a single-valued
function

E***(d, o, f) = EX} . 5(d o, f); 4.3)

its d-derivative T***(d, o, B) gives the generalized Maxwell line in the stress—strain
diagram X}*(d).

Both functions E¥*(d) and E***(d) (and their first derivatives) will be referred to
as the “macroscopic” or “effective” energy (and stress—strain relation) of the bar,
related to its overall response (see Section 9). We stress that all the auxiliary functions
introduced above, E¥(c,d), c{d), etc., also have an important role in the under-
standing of the phenomena connected with the mechanics of the multiphase bar, such
as hysteresis, nucleation, etc. ; an investigation of the properties of these functions is
among our basic aims (see Section 8).

We also notice that it is quite common in the literature to use the phase fraction z
of the bar (i.e. the length occupied by, say, the “—"" component) as a major “macro-
scopic” variable [see for instance Cahn and Larché (1984), Khachaturyan (1983),
Miiller (1989), Abeyaratne et al. (1994)]. In most of the phenomenological models, a
single-valued z-dependence of the energy is postulated rather than derived, based
upon specific assumptions such as the incorporation of “coherence” or “interfacial’”
energy. In our case, the z-dependent equilibrium energy is obtained by defining by

Ef(z.d),
Ef(z.d),
Ezd=4 @4
EK’(za d)a
N=0,1,2,..)
where
Eir(:, d) = EN(c,—co+ci—cr+....d) = EX(c.d) 4.5)

for each N-branch. The description in terms of z does not distinguish between micro-
structures with different numbers of interfaces, therefore many details are lost, if
compared to the description in terms of the internal parameters ¢, However, through
our approach we see that even when using z as a variable, the energy E* is multi-
valued, a fact not appreciated in the literature.

5. JUMP CONDITIONS

The elastic and phase-equilibria of the bar are obtained by piecing together smooth
solutions of ODEs by means of suitable jump conditions at the transition points ¢,
where a loss of smoothness does, in general, occur.

To find the explicit conditions for the extremals we use the results from the Appen-
dix, applied to the energy function (3.14) of the bar. We obtain the following con-
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ditions characterizing the phase-equilibria [u, ¢;] subject to the boundary conditions
(3.15).

(i) The displacement u is necessarily at least class C*in [0, 1], and in the intervals
[encivi],i=0,...,N, it satisfies the Euler—Lagrange equation [see (A.6)]

2" — ', (W'Y +2pu = 0, (5-D

where the appropriate sign of /7, is taken in each interval.
(ii) At the transition points ¢, the following must hold (4 = 1,..., N):

[#']., =0 (balance of moments),
Vo) —=20u"], =0 (balance of stresses, including couple stresses), (5.2)
and
[fi@)]., =0 (Maxwell condition). (5.3)

(ii1) In addition to the imposed boundary conditions (3.15), the extremals must
also satisfy

w0y =0, u'(l)=20 (5.4)

We recall the further jump conditions at the transition points that hold because all
displacements are in C"

[w]., =0, [u].,=0 (smoothness conditions). (5.9)

Conditions (5.1)—(5.5) and (3.15) characterize phase-equilibria. Notice that elastic
equilibria do not necessarily satisty the “Maxwell condition™ (5.3); this means that
in general there is a jump in energy at the transition points. Equation (5.3) is an
explicit form of the critical-point condition for the “finite-dimensional™ elastic energy
E¥ defined in (4.2)

TEN Dt ﬂw =Q. (5.6)

The above equations for elastic equilibrium imply uniqueness of the solutions for
given ¢, (up to symmetry, see Section 6), as anticipated before (4.1). An interesting
consequence of (5.3) is that our model shares the same extremals as the analogous
model in which (3.1) is replaced by the function (2.19) considered in Section 2 [see
Fig. 2(¢)].

6. SYMMETRY

6.1. Geometric symmetry (“G-symmetry”)

Denote by [u, ¢{d)] any equilibrium solution, corresponding to the total strain 4.
The symmetric boundary conditions (3.15) introduce in the system a ‘“‘geometric”
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symmetry (“G-symmetry” for brevity). Indeed. by considering the displacement v,
and transition points k(d) defined by

va(x) = —ug(1—=x), and  k(d) = 1—cy_ ;1 (d), (6.1

we see that [v,, k{d)] is another phase-equilibrium, in the same branch as [u,, ¢(d)]
and with the same boundary conditions. In general, the G-related solutions v, and u,
can be different, so that the G-symmetry can be a source of non-uniqueness in our
system. However, it is not the only source : phase-equilibria are in general non-unique
even up to symmetry ; for instance, in addition to self-G-symmetric solutions, one can
expect to find generic ones as well.

Now, referring to (3.13) and (3.15), we have

Eluy, c(d)] = Elv,. ki(d)]: (6.2)

for this reason, solutions generated by G-symmetry do not add any branching to the
equilibrium energy function in (3.2) (or to the overall stress—strain diagram) ; in fact,
sets of G-related equilibria in an N-branch of solutions simply “‘rerun” the same N-
branch of the energy. The fact that there exists a G-image for any solution implies
that the multi-valued functions ¢(d). ¢; < ¢;, ;. giving the phase-equilibrium positions
of the phase-boundaries, satisfy

dle),....c) =d(l—cn. ..., 1 —e)). (6.3)

where d(c¢(d)) = d. For the curve determined in (¢, d)-space by the functions c(d),
this means invariance under mirror-symmetry across the plane parallel to the d-axis
and through the diagonal of the domain 0 < ¢; < ¢,,, < 1 on which the curve is
defined.

Notice that the G-symmetry is destroyed if the non-symmetric boundary conditions
(3.16) are considered, for in this case, the displacement defined by (6.1) no longer
satisfies the imposed boundary conditions. Notice also that under (3.15), the G-
symmetry is present in the system regardless of any assumptions about the energies
in (3.1).

6.2. Physical symmetry (“P-symmetry’”’)

Consider, as above, a phase-equilibrium [u,, ¢(d)], for given d. If we suppose that
the two functions f_ and f, are such that

So(=u) = [ (W), (6.4)

our system exhibits a further non-trivial ““tension—compression” symmetry, which we
will refer to as its “physical” symmetry (" P-symmetry™ for brevity). If we define

vog(X) = —uy(x), ki(—d) = c(d). (6.5)

we find that under the hypothesis (6.4) [v . k{(—d)] is also a phase-equilibrium,
belonging to the same branch as [u,, ¢(d)] and corresponding to the boundary con-
ditions given by —d. In ©¢_, the phases exchange the roles they had in u, for each
interval [¢;, ¢;,. ], while the position of the phase-boundaries in the reference con-
figuration remains the same. It is not difficult to verify that P-related solutions have
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the same energy. The P-symmetry thus implies that the effective energy EX¥*(d)
introduced in (4.2) is an even function of d. as intuitively expected

EX*(d) = EX*(—d). (6.6)

The same is true, of course, for the absolute-minimum energy E***(d). This symmetry
also implies that the functions ¢(d) satisfy

c(—d) = ¢ (d), (6.7)
so that the curve they generate in (d, ¢,)-space is invariant under mirror-symmetry
across the plane (¢, ...,cy) (see Fig. 7 for the case N = 2). Clearly. the only self-P-

symmetric solution is # = 0 for d = 0.

Notice that the G- and P-symmetries are independent of each other. In the case of
non-symmetric boundary conditions the P-symmetry, reflected in (6.6) and (6.7) still
holds if the energies (3.1) satisfy (6.4) ; on the other hand, for energies such that (6.4)
does not hold, the G-symmetry is still present if the symmetric boundary conditions
(3.15) are considered (as is done in Sections 3-5).

Based on the above considerations, we can expect that in each N-branch of phase-
equilibria with an even number N of transitions points there exists a sub-branch of
self-G-symmetric extremals given by [u,, ¢(d)] such that

ug(x) = —ul—=x)u,(1/2) = ui(1/2) =0, c(d)y =1—cy_i(d). (6.8)

The relations among the ¢; indicate that in (¢, d)-space the self-G-symmetric sub-
branch always corresponds to a portion of the curve ¢,(d) belonging to the hyperplane
¢; = ¢x_,-, through the diagonal of the region where the ¢;s are defined and parallel
to the d-axis (see, for instance, Fig. 7 for N = 2).

7. THE CASE OF QUADRATIC ENERGIES

7.1. Computation of the extremals

From this point on, we concentrate on the most manageable case of quadratic
energies, for which finding phase equilibria becomes an algebraic problem, and it is
possible to calculate some exact solutions.

Let us assume that the non-dimensional energy density functions of both phases
are symmetric parabolas (“bilinear material™) :

fow)y = ta). (7.1)

In (7.1) the elastic modulus is the same for both components, and ¢ and —a are
strains giving the different stress-free stable equilibrium configurations for the two
phases. The multi-valued energy (7.1) was originally suggested by Eshelby (1956) for
the three-dimensional case, and has been widely used in the literature. Notice that the
two parabolas satisfy (6.4) ; this introduces in the system the P-symmetry, besides the
G-symmetry due to (3.15) (see Section 6). In what follows, we set ¢ = 1.

Under (7.1), the Euler-Lagrange equation (5.1) that an extremal u must satisfy in
each of the N+ 1 intervals [¢;, ¢, ] becomes (the same for both phases)
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o —u'+pu=0; (7.2)

while the jump conditions (4.2) and (4.5) at the transition points ¢,(i = 1,..., N) are
[see Truskinovsky (1994) for a dynamic generalization]

[[uﬂ"' =0, [[“’ﬂc, =0,
[u]., =0, [au”+2sgn()] = 0. (7.3)

Also, since the two energy parabolas (7.1) meet at u” = 0, the jump condition (5.3) is
equivalent to

W) =0. (7.4)

Notice that (7.3), is obtained from (7.4), (5.2) and (7.1), because the jump in the
classical contribution to the stress /7, (u') = 2(u’ 1 a) at the points ¢ is just equal to
the jump in sign of the strain «’. Also recall the boundary conditions (3.15) and
(5.4). Condition (7.4) shows that under hypothesis (7.1) phase-equilibria have their
transition points at the zeros of the strain.

Since (7.2) can be solved explicitly, the infinite-dimensional part of the problem
uncouples, and finding extremals reduces to the solution of a system of algebraic
equations. This system of equations can be further decomposed into a linear and a
nonlinear subsystem, reflecting the splitting of the energy into its convex (quadratic,
in this case) and non-convex parts, as noticed earlier.

In each single-phase segment [c,, ¢;, ;] the equilibrium equation (7.2) is a 4th-order
linear ODE with constant coefficients (known in the engineering practice as the
equation of a flexible beam on an elastic foundation). The form of its solutions u
depends on the sign of the quantity 1 —4«f, and three cases should be distinguished.

(i) 1—4op > 0:

u(x) = a, exp(r, x)+a, exp(r,x) + a; exp(r.x) + a, exp(ryx). (7.9)

where
- i[wi] o= i[‘_—iﬂ@_] e

20 2a
(i) 1—4aff =0:

u(x) = a, exp(rx) +a,xexp(rx) +a, exp(—rx) +asxexp(—rx), (7.7)

where
r=Qa) ' =02p" " (7.8)

(i) 1—4af <0:
u(x) = exp(r, x)[a, cos(r,x) + a, xsin(r.x)] +exp(—r, x)[a; cos(r.x) + asx sin(r, x)],
(7.9)

where
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Given ¢;, the actual solutions in each single-phase interval [c, ¢;, ] are determined,
and are matched at the transition points by means of the jump and boundary con-
ditions (7.3), 4, (3.15) and (5.4). The phase-equilibrium values for the ¢;s are then
obtained by using (7.4).

Now substitution of either one of the expressions (7.5), (7.7) or (7.9) into (7.3),
(3.15) and (5.4), gives a linear system of 4(N+ 1) algebraic equations for 4(N+1)
unknown constant coeficients a,; = (@, ;, a2, a3, a4,). 1 = 1,2,.... N, appearing in the
solution of (7.2) for each of the N+ 1 intervals [¢, ¢;.. ,]. For any generic choice of the
parameters ¢, the solutions to this linear system give the elastic equilibria of the bar.
Explicitly, the case (i) of small « and f that we are mostly interested in, gives [see
(7.5) and (7.6)]

.
Y (@i—an,_)explre) =0, i=1.2,... N,
h=1

4
Z (ah.i i )"/1 exp(r,,c,) =0, i= ls 2v ----- N »
1

h=

4
Z (alu — Ay, l)rl‘-; exp(rh('[) = O~ i = 1\ 27 R ]V-
h=1

4

Z (@i —an,_ s explrye) = 2(—a™', i=1,2,....N,
|

h=

4
Z dpo = '—d//2~
=1

.
Y. anexplr,) = dj2.

h=1

4
R
Y a0t =0,
h=1

4
Z a/l.:\"rl;l: exp(rh) = 0 (7] 1)
1

h=
The solutions

ap; = ap ey, .. exvidoa ), i=12,....Nh=1,..., 4, (7.12)

of (7.11) completely determine the elastic equilibria. The coefficients 4, ; and thus the
elastic equilibria themselves, turn out to depend linearly on d.

The nonlinearity now is all concentrated in the problem of finding phase-equilibria,
which amounts to solving the N nonlinear algebraic equations (7.4) with unknowns
Clavees ¢y explicitly



1392 L. TRUSKINOVSKY and G. ZANZOTTO
4
Y apilcr. .. eyido, frexplre) =0, i=1,2,....N. (7.13)
h=1

The functions
¢ =c¢ld o f), i=12,....N, (7.14)

giving the solutions of (7.13), select, for each 4, the phase-equilibrium values for the
position of the transition points. In general, the solutions are non-unique so that
(7.14) 1s multi-valued [see for instance (7.16) for the case N = 1].

We give two specific examples in which the solution (7.5) can be written in an explicit
form. Elementary calculations provide the complete expression for the solutions
constituting the 0-branch (¥ = 0) in u-space

u(x) = 4(;[(1 o) (sinh(r;x) N sinh(r+(x —l_)))

sinh r; sinh ry

(g <sinh(f1i) N sinh(r,(x—m)]’ (7.15)

sinh r, sinh r,

where r, and r; are defined in (7.6) and ¢ = (1 —4%8)'”. In this case we have no internal
variables (positions of the interfaces) and the problem is linear.

In the phase-equilibrium solutions belonging to the 1-branch (N = 1), there is one
internal variable ¢ for which the problem is nonlinear. Equation (7.13) in this case is
given explicitly by

0 = r b, expler))[1 +exp2r )exp(—2¢r)]

dr, i exp(r, Jexp(—cry)
2(ri—r7)

+r3bsexplers)[1 +exp(2ry)exp(—2c¢r;)]
dryr; exp(ry)exp(— cry)

7.16
205 7) (716
where the coefficients b, and b, are
b — dririfexp(r) + 1]+ 2« '[exp(crl)—exp(—wi,_]
- 2r [exp(2r)) — 1](r3 = 1}) ’
b — drsrifexp(rs) +1]+2a '[exp(crs) —exp( —c*r;)]Q (7.17)

2 [exp(2ry) = 1(r{ —13)

Equation (7.16) provides the nonlinear ¢—d relation giving the position of the single
interface ¢ as an implicit multi-valued function of the imposed average strain d. Some
of its properties will be discussed in the next Section (see Fig. 4).

We remark that one possibility to make the problem with a smooth, single-valued
double-well energy [for instance (2.3)] more tractable, is to approximate the non-
convex function by three parabolas: two downward and one upward in between, so
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that the resulting function is smooth (continuous stress). In this case we obtain what
1s called a “trilinear material” and once again the problem can be reduced to an
algebraic one and the analytical solution can be calculated. Obviously the displace-
ment field in the trilinear model will be smoother than in the bilinear one, for example
the third derivative of the displacements will be continuous.

8. THE SIMPLEST PHASE-EQUILIBRIA

In the previous sections we have defined, for each N, a branch of extremals of the
functional (3.9) with boundary conditions (3.15) and energy (7.1) (phase-equilibria).
In this section, by means of straightforward numerical computations based on the
equations of Section 7, we investigate the main features of the simplest phase-equi-
libria. All the figures we present below correspond to the neighborhood of the origin
in (o, f)-space, which is of most interest to us; the condition 1 —4«f > 0 guarantees
that all four characteristic roots of the Euler-Lagrange equation (7.2) are real and
distinct [see (7.5) and (7.6)].

The main properties of the branches of extremals (parametrized by d in “"u-space™)
will be presented through the analysis of the multi-valued functions c¢(d) and
E¥*(d) defined in (7.14) and (4.2). Recall the symmetry restrictions on the functions
¢i{d)and E¥*(d): (6.3) and (6.7) hold for ¢,(d). while (6.2) and (6.6) hold for E¥*(d).
Thus the G-symmetry does not effect the equilibrium energy, while the P-symmetry
makes it an even function of d.

While in the previous sections we focused on solutions meeting the boundary
conditions (3.15), in this section we also present energy plots obtained from solutions
to the non-symmetric problem (3.16). The computations are analogous and need not
be reported here. Recall that the G-symmetry does not hold for the system with non-
symmetric boundary conditions: in the energy plots this corresponds to a ““doubling™
of the sub-branches of each tunction E#*(d) for fixed N. In fact, while the multiplicity
of the solutions in u-space 1s the same for both cases, in the non-symmetric problem
(3.16) relation (6.2) no longer holds: the sub-branches of minimizers that are no
longer G-related do not reproduce the same energy sub-branch, and there is splitting
in the energy diagrams.

8.1. The O-branch of phase-equilibria (N = 0)

The phase-equilibria in the 0-branch are the extremals with no transition points:
they constitute a family of non-homogeneous solutions of the linear equation (7.2)
with boundary conditions (3.15) and (5.4), whose explicit expression is given by
(7.15). The 0-branch is defined for all &, and for d = 0 it gives the homogeneous
solution with identically zero displacements. In this case phase- and elastic equilibria
coincide ; they are unique for each d and are always stable against admissible com-
petitors with no transition points. Uniqueness implies that each solution in the 0-
branch is self-G-symmetric, so that relation (6.8) holds for all 4. Solutions cor-
responding to boundary conditions given by d and —d are P-related. Although there
is a unique solution for each d in u-space, the energy E¥(d) = E¥*(d) [see (4.1) and
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(4.2)] is double-valued; its profile can be found in Fig. 3(a) (dashed line), where,
however, only the lowest energy portion of each branch is shown. The corresponding
effective stress—strain relation Z§*(d) is presented in Fig. 3(b) (dashed line).

Notice that the minima of E¥(d) are always above zero; this happens due to the
energy stored in the substratum. In the case of vanishing f (and arbitrary «), we
obtain a family of homogeneous deformations whose energy profile reproduces the
two original parabolas.

8.2. The I-branch of phase-equilibria (N = 1)

Extremals in the 1-branch have one transition point c € [0, 1]; their explicit form is
found by first solving (7.2) separately in [0,¢] and [c¢, 1],and then “‘joining” the
solutions at ¢, subject to the boundary conditions (3.15), (5.4), and jump conditions
(7.3). This gives a linear system of eight equations with eight unknowns [see (7.11)
for N = 1], which yields the elastic equilibria with one phase boundary.

The multi-valued function giving the position c(d) for phase-equilibria is then
defined implicitly by the single nonlinear equation (7.16) and (7.17); its plot in the
(d, c)-plane for a specific choice of « and f is shown in Fig. 4, where the symmetries
(6.3) and (6.7) have been used. The ¢—d relation determines the range in which the 1-
branch exists: it is a bounded interval of the d-axis, unlike the 0-branch which is
defined for any d. Also, the non-uniqueness of phase-equilibria in the 1-branch is
clear from Fig. 4: each generic value of d in the existence domain gives four solutions
which are pairwise G-related. Clearly, in this case, non-uniqueness is not generated
completely by symmetry.

The 1-branch E¥*(d) is represented in Fig. 3(a) by the triangular curve (chain-dot
dashed line), which, due to (6.2), is “run over” twice by the two G-related sub-
branches of minimizers. For this reason, the four equilibria shown in Fig. 4 for each
d, give only two points on the 1-branch of the energy in Fig. 3(a). For vanishing «
and f the lower side of the triangle follows the convex envelope of the original
parabolas and in this way the single-interface solutions contribute to Ericksen’s non-
uniqueness.

Now Fig. 3(a) can be compared with Fig. 5 where the energies E3*(d) correspond-
ing to the non-symmetric boundary conditions (3.16) are shown for N =0,1,2.
Although the qualitative structure of the ¢-d diagram is the same in both cases, the
sub-branches of Ef*(d) in Fig. 5 (dashed line) are no longer superimposed and the
expected splitting occurs. Notice that the P-symmetry still holds so that due to (6.6),
the energy is even in both Fig. 3(a) and Fig. 5.

According to Fig. 4, we have ¢ = 0 and ¢ = 1 at d = 0; thus the 1-branch intersects
the 0-branch in u-space exactly at the trivial homogeneous solution u = 0 (this is
shown in Fig. 6, which pictures the complete topological structure of the simplest
branches of extremals in the infinite-dimensional u-space represented as the three-
dimensional space). Clearly, moving away from the solution # = 0 (for 4 = 0) along
the 1-branch entails the creation and growth of an infinitesimal nucleus of new phase
from one of the ends of the bar, without overcoming an energy barrier (“'second order
transition”).

Notice that u = 0 is the only common point of intersection of all branches of
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Fig. 4. The curve showing the relation between the imposed overall strain & and the position of the interface

¢ for the 1-branch of extremals (x = 0.01, # = 10); both the G- and P-symmetries are taken into account.

The lack of one-to-one correspondence between d and ¢ indicates the multiplicity of the one-interface
equilibria for given d.
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d

Fig. 5. The same N-branches of the effective encrgy E¥*(d) as in Fig. 3(a) for the case of non-symmetric
boundary conditions (3.16) forx = 0.0l and f = 1: N=0;-——-N=1.-——N=2.
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extremals in u-space which implies that all the energy branches meet at d = 0, as
shown in Fig. 3(a) for N = 0, 1, 2. This is due to the absence of the spinodal region in
the energy (7.1). In the case of the smooth double-well energy (2.3) with a spinodal
region the bifurcation diagram similar to the one shown in Fig. 3(a) will be less
singular around the point d = 0. In particular when = 0, the quadrature solutions
are available in both models; one can show that for the model based on (2.3), the
branch of the effective energy corresponding to the monotone extremals [the analog
of our E¥*(d)] has a triangular shape similar to the 1-branch shown in Fig. 3(a).
However, it bifurcates from the homogeneous branch of the effective energy [the
analog of our EF*(d)] and then reconnects with it in two different points rather than
in one point (d = 0), as in our case.

The 0- and 1-energy branches intersect at points other than d = 0; however, this
does not mean that the corresponding branches of extremals intersect in u«-space. For
instance consider the points where intersection occurs between these two energy
branches. At these points the different extremals are in fact physically apart (distant
in u-space. see Fig. 6), and there are energy barriers between them that cannot be
read from the effective energy diagram (notice, however, the stress drops at those
points in the effective stress—strain diagram). The system passing from one equilibrium
to the other (for d # 0) reflects the phenomenon of finite nucleation at the ends of
the bar. We recall that in our model nucleation without overcoming an energy barrier
is possible only at d = 0.

By considering for each d the elastic equilibrium energy E¥(c, d) [see (4.1)], one can
show that the phase-equilibria giving the lower side of the energy triangle E¥*(d) in
Fig. 3(a) (chain-dot dashed line) are all stable, for they are local minima of Ef(c, d)
as a function of ¢ for fixed d. The two other branches (upper sides of the triangle) are
unstable because they correspond to local maxima of £¥(c,d) (saddle points in u-
space). This is again summarized in Fig. 6, where the ““double loop™ depicting the 1-
branch of extremals is shown with its stable portions represented by a solid line.

8.3. The 2-branch of phase-equilibria (N = 2)

Extremals on the 2-branch have two transition points ¢, and c¢.. In this case the
elastic equilibria are obtained from the system of 12 linear equations (7.11) which
gives 12 coefficients @, (i = 1,2.3;h = 1, ..., 4). Phase-equilibria are then determined
from the solution of two non-linear equations (7.13) providing two (multi-valued)
functions ¢,(d) and ¢,(d), whose generic plot is presented in Fig. 7.

The essential structure of the bifurcation diagram in (d, ¢,. ¢,)-space (when the G-
symmetry is taken into account, but not the P-symmetry) can be observed. The branch
of the curve which stays on the plane ¢, = 1 —¢;, corresponds to the self-G-symmetric
extremals which are typical in the case of even N [see (6.8)]. Two G-related sub-
branches of non-self-G-symmetric equilibria bifurcate from the self-G-symmetric sub-
branch with no energy barrier. On the other hand, intersection of energy sub-branches
with different N ( for instance with N = 0 and N = 2) corresponds to finite nucleation
in the interior of the bar, for which there exists an energy barrier.

It follows from Fig. 7 that the solutions belonging to the 2-branch exist on a
bounded interval of the d-axis. Also their number can be determined from Fig. 7,
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Fig. 6. Generic topological structure of the bifurcation diagram for the 0-, 1- and 2-branches of extremals
in u-space in the case of a system with no symmetries. Stable equilibria are indicated by solid lines, unstable
equilibria by dashed or dotted lines. When the symmetric boundary conditions (3.15) and symmetric energy
(7.1) are considered, the G- and P-symmetries can be represented here by reflection across the (Z, X)-plane
and reflection across the (Z, Y)-plane, respectively ( for example, self-G-symmetric solutions belong to the
(Z, X)-plane). In this case the common “point™ where all branches meet corresponds to the trivial solution
u = 0. In this figure the count of equilibria for given d is not immediate because d is not a “‘single-valued™
parameter on the branches.

taking into account that the curve must be symmetrized by means of a reflection
across the (¢, ¢;)-plane [see (6.7)]. For generic d near 0 there are up to 10 solutions,
and their number decreases to 2 farther away from 0. This can also be seen from the
plot of the 2-branch of the equilibrium energy E¥*(d) shown in Fig. 3(a). The multi-
valued function F¥*(d) is composed of roughly triangular branches (solid lines)
corresponding to the self-G-symmetric solutions, with bifurcating sub-branches (dot-
ted lines) corresponding to the non-symmetric solutions. The function £¥*(d) is even
due to P-symmetry, and its sub-branches corresponding to non-self-G-symmetric
extremals are run over twice by the G-related solutions in u-space.
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0k b

0.2 bl

Fig. 7. The phase equilibrium curve in (¢, ¢5. d)-space for the 2-branch of extremals. For clarity, the part

of the curve generated by P-symmetry (corresponding to mirror symmetry across the (c,.c¢,)-plane) is

omitted. The main branch, which stays in the plane ¢ = 1 —¢,. corresponds to self-G-symmetric extremals :
the two side branches correspond to G-related non-symmetric solutions (“twins™).

At d = 0 all sub-branches of E¥*(d) meet at the trivial solution. As follows from
Fig. 3(a), for 4 = 0 we also obtain solutions which have lower energy than the trivial
one; the self-G-symmetric solution which has the lowest-energy. is close to being
periodic near d = 0. We have no proof that this solution actually corresponds to the
global minimum of our functional, however the preliminary numerical calculations
of Collins for N = 1 + 6 strongly suggest that this is the case for our choice of « and
B. From the analysis of Miiller (1993) we only know that (for a smooth two-well
energy density) in the limit of small « and for f = 1, the global minimum of the energy
for d = 0 is attained by a self-G-symmetric periodic function, with N ~ «="*. From
our investigation of the local minimizers, we expect that also for the global minimizer
periodicity will be lost away from d = 0 (at least near the ends of the bar), while self-
G-symmetry remains.

We also remark that in our examples the non-self-G-symmetric sub-branches always
have higher energy than the lowest-energy portion of the self-G-symmetric sub-
branch. Their stability can be assessed from the analysis of the function E¥(c¢,, ¢,, d)
for fixed d. It is possible to show that the lowest energy portion of the symmetric sub-
branch is stable, i.e. the corresponding solutions are minima of E¥(c,,¢,,d). All the
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other extremals corresponding to maxima or saddle points of E¥(c¢,.c.,d) (all are
saddle points in u-space) are unstable phase-equilibria. In particular, the G-related
non-symmetric extremals (twins) are unstable (this is also indicated in Fig. 6). The
fact that, as is the case of N = 1 and 2, only the lowest energy portion of each sub-
branch corresponds to physically relevant states (at least metastable) that might be
generic.

In Fig. 5 the effective energy function E¥*(d) is also shown for the case of the non-
symmetric boundary conditions (3.16). Notice that unlike Fig. 3(a) E¥*(d) in Fig. 5
lies above E}*(d) for all (d).

9. CONCLUSIONS

Although our investigation is still preliminary, and most of the issues are left for
more detailed study, we can make a number of interesting observations which we
summarize in this final section.

(1) In the various one-dimensional models which extend Ericksen’s earlier analysis
but neglect surface energy, the energy infimum as a function of total strain is the
convex envelope of the original phase energy densities and one observes infinite
refinement of the microstructures. In our case, when a strain-gradient term is con-
sidered in the energy, finite-scale microstructures (rather than infinitely fine ones)
occur as minimizers. One can expect that at equilibrium, the macroscopic energy in
the system with surface energy is higher than in the equivalent system without surface
energy. That means the plot of the total energy of the bar lies above the convex
envelope of the two-well energy, with a loss of convexity for the effective energy (the
corresponding effects in three dimensions would cause a similar deviation from the
quasiconvex envelope). Our examples show, however, that the overall energy function
is at least locally convex (elliptic), at the expense of reduced smoothness [see Fig.
8(a)]. Smoothness is lost as the system switches from one branch to another of the
effective energy (7.2). The corresponding effective stress—strain relation is therefore a
curve that is only piecewise continuous, with “jumps” and (locally) non-negative
moduli [see Fig. 8(b)].

The above considerations imply a distinct “quantization” effect in the continuous
system, not to be confused with the discreteness in the system of snap-springs [see
Miiller and Villaggio (1979) and Fedelich and Zanzotto (1992)]. We stress that this
non-smoothness in the absolute-minimum energy is not an artificial effect introduced
in the model ab initio, for it is not due to the “corner” in the original energy [see Fig.
2(b. ¢)] but. rather is a result of the branching of the minimizers, and may be expected
in models with a smooth energy (and spinodal region) as well. Such branching can
generate (non-smooth) oscillations also in the z-dependent absolute-minimum energy
obtained from (4.4). This means that the jumps in the Maxwell line are in fact intrinsic
also to smooth models; this gives a possible interpretation for the wiggles that are
observed in yield and recovery lines in the (quasistatic) uniaxial tension experiments
on bars made of multiphase shape-memory alloy [see, for instance, Miiller and Hu
(1991)]. We also recall that the jumps in stress reflect the transitions between separate
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d

Fig. 8. Maxwell construction for sufficiently small x and f. (a) Absolute-minimum energy E***(d. x. f§)
with non-smooth oscillations. (b) The saw-like discontinuous Maxwell line ***(d, 2. ff) in the overall
stress—strain diagram.

(and possibly distant) branches of equilibria, with energy barriers in between ; their
closeness in energy is misleading, and following the energy envelope in fact implies a
sequence of finite nucleation events. The estimate of such energy barriers will be one
of the important steps in the understanding of the actual evolution of the phase
transitions under changing boundary conditions. Notice also that the effective energy
1s not constitutive, but is sample (size)-dependent [through (3.8)].

(2) The augmentation of the original bar problem provides one way of obtaining
a selection criterion among the non-unique solutions found by Ericksen. In our model
the number of interfaces N is given by the function N = N(d, . f§) defined in Section
4. Our examples with low N suggest that extensive numerical computations are needed
to obtain a thorough description of the phase diagram in (d, %, f/)-space ; however, its
structure in the vicinity of the point x = 0, # = 0 (for large N and d = 0) is given by
the parabolas (2.17).

For the purpose of obtaining a selection criterion, which is of particular interest,
only these asymptotics are relevant : recall that for A large, in the limit for vanishing
zand f8, N depends only ony = o' . Thus the ratio 7 is the only essential factor in the
selection of the most energetically preferable solution among the different equilibrium
configurations indicated by Ericksen. This is a “ghost™ that determines the number
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of interfaces. We also notice that in the bar there is a tendency towards coarsening or
refinement of a microstructure depending on whether solutions with smaller N or
larger N are more energetically favorable. This is decided, in general by the values of
xand B (and by y in Ericksen’s case). For instance, coarsening is energetically preferred
in the regions where « is large, and this is of interest in connection to what in physics
is called a “‘size effect”. Observations show that when the particles undergoing phase
transition are sufficiently small, configurations with very few twin bands or no bands
at all are preferred to microstructures with many interfaces (Monzen et al., 1989). In
our model, this phenomenon is due to the fact that when L is small, « is large [see (3.8)].
In the corresponding part of the phase diagram, refinement of the microstructures is
energetically unfavourable, and a coarsening effect is thus expected. We also notice
that although this has not been proved in the preceding sections, there are ranges of
the parameters « and f in which the solutions with low N that we have explicitly
calculated (see Section 8) are the absolute minimizers rather than mere relative
minimizers. What is shown in our figures (see Section 8) is thus the relevant part of
the macroscopic energy for a small particle. This is, of course, not the case for large
“bars” for which refinement is clearly energetically favorable.

In Fig. 9(a) and (b) we separately show the schematic dependence of N on the
overall imposed strain 4, and on the size of the sample L. The N-d relation shows
that N grows to a maximum and then decreases as d is increased. A similar dependence
was observed in experiments on shape-memory single crystals during uniaxial tension
tests by Fu ez al. (1992). Analogously, the N-L relation depicted in Fig. 9(b) can be
connected to the work of Kato er al. (1977), who experimentally determined a
“staircase” in the relation between the particle size and the number of the bands in
nanometer-size particles. Staircases of this kind are also known in the systems with
competing spatial interactions studied in physics [ANNNI model, F-K model; see
for instance Selke (1994)].

(3) The previous analysis shows that after minimizing out the elastic fields, the

—

d L
(a) (b)
Fig. 9. The optimal number N of interfaces as a function of different parameters. (a) The function N(d. o, f)
for given x and #: (b} the function N(L) = N(0.«, f§) for given § and « ~ L™%, where L is the size of the
sample.
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energy of an N-branch of equilibria, as a function of the positions of the interfaces,
exhibits multiple local extrema, and different minima correspond to different local
minimizers in u-space, moreover their number dramatically increases with N. The
energy can thus be viewed as having multiple macro-oscillations (wiggles). On the
other hand, it is well known (Roitburd, 1978 ; Ball and James, 1992) that in more
realistic three-dimensional models even more complicated multilayered configurations
are common and are indeed observed experimentally [see, for instance, Tan and Xu
(1990)]. Each next level of microstructure (possibly involving more than two wells in
the original energy density of the material) affects the energy by the same mechanism
as we discuss here, and this produces extra meso-oscillations of a finer scale in the
effective potential ; indeed, there may be several internal sub-levels of microstructure
and thus several sub-levels of oscillations in the energy. This effect should ultimately be
responsible, for instance, for such phenomena as the “locking-in” of elastic equilibria
considered in the previous sections. Finally, at microlevel (the level of the lattice) the
energy as a function of the positions of the interfaces has micro-oscillations rep-
resented by, say, Pieerls barriers. The fact that energy curves with various internal
scales of oscillations should be considered (also in relation to some macroscopic
aspects of the behavior of bodies) has only recently been appreciated in the literature.
For example, oscillations (wiggles) are added ad hoc by Abeyaratne et al. (1994) to
the z-dependent effective energy function, based on the experimental analysis of the
“tip-splitting”” mechanism for twin layers, which appears to be among the key elements
in their model for the hysteretic behavior observed in biaxial stretching tests on shape-
memory alloys.

(4) The results of this investigation may help to clarify the experimental obser-
vations regarding hysteresis. It is reasonable to relate hysteresis to the possibility that
the system gets locked in metastable equilibria, and we concentrate in this paper on
their detailed analysis. However, in order to account properly for hysteresis, a model
for dynamics is of course necessary. Two directions can be taken: full-scale PDE
analysis or constrained dynamics in a finite dimensional subspace of internal
parameters. In the first case one adds to our Euler-Lagrange equation the standard
u, term originating from kinetic energy and the dissipative term, say, u,,, if the
mechanism of dissipation is (Kelvin) viscosity (see Truskinovsky, 1993). In the
absence of the surface energy term, this model has been studied by Ball ez al. (1991).
The second possibility is to assume the elastic equilibration to be instantaneous ( fast
mode), relating dynamics to the quasistatic migration of phase boundaries (phase-
equilibration, slow modes). In this case the simplest approach to the dynamics in ¢-
space may be gradient flow, for which our model, with the elastic fields minimized
out, provides the relevant potential. The corresponding system of ODE in the case of
“wiggly enough’ potential is known to describe locking phenomena (Abeyaratne et
al., 1994). Notice that the potential wells created by ““meso-oscillations™ (which this
model does not take into account) could make elastic equilibria at least metastable,
and this might be of importance for the interpretation of the recent experimental tests
exploring the interior of the hysteresis loop by Fu et al. (1992) and Ortin (1992). The
fact that internal loops reproduce themselves at different scales (Ortin, 1992) may be
a reflection of the existence of several levels of oscillations in the effective energy as
discussed above.
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APPENDIX: CALCULUS OF VARIATIONS

In this Appendix we obtain the jump conditions indicated in Section 5. We will use some
classical arguments applied to the general functional

A

¢t
Axlu.cp.. ... ] = z [ Lo(vu v’ u’)ydx. (A1)
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In (A.1) the Lagrangian L, can be multi-valued with branches L, and L. that are smooth,
convex functions of their arguments. The energy (3.14) of our bar is a special case of (A.1).
The same convention as for (3.14) holds: L_ or L, must be taken alternately in the integrand
for each interval [¢;, ¢;, 1]

Let us consider a candidate extremal [u, ¢;] for (A.1), and recall that in Section 3 we have
limited ourselves to displacement fields that are C', piecewise %, in [0, 1]. We will assume more
regularity for u, and suppose it to be smooth enough so as to let us perform all the necessary
operations, with discontinuities of its higher derivatives occurring at most at the transition
points ¢, For example, in the specific case of the energy functional (3.12) of the bar, u is
required to be C', piecewise C* in [0, 1].

In order to test [u, ¢] under the boundary conditions (3.15), we fix N and 4, and consider
[see Ericksen (1977)] the one-parameter family of admissible variations, for both dependent
and independent variables, defined by

X =XWx.¢), u=ulXe), (A.2)
with
X(x,0) =x, u(x0) = u(x), (A.3)
and boundary conditions
X(0.,8) =0, X(l,e)=1. u,¢) = —d/2, u(l,e)=dj2. (A.4)

According to (A.2), the positions of the new transition points C, in [0, 1] are
C, = X(c,,e), for i=1,..., N. (A.5)

We assume that (A.2), is of class 7, and, of course, that it leaves the constraint C, < C;,
satisfied. The fields (A.2), describe competitors with fixed N that are non-equilibrium states of
the bar, with fixed ends and displaced positions of the phase-boundaries. We will require that
they be at least of class C', piecewise (2, but will discuss in detail below how different choices
of the variations lead to different equilibrium conditions. We define, as usual, the variations
& = [é/ée],_, and A = [d/dg],_, for any quantity that depends on &. Then, by (A.2), ,, we have
Au = du+u'sX, and the following commutation relations hold

AW)Y—(Auy = =’ (3X), AW")—(Au)" = —u'(6X)" =2u"(6X)".

On the basis of these relations and once the Euler-Lagrange equation

’1L+ ~ ’ ‘!L "
() () -
u cu .
is satisfied, the variation of (A.1) reduces to
Y [/eL. oL,y
Ay = = s
ans= 2| (5 (5 |

_ \il I[N‘i (Au)}
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where we have used (A.4), and [A], = A(x*) — A(x") to denote the discontinuity at x of any
quantity 4. The independent variation of (Aw)" and (.X)" at x = O and x = 1 gives the “natural”
boundary conditions

% o
Loy =Ly o, (A$)

ou' cu”

Conditions (A.8), which state that the “Cosserat-type’” moments at the ends of the bar must
vanish, prescribe a special interaction with the loading device which does not constrain the
strain-gradients at the ends of the bar (zero imposed moments, the analog of a hinge).

Now, the first variation (A.7) reduces to a sum of singular terms at the points ¢; and at the
ends of the bar. Because we have assumed that the variations (A.2), must be at least C', this
implies

[6X].=0. [(4X)]. =0. (A.9)

Regarding the smoothness of variations (A.2),, different physical assumptions can be made
and we suggest two alternative models.
Model 1. (Instantaneous adjustment of the “internal variables™) assumes that

[4]e, =0 and [u]c =0, (A.10)
which implies
[Au]c =0 and [(Auw) ] =0. (A.11)
Model 2. (No adjustment of the “internal variables’™) is based on a different set of conditions
[uf, =0 and [u] =0. (A.12)
which in turn implies
[ou]. =0 and [(du)y]. =0. (A.13)

The physical meaning of the variations is quite different depending on whether conditions

(A.10-11) or (A.12-13) are assumed. This reflects the possibility of two different phenomena
occurring in phase transitions in solids.
Remark. The variations defined by (A.10-11) follow rather closely the tradition of Weierstrass
{non-smooth extremals) and Gibbs (phase-equilibrium conditions). They allow for competitors
that are of class C', but with the constraint that the competing fields have possible discontinuities
of their second and higher derivatives only at the varied position (A.5) of the transition points.
Thus, in Model 1. only at the points where a transition of phase occurs, i.e. of energy branch,
can the competing fields have reduced smoothness ; indeed, in this case a loss of smoothness in
the displacement is physically possible only due to the transition itself. This is in line with the
assumption made earlier that the same be true for the extremal itself.

On the contrary, the set of conditions (A.12-13) of Model 2 implies that there is no necessity
for the discontinuities in the derivatives of the competitors to be located only at the varied
transition points, i.e. at the points where, in the competitor, a transition of energy branch is
taking place. The relevance of such variations in mechanics of crystals can be explained in
terms of the interplay between *‘macroscopic™ variables (such as strain) and “‘microscopic” or
“internal” variables. Examples of these are the “shift” vectors used to describe the con-
figurations of the “‘motif ” of atoms inside a multi-lattice cell, or the parameters characterizing
fine arrangements of phase variants.

While a variation in the macroscopic variables is taking place (such as a change in the strain
field due to a deformation of the main lattice structure of the solid). possibly causing a
movement of the discontinuities in the current configuration, the internal variables evolve
following a kinetic law which is, to a large extent, independent from that of the macroscopic
variables. Quite often the internal variables are observed to remain in the same *‘branch of
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configurations™ (and thus of energy) as before the variation in strain. Such phenomena are
well known to occur in many circumstances in the mechanics of crystalline solids [see, for
instance, the ““pseudo-twinning” deformations described in Kelly and Groves (1970), or the
deformations in Au—Cd alloys giving rise to shift relaxation processes, studied by Bhattacharya
et al. (1994)], and should thus be considered in our model.

Now (A.4) can be used to obtain from (A.7) the following sets of jump and boundary
conditions for extremals:

Model 1. The independent variations at ¢, are Au, (Au)’, X, and (8X)’, which are continuous.

Hence, the following jump conditions must be satisfied by the extremals (i = 0.....N)
'Zl{+ '"/L . ’
(-] -
cu ou B
i "L ,
[/‘ }] ~ 0. (A1)
cu |
L.
[‘T,ﬁu] —o. (A.16)
| cu .,

L + i L Y f "L+
[L, — ((ﬂ =~ — <(';r,’,> )u’+ (%ﬁ;)u"ﬂ =0. (A.17)
Cu Cu Cu

Model 2. The independent variations at ¢; are now ou, (éu)’, dX. and (dX)", which again are
continuous functions. In this case, the same conditions as above are obtained except for (A.17).
which is replaced by

(L], =0 (A.18)

Notice that in both cases, (A.16) is redundant since hu] = 0. All the other equilibrium
conditions are non-trivial, and the variational derivation clarifies their physical meaning. The
two conditions (A.14) and (A.15) (obtained from the variations that change the elastic field)
must be satisfied in order that the whole bar be in elastic equilibrium ; they imply the balance
of tractions and hypertractions (moments) at the transition points. On the other hand, con-
ditions (A.17) or (A.18) (obtained from the variations that displace the transition points)
guarantee phase-equilibrium ; they are different analogs of the “*Maxwell condition™ of classical
elasticity. We notice that the two derivations above give, in general, different equilibrium
conditions. However, owing to (A.15-16). in the case of the energy (3.14), one has [4"], =0,
and condition (A.17) becomes identical to (A.17) so that Model 1 and Model 2 are indis-
tinguishable. However, this might not always be the case: for instance, if the interfacial energy
coefficients in (3.4) are different for the two components (& # «.), the second derivatives of
the displacements are no longer continuous at the transition points and the equilibrium con-
ditions (A.17) and (A.18) do not coincide.



