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a b s t r a c t

We consider a monatomic nonlinear mass–spring chain with first and second-neighbor interactions and
show that there is a parameter range where solitary waves in this system are strictly supersonic. In these
regimes standard quasicontinuum theories, targeting long-wave limits of latticemodels, are not adequate
since evenweak strictly supersonic solitarywaves are of envelope type and crucially involve amicroscopic
scale in addition to themesoscopic scale of the envelope. To capture this effect in a continuum setting it is
necessary to employ unconventional, higher-order quasicontinuum approximations carrying more than
one length scale.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Manipulation of mechanical waves with lattice scales opens
enormous possibilities in mechanical signal transmission. Nonlin-
earity plays an important role in such processes because at finite
amplitudes the underlyingmechanical systems can access regimes
that allow nontrivial energy redistribution among different scales.
For instance, even the simplest nonlinear mass–spring chains ex-
hibit spectral localization of energy, resulting in the formation
of dynamic coherent structures. In applications, it is desirable to
control the propagation velocities of such structures by fine-tuning
particle interactions [1].

An important role in the design of the coherent energy transport
in nonlinear lattices is played by acoustic solitary waves, nontopo-
logical collective excitations which propagate without distortion
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and can be therefore used to transmit information. Acoustic soli-
tary waves in the simplest one-dimensional lattices with nearest-
neighbor (NN) interactions are describedby the Fermi–Pasta–Ulam
(FPU) model [2]. It was shown that these waves are necessarily
supersonic with respect to the unstrained state ahead of them, and
their existence was proved rigorously for interaction potentials
with superquadratic growth at infinity [3]. Near the sonic limit
such waves become weak and delocalized and are therefore ad-
equately captured by quasicontinuum theories of KdV type that
involve a single internal length scale [4,5]. Rather remarkably, we
show that the addition of linear next-to-nearest neighbor (NNN)
interactions to the FPUmodel can change this picture qualitatively.

More specifically, we show that if NN and NNN interactions
compete in the sense that NN interactions are stabilizing while the
NNN interactions are destabilizing, there is a range of parameters
where the weakest solitary waves, that are necessarily supersonic,
disassociate from the solutions of the linearized continuum (ho-
mogenized) equations, that are necessarily sonic. In other words,
there is a finite gap where supersonic solitary waves do not exist.
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Supersonic solitary waves in these regimes that are closest to the
gap have an envelope-type oscillatory structure and are charac-
terized by two length scales: one microscopic and another one
mesoscopic. Such regimes existwhenNN andNNN interactions are
sufficiently antagonistic and therefore of non-perturbative nature.
To capture such strongly discrete effects in a continuum setting,
KdV-type approximations relying on a single mesoscopic length
scale, are not sufficient and one is led to consider ‘post-KdV’ quasi-
continuum approximations incorporating more than one internal
length scale.

Interestingly, not only the existence of strictly supersonic soli-
tary waves was missed in the previous studies of the FPU problem
with competingNNN interactions, but also the proposed low-order
KdV-type quasicontinuum approximations suggested a qualita-
tively new effect: the existence of subsonic solitary waves that are
prohibited in the NN model [6–8]. Here we argue that this is an
artifact of the approximation by showing that subsonic propaga-
tion of solitary waves cannot be generic in the discrete model due
to the presence of radiative (non-decaying) modes at subsonic ve-
locities. Moreover, we show that quasicontinuum approximations
of sufficiently high order, adequately capturing the velocity gap
between the linearwaves in the naive homogenized theory and the
slowest solitarywaves in the discrete theory, also exclude subsonic
propagation of solitary waves.

The necessity of using higher-order continuum theories to de-
scribe NNN chains with competing interactions was probably first
realized by Mindlin [9] who studied the linearized elastostatics of
such lattices and came across the regimes where the characteristic
eigenvalue is complex and is therefore characterized by two length
scales. His conclusion was that the adequate quasicontinuum de-
scription in this case must necessarily include both first and sec-
ond gradients of strain; for more recent results in this direction,
see [10–12]. The need to use two spatial scales in the averaged de-
scriptionwas also realized in the studies of capillary–gravity water
waves where the dispersion relation has some features similar to
the one in NNN lattices. In this context, weak two-scale envelope-
type solitary waves were also identified [13,14], and it was shown
that their amplitude can be described by a nonlinear Schrödinger
(NLS) equation augmented by higher-order terms [15,16].

To obtain explicit solutions of the discrete problem, we use a
modelwith piecewise quadratic NN and quadratic NNN interaction
energies. The idea to confine nonlinearity to a single point was
used in [17] to study the solitary waves in the FPU system; see also
[18–23] for a similar approach in studies of dislocations, cracks and
phase boundaries. The family of exact solutions obtained in [17]
was broad enough to cover the whole spectrum of behaviors from
quasicontinuum to anticontinuum. Here we extend this class of
solutions to systems with additional linear NNN interactions.

Of a particular interest for us are the envelope discrete solitary
waves which bifurcate from the solutions of the linearized equa-
tions with a finite wave length at the point on the dispersion curve
where group and phase velocities coincide. We emphasize that
these are genuine traveling waves, as opposed to envelope-type
discrete breathers that also exist in lattices with second-neighbor
interactions [6]. To demonstrate that the bifurcating strictly super-
sonic solitary waves are not an artifact of the piecewise quadratic
nonlinearity, we consider the case of smooth NN interactions
strongly competing with linear NNN bonds and derive the corre-
sponding higher-order NLS amplitudemodulation equation,which
yields a leading-order approximation of the bifurcating solution.
Using this approximation as an initial seed, we then numerically
construct the bifurcating branch of solitary waves. Our numerical
simulations validate the existence of strictly supersonic solitary
waves in the NNN models with general nonlinearity and suggest
their stable propagation.

Since the discrete theory is analytically opaque in the general
case, the natural step is to develop adequate quasicontinuum ap-
proximations amenable to analytical studies. After demonstrating
that the low-order quasicontinuum theories fail to capture the
envelope-type solitary waves, we turn to a higher-order contin-
uum approximation based on a fourth-order Taylor expansion of
the discrete operator in the travelingwave equation and show that
it is compatible with this effect. In the case of piecewise linear NN
interactions we compare this theory and the low-order truncation
of the discrete solution, which relies only on the first four roots of
the characteristic equation in each linear regime that are closest to
the origin, with the full solution of the discrete problem. The com-
parison identifies a parameter regime where both approximations
adequately capture the discrete problem.

The paper is organized as follows. In Section 2 we introduce
the discrete model, study the dispersion relation for the linearized
problem and establish the existence of the velocity gap discussed
in the Introduction. In Section 3we specialize themodel to the case
of piecewise linear NNN interactions.We then use aWiener–Hopf-
type approach to obtain in Section 4 a one-parameter family of
explicit solitary wave solution of this model in the form of infinite
series. In Section 5 we give a simple illustration of this general
class of solutions by considering the simplest truncation of the
infinite series. The stability of the generic solitary waves in this
model is studied numerically in Section 6. We proceed in Section 7
by developing a higher-order quasicontinuum approximation and
comparing it to the discrete problem in the analytically tractable
case of piecewise linear NN interactions. The case of a general
smooth NN potential is considered in Section 8, where we con-
struct a higher-order NLS modulation equation and use it to study
the bifurcation of the strictly supersonic solitary waves. Section 9
contains our conclusions. Some technical results are presented in
the form of Appendices.

2. The model

Consider an infinite chain of interacting pointmasses. In dimen-
sionless variables the energy (Hamiltonian) of the system is given
by

H =

∞∑
n=−∞

[
1
2
u̇2
n + φ(un − un−1) +

β

8
(un − un−2)2

]
. (1)

Here un(t) is the displacement of the nth mass at the time t , u̇n =

u′
n(t), and φ(w) is a potential governing anharmonic interactions

between the nearest (first) neighbors. In what follows we assume
that it satisfies φ(0) = φ′(0) = 0, is locally convex (φ′′(w) >
0) in an open interval containing zero, where it has a minimum,
and rescaled so that φ′′(0) = 1. The last term in (1) corresponds
to harmonic interactions between the next-to-nearest (second)
neighbors. The relative strength of second-neighbor interactions
is measured by the constant coefficient β; β = 0 corresponds
to the classical case of the FPU lattice with only first-neighbor
interactions.

The dynamics of the system is governed by the following system
of ordinary differential equations:

ün = f (un+1 − un) − f (un − un−1) +
β

4
(un+2 − 2un + un−2), (2)

where f (w) = φ′(w) is the anharmonic interaction force. By the
above assumptions, f (0) = 0, f ′(0) = 1 and f ′(w) > 0 nearw = 0.
Themacroscopic stress in the chain is given byΣ(w) = f (w)+βw,
with the elastic modulusΣ ′(0) = 1 + β . We note that for stability
of the undeformed state of the chain it is necessary and sufficient
that β > −1 (e.g. [24]). Behind this lower stability bound is the
fact that for β < 0, NN and NNN interactions are competing.
Indeed, while the NN interaction potential φ(w) is convex near the
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undeformed state and thus favors states with homogeneous strain,
the NNN potential is concave, favoring instead fine-scale oscilla-
tions [25,10,26,27]. The combination of these two interactions can
support homogeneous states only if NNN interactions are not too
strong, which leads to the condition β > −1. As we show below
(see also [6–8]), competing interactions generate qualitatively new
effects in solitary wave dynamics compared to the case β ≥ 0 .

It will be convenient to rewrite (2) in terms of strain variables

wn = un − un−1.

This yields

ẅn = f (wn+1) − 2f (wn) + f (wn−1) +
β

4
(wn+2 − 2wn + wn−2). (3)

Solitary waves are spatially localized traveling wave solutions of
(3). Substituting the traveling wave ansatz

wn(t) = w(x), x = n − Vt,

where V is the velocity of the wave, in (3) yields the advance-delay
differential equation

V 2w′′
= f (w(x + 1)) − 2f (w(x)) + f (w(x − 1))

+
β

4
(w(x + 2) − 2w(x) + w(x − 2)). (4)

Solitarywave solutions correspond to homoclinic trajectories of (4)
selected by the following conditions at infinity:

w(x) → 0 as |x| → ∞. (5)

Suppose that (4) has a solitary wave solution w(x) for given V ,
f (w) and β . Its asymptotic behavior at infinity is then given by

w(x) ∼ Beikx + B̄e−ik̄x, x → ∞, (6)

where B and k are complex constants, and Imk > 0 to ensure the
decay to zero. Linearizing (4) aboutw = 0, one can see that kmust
be a nonzero root of L(k) = 0, where

L(k) = 4sin2 k
2

+ βsin2k − V 2k2 (7)

is the characteristic function for the zero-strain state. Clearly,
L(k) = ω2(k) − V 2k2, where

ω2
= 4sin2 k

2
+ βsin2k (8)

is the corresponding dispersion relation. The structure of the
nonzero roots of (7) for different values of β is illustrated in Fig. 1.

Note that if k is a root of L(k) = 0, then so are k̄, −k and −k̄, so
the complex roots always exist in quadruples. As a consequence,
the real roots are symmetric about the imaginary axis and the
imaginary roots are symmetric about the real axis. The complex
roots form in (Rek, Imk, V ) space two sets of branches. One set
(shown in green in Fig. 1) bifurcate from the maxima of real
and purely imaginary roots. Another set (shown in red in Fig. 1)
emanate from (V , k) = (0,±π ± 2iarcsinh(1/

√
β) ± 2π j) for

β > 0 and from (V , k) = (0,±2iarccosh(1/
√

−β) ± 2π j) for
β < 0, where j is any nonnegative integer, and these branches
approach infinity when β → 0. The structure of the red branches
becomes more complex at large enough positive β , when some of
the branches split at certain bifurcation velocity values andbecome
attached to additional maxima and minima acquired by the real
root curve. However, this parameter range will not be of interest
for the construction of solitary waves.

We now observe that solitary waves are generally incompatible
with the existence of the nonzero real roots in (6), which in a
generic situation lead to non-decaying oscillations (radiation) at

infinity. For β ≥ −1/4, such roots exist for 0 ≤ V < c , where

c =

√
1 + β (9)

is the speed of sound and the maximal phase velocity for linear
waves in this β range, corresponding to the wave number k = 0
(c = ω′(0)). Therefore, solitary waves must be supersonic, V > c ,
in this parameter regime. For −1 < β < −1/4, the nonzero real
roots exist for 0 ≤ V ≤ Vm(β), where Vm > c is the β-dependent
maximum of the real root branch, as illustrated in Figs. 1(d) and
2(b):

Vm = max
{
ω(k)
k

: k ∈ R, k > 0, −1 < β < −1/4
}
. (10)

This maximal phase velocity corresponds to the wave number k =

km > 0 at which the phase and group velocities coincide:

ω′(km) = ω(km)/km = Vm. (11)

Hence in this case solitary waves are necessarily strictly supersonic,
V > Vm, and there is a finite velocity gap between Vm and c. At
β = −1/4, the gap closes because Vm = c . The velocity range
where solitary waves may exist at a given β is thus given by

V > c, β ≥ −1/4 and
V > Vm > c, −1 < β < −1/4, (12)

as illustrated in Fig. 2(b). As discussed above, (12) means that V
must be above the maximal phase velocity for linear waves.

We now focus on the nature of the asymptotic behavior of the
solutions (6) of the linearized equations at infinity; see also [8].
The principal term in the asymptotic limit is determined by the
nonzero root of L(k) = 0 with the smallest magnitude, given that
Imk > 0. For β ≥ 0, V > c , we have k = iq, q > 0, which implies
that potential solitary wave must have a monotone decay with the
length scale l = 1/q. As the sonic limit is approached, q tends to
zero and one can expect the KdV-type delocalization of the solitary
wave.

When −1/4 < β < 0, the purely imaginary roots have a finite
maximal velocity

Vcr = max{V > 0 : L(iq) = 0, q ∈ R, q > 0,
−1/4 < β < 0}, (13)

which is above the sound speed, as illustrated in Fig. 1(c). For
c < V < Vcr(β), the equation L(k) = 0 has two imaginary roots
in the upper half plane, iq1 and iq2, q2 > q1 > 0, which define
two length scales, l1 = 1/q1 and l2 = 1/q2 < l1. In this case the
behavior at infinitymust bemonotone anddominated by the larger
length scale l1. In the sonic limit, q1 tends to zero, so l1 → ∞, and
we expect solitary waves to delocalize as in the case β ≥ 0. At
V = Vcr(β) the two roots merge into one, producing at V > Vcr
two complex roots k = ±ξ + iη, ξ > 0, η > 0. This implies
that solitary waves in this range exhibit oscillatory decay with the
two length scales 1/ξ and 1/η governing the frequency and the
amplitude decay of the oscillations, respectively. The transition
from monotone to oscillatory decay was also discussed in [8]. As
β approaches zero from below, Vcr → ∞, while at β = −1/4 we
have Vcr = Vm = c. The curve Vcr(β) is shown in Fig. 2(b) by a
dashed line.

Finally, at −1 < β < −1/4, when solitary waves must be
strictly supersonic, V > Vm > c , the nonzero roots of L(k) = 0
with the smallest magnitude are complex, and therefore the decay
is again oscillatory. As the lower velocity bound Vm is approached,
the imaginary partη of the root k tends to zerowhile themagnitude
ξ of the real part tends to the finite positive limit km defined in
(11). This suggests that the near-gap solitary waves must be in the
form of slowly modulated short-scale oscillations. Such essentially
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Fig. 1. Representative structure of nonzero roots of L(k) = 0 at V ≥ 0 and (a) small β > 0; (b) β = 0; (c) −1/4 < β < 0; (d) −1 < β < −1/4. Due to the symmetry of the
roots about the real and imaginary axes, only roots in the first quadrant are shown. The root branches continue to infinity. At β = −1/4 the critical velocities c , Vcr and Vm
coincide.

Fig. 2. (a) Typical dispersion curve for the phase velocity at −1 < β < −1/4, with a maximum Vm > c at k = km . Solitary waves bifurcate from the maximum point and
have velocities V > Vm . (b) The domain (shaded region) in (β, V ) plane where solitary waves may exist according to (12). See the text for details.

discrete behavior of solutions is clearly out of reach for the KdV
equation describing similar weak solitary waves in the interval
β ≥ −1/4. We note that in view of (58) below, the interval
−1 < β < −1/4 is the most widely used range of β values
in various applications because only in this interval the standard
gradient expansion of the elastic energy leads to a well defined
continuum theory.

3. Piecewise linear NN interactions

To further investigate the discrete model (4) we now introduce
NN interactions forwhich exact solitarywave solutions can be con-
structed. We limit our attention to the case of competitive second-
neighbor interactions, with −1 < β < 0, since our analysis above
and the earlier work [8,6,7] show that this is the parameter range
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where the second-neighbor interactions introduce new features,
while the case β > 0 is qualitatively similar to the case β = 0.

Consider a convex biquadratic potential φ(w) giving rise to
continuous piecewise linear interaction force between the nearest
neighbors in the form:

f (w) =

{
w, w ≤ wc
α(w − wc) + wc, w ≥ wc .

(14)

Here the parameter α is the ratio of the elastic moduli in the two
linear regimes separated by the critical strain wc . We consider the
case α > 1, corresponding to the hardening nonlinearity. The
dimensionless sound speeds associated with the first and second
linear regimes are

c1 =

√
1 + β, c2 =

√
α + β. (15)

Under our assumptions c1 < c2. The limiting case β = 0 was
studied in [17].

Assume that solitary wave solution takes values in the second
linear segment (w(x) > wc) when |x| < z, for some z > 0 to
be determined. We further assume that for |x| > z, w(x) < wc
(first linear segment) and that w(±z) = wc . Due to the linear
nature of the problem in |x| > z and |x| < z, the solution can
be written in terms of plane waves with wave numbers satisfying
the characteristic equations L(k) = 0 and G(k) = 0, respectively.
Here L(k), given by (7), and

G(k) = 4αsin2 k
2

+ βsin2k − V 2k2 (16)

are the Fourier images of the corresponding linear advance-delay
differential operators. Both functions have a double zero at k = 0,
while the structure of their nonzero roots is shown in Fig. 1, where
for L(k) = 0 we have c = c1, while for G(k) = 0 we need to replace
β by β/α and V by V/

√
α and set c = c2/

√
α. Real and imaginary

roots at−1 < β < 0 are shown in Fig. 3. Note thatG(k) = 0 always
has real roots for velocities below c2. We recall that all roots are
symmetric about the real and imaginary axes.

We now determine the velocity range where solitary waves
may exist. As we have already discussed, for existence of solitary
waves it is necessary that L(k) = 0has nononzero real roots but has
roots with Imk > 0. In order for a homoclinic connection involving
the second linear regime to exist it is also necessary that V < c2.
Together this yields the velocity intervals

c1 < V < c2, β ≥ −1/4 and
Vm < V < c2, −1 < β < −1/4, (17)

which are shown by shaded regions in Fig. 3. Here we recall that
Vm is the maximal phase velocity defined in (10). For −1 < β < 0,
the solitary wave solution in the corresponding velocity intervals
is an even function of x that has the form

w(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a0 +

∞∑
j=1

aj cos(γjx), |x| ≤ z

∞∑
j=1

bj exp(iλ+

j |x|), |x| ≥ z.
(18)

Here γj are the roots of G(γ ) = 0 that have either positive real part,
Re(γj) > 0, or are purely imaginary and belong to the upper half-
plane, Re(γj) = 0, Im(γj) > 0, while λ+

j are the roots of L(λ) = 0
with positive imaginary part, Im(λ+

j ) > 0. As described in the next
section, the infinite set of coefficients aj and bj and the value of z
can be found by solving a linear integral differential equation and
a nonlinear eigenvalue problem associated with it.

4. Solution of the discrete problem

To construct the solitary wave solutions, we use the approach
developed in [17] (see also [28–30], where a similar method was
used to obtain heteroclinic traveling waves describing dislocations
and phase boundaries).

Recall that under our assumptions f (w(x)) = w(x) outside the
core region, at |x| > z, where w(x) < wc . This condition can be
written in the form

f (w(x)) = w(x) + A
∫ z

−z
θ (s − x)h(s)ds, (19)

where θ (x) is the unit step function (θ (x) = 1 for x > 0, θ (x) = 0
for x < 0), A > 0 is a constant to be determined, and h(x) is an
unknown odd shape function, h(−x) = −h(x), satisfying h(s) ≡ 0
for |s| > z and normalized so that∫ z

0
h(s)ds = 1. (20)

Indeed, observe that θ (s−x) = 0when x > z and θ (s−x) = 1when
x < −z for all |s| ≤ z, so the integral in (19) is zero in both cases
(in the latter case because h(x) is odd), yielding f (w(x)) = w(x) for
|x| > z. Meanwhile, for |x| < z, wherew(x) > wc , we use (19) and
(14) to obtain f (w(x)) = w(x) + A

∫ z
x h(s)ds = α(w(x) −wc) +wc .

This yields the following relation between the shape function h(x)
and the odd derivative w′(x) of the solution in the core region:

w′(x) =
A

1 − α
h(x), |x| < z. (21)

Suppose now that the function h(x) is known. Substituting the
ansatz (19) into (4) and solving the corresponding linear problem,
we obtain

w(x) =
A

2π i(α − 1)

∫
∞

−∞

(
G(k)
L(k)

− 1
)
H(k)
k

eikxdk, (22)

where H(k) =
∫ z

−z h(s) exp(−iks)ds is the Fourier transform of h(s).
Using (21) and (22), we then find that the shape function must
be a nontrivial solution of the convolution-type Fredholm integral
equation of second kind:

(α − 1)
∫ z

−z
Q(x − s)h(s)ds + h(x) = 0, |x| < z, (23)

where we introduced the V -dependent kernel

Q(x) =
1

2π (α − 1)

∫
∞

−∞

(
G(k)
L(k)

− 1
)
eikxdk, (24)

which is an even function. The linear part of the problem thus
reduces to finding a nontrivial solution of the homogeneous Fred-
holm integral equation of second kind for h(x). Such solutions
only exist if the linear operator in the left hand side of (23) has
a zero eigenvalue. The condition for the existence of the zero
eigenvalue yields a transcendental equation for z that together
with the assumed strain distribution constitutes the nonlinear part
of the problem. The strain field is then recovered from (22), where
the constant A is found by requiring that w(z) = wc .

The problemcanbe solvedusing the approachdeveloped in [17]
with appropriate modifications accounting for the presence of
second-neighbor interactions. We use a variant of the Wiener–
Hopf method [31–33] and begin by extending the left hand side
of the equation to the entire real axis:

(α − 1)
∫ z

−z
Q(x − s)h(s)ds + h(x) = ψ−(x − z) + ψ+(x + z),

−∞ < x < ∞.
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Fig. 3. Real k = r > 0 and imaginary k = ip, p > 0 roots of G(k) = 0 and L(k) = 0 at α = 4 and (a) −1/4 < β < 0 (β = −0.05); (b) −1 < β < −1/4 (β = −0.6). The
solitary waves involve roots inside the shaded region.

Fig. 4. Nonzero roots of G(k) = 0 (black circles) and L(k) = 0 (gray circles) at (a) c1 < V < Vcr , −1/4 < β < 0 and (b) either Vcr < V < c2 , −1/4 < β < 0 or Vm < V < c2 ,
−1 < β < −1/4. Here the parameters are α = 4, β = −0.05, V = 1.1 in (a) and V = 1.5 in (b). The simplest approximation with n = 2 includes the roots ±γ1 , ±γ2 and
λ±

1 , λ
±

2 located within the strip |Rek| < s2 marked by the dashed lines.

Here ψ±(x) are some unknown functions satisfying ψ−(x) ≡ 0 for
x < 0 and ψ+(x) ≡ 0 for x > 0. Taking Fourier transform of both
sides, we obtain
G(k)
L(k)

H(k) = eikzΨ̂+(k) + e−ikzΨ̂−(k), (25)

where Ψ̂±(k) are Fourier transforms of ψ±(x). Using an infinite
product representation [34] of the ratio G(k)/L(k) in the generic
case when all nonzero roots of L(k) = 0 and G(k) = 0 are simple,
we have

c22 − V 2

c21 − V 2

∏
∞

i=1 1 −
k2

γ 2
i∏

∞

i=1

(
1 −

k
λ+

i

)(
1 −

k
λ−

i

)H(k)

= eikzΨ̂+(k) + e−ikzΨ̂−(k), (26)

where c1 and c2 are defined in (15) and we recall that G(γj) = 0
and either Re(γj) > 0 or Re(γj) = 0, Im(γj) > 0, and L(λ+

i ) = 0,
Im(λ+

i ) > 0.

Consider now a strip |Rek| < sn containing n roots γi and n roots

λ+

i ; see Fig. 4. Due to the structure of the roots at −1 < β < 0

and V within (17), such n is necessarily even, and by symmetry the
roots −γi and λ−

i = λ+

i are also included within the strip, so that

the total number of the nonzero roots of L(k) = 0 and G(k) = 0 in

the nth strip is 4n. Then (26) is approximated by

∏n
i=1(k

2
− γ 2

i )∏n
i=1(k − λ+

i )
∏n

i=1(k − λ−

i )
Hn(k)

= eikznΨ (n)
+ (k) + e−ikznΨ

(n)
− (k), (27)

where Hn(k) and zn approximate H(k) and z, respectively, and

Ψ
(n)
± (k) = −

V 2
− c21

c22 − V 2

n∏
i=1

|γi|
2

|λ+

i |
2 Ψ̂±(k). (28)
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An analytic continuation argument [32,33] and some algebraic
manipulations then yield

Hn(k) = i
n∑

j=1

∏n
i=1(γj − λ−

i )
γj
∏n

i=1, i̸=j(γ
2
j − γ 2

i )

n∑
m=1

d(n)m γ
m−1
j

× e−iγjzn

(
sin((k + γj)zn)

k + γj
−

sin((k − γj)zn)
k − γj

)
, (29)

where the coefficients d(n)m satisfy the linear system
n∑

m=1

(Mn)jm(zn)d(n)m = 0, j = 1, . . . , n, (30)

with

(Mn)jm = γm−1
j

(
(−1)meiγjzn∏n
i=1(γj − λ−

i )
+

e−iγjzn∏n
i=1(γj − λ+

i )

)
. (31)

We omit the details of the derivation which can be found in [17],
where we considered the case β = 0.1 The system (30) has a
nontrivial solution if and only if the determinant of the n×nmatrix
Mn(zn) with the entries (Mn)jm(zn) is zero. Therefore we obtain an
algebraic equation

detMn(zn) = 0, (32)

allowing one to find zn. Once zn is found, we can solve (30) for d(n)m ,
which are determined up to an arbitrary multiplicative constant
and compute Hn(k), which yields [32]

hn(x) =

n∑
j=1

sin(γjx)e−iγjzn
∏n

i=1(γj − λ−

i )
γj
∏n

i=1, i̸=j(γ
2
j − γ 2

i )

n∑
m=1

d(n)m γ
m−1
j . (33)

The normalization condition
∫ zn
0 hn(x)dx = 1 then selects a unique

set of coefficients d(n)m and yields the approximate solution hn(x) of
the integral equation. The exact solution of (23) and the value of z
are obtained in the limit n → ∞.

Substituting into (22) the truncated approximation ofG(k)H(k)/
L(k) that includes only the roots in the |Rek| < sn, recalling
(27), (28), using the residue theorem as in [17] and imposing
w(±zn) = wc , we obtain the nth approximation of the strain
field:

wn(x) = wc

(
1 −

V 2
− c21

d(n)1 (c22 − V 2)

n∑
j=1

∏n
i=1

(
1 −

γj
λ−

i

)
∏n

i=1, i̸=j

(
1 −

γ 2
j

γ 2
i

)

× e−iγjzn
n∑

m=1

d(n)m γ
m−1
j (cos(γjx) − cos(γjzn))

)
(34)

for |x| < zn and

wn(x) =
wc

d(n)1

n∑
j=1

∑n
m=1 d

(n)
m (λ+

j )
m−1∏n

i=1, i̸=j

(
1 −

λ+

j
λ+

i

) eiλ
+

j (|x|−zn) (35)

for |x| > zn. In particular, the amplitude of the nth approximation
is given by

wn(0) = wc

(
1 −

V 2
− c21

c22 − V 2

( n∏
i=1

|γi|

)2(
d(n)1

n∏
i=1

λ−

i

)−1)
. (36)

1 The difference here is that n is even, while in β = 0 case it was odd [17]. This
affects some symmetries taken into account in (31), where we have (−1)m in place
of (−1)(m−1) in Eq. (9) in [17].

In the limit n → ∞ (34) and (35) yield the exact solution in the
form (18), with

a0 = wc

(
1 +

V 2
− c21

c22 − V 2
lim
n→∞

1

d(n)1

n∑
j=1

∏n
i=1

(
1 −

γj
λ−

i

)
∏n

i=1, i̸=j

(
1 −

γ 2
j

γ 2
i

)

× e−iγjzn
n∑

m=1

d(n)m γ
m−1
j cos(γjzn)

)
,

aj = −wc
V 2

− c21
c22 − V 2

lim
n→∞

1

d(n)1

∏n
i=1

(
1 −

γj
λ−

i

)
∏n

i=1, i̸=j

(
1 −

γ 2
j

γ 2
i

) e−iγjzn
n∑

m=1

d(n)m γ
m−1
j

and

bj = wc lim
n→∞

e−iλ+

j zn

d(n)1

∑n
m=1 d

(n)
m (λ+

j )
m−1∏n

i=1, i̸=j

(
1 −

λ+

j
λ+

i

) .
At β = 0 the sound speeds are c1 = 1, c2 =

√
α, and we recover

the solution in [17].
Note that we have assumed without proof that there exists zn

for each even n such that the corresponding wn(x) is admissible,
i.e. satisfies the assumed inequalities wn(x) < wc for |x| > zn
and wn(x) > wc for |x| < zn, and that the resulting zn, hn(x)
and wn(x) sequences converge. To support these assumptions we
present in the next section several explicit examples, while the
general mathematical study of the ensuing problem remains to be
done.We also remark that even though the nonlinear equation (32)
may have more than one solution for each n, our examples show
that only the smallest zn value corresponds to an admissible field
wn(x) at a given n.

An alternative procedure to obtain semianalytical solution via
numerical approximation of the integral equation is described in
Appendix A.

5. Approximation by low-order truncation

Here we illustrate the procedure developed in Section 4 by
considering in detail the simplest approximationwith n = 2. Some
numerical evidence of convergence of the general series as n → ∞

is provided in Appendix B.
The approximation n = 2 includes only the roots locatedwithin

a strip |Rek| < s2, where s2 is chosen to be large enough for the strip
to contain eight roots, as shown in Fig. 4, four roots of G(k) = 0
and four roots of L(k) = 0. This means that we need to include
a symmetric pair of real roots and a symmetric pair of imaginary
roots of G(k) = 0:

± γ1 = ±r and ± γ2 = ±ip, (37)

where r > 0 and p > 0. Meanwhile, depending on V and β , the
first four roots of L(k) = 0 are either two symmetric pairs of purely
imaginary roots, corresponding to a monotone decay of solitary
waves at infinity, or a complex quadruple, which yields oscillatory
decay.

Solutions with a monotone decay. We begin with the first case,
which occurswhen−1/4 < β < 0 and c1 < V < Vcr. Recall that in
this parameter regime the first four roots of L(k) = 0, as illustrated
in Fig. 4(a), are

λ+

1 = iq1, λ+

2 = iq2, λ−

1 = −iq1, λ−

2 = −iq2, (38)
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M2(z2) =

⎡⎢⎢⎣
e−irz2

(r − iq1)(r − iq2)
−

eirz2

(r + iq1)(r + iq2)
r
(

eirz2

(r + iq1)(r + iq2)
+

e−irz2

(r − iq1)(r − iq2)

)
e−pz2

(p + q1)(p + q2)
−

epz2

(p − q1)(p − q2)
(−ip)

(
e−pz2

(p + q1)(p + q2)
+

e−pz2

(p − q1)(p − q2)

)
⎤⎥⎥⎦ , (39)

Box I.

where q2 > q1 > 0. In this case the 2 × 2 matrix M2, defined in
(31), is given by Eq. (39) in Box I where we recall that z2 denotes
the value of z in the n = 2 approximation in (27). Then (32) yields
the nonlinear algebraic equation

F (z2) := r[(r2 − q1q2) cos(rz2) + r(q1 + q2) sin(rz2)]

× [(p2 + q1q2) sinh(pz2)

+ p(q1 + q2) cosh(pz2)] − p[(r2 − q1q2) sin(rz2)

− r(q1 + q2) cos(rz2)][(p2 + q1q2) cosh(pz2)

+ p(q1 + q2) sinh(pz2)] = 0

(40)

In the limit β → 0, when p and q2 tend to infinity as O(1/
√

−β),
the equation reduces to tan(rz2) = −r/q1, which is consistentwith
the first-root approximation in [17]. To see that (40) has solutions
z2 > 0, observe that

F ′(z2) = −(p2 + r2)[(r2 − q1q2) sin(rz2) − r(q1 + q2) cos(rz2)]

× [(p2 + q1q2) sinh(pz2) + p(q1 + q2) cosh(pz2)].

Under our assumptions, F ′(z2) vanishes at infinitely many values
z∗

2 > 0 satisfying

(r2 − q1q2) sin(rz∗

2 ) − r(q1 + q2) cos(rz∗

2 ) = 0

and corresponding to the maxima and minima of F (z2), where we
have

F (z∗

2 ) =
(q21 + r2)(q22 + r2)

q1 + q2
sin(rz∗

2 )[(p
2
+ q1q2) sinh(pz∗

2 )

+p(q1 + q2) cosh(pz∗

2 )].

Clearly, F (z∗

2 ) changes sign as sin(rz∗

2 ) changes sign, which implies
that F (z2) = 0 has infinitely many positive solutions. One can
show that only the first positive solution of (47) corresponds to an
admissible solitary wave profile that satisfies the assumed strain
distribution, so in what follows only this value of z2 is considered.

Note that F (0) = pr(q1 + q2)(p2 + r2) > 0, so in the limit
V → c1, the lower velocity limit at −1/4 < β < 0, we have

q1 ≈

√
12(V2−c21 )

1+4β → 0, while q2, p and r tend to finite positive
limits, we have F (0) approaching a positive value. This implies that
z2 is strictly positive in the limit V → c1.

The shape function (33) in this case reduces to

h2(x) =
(r + iq1)(r + iq2)

r(r2 + p2)
e−irz2 (d(2)1 + d(2)2 r) sin(rx)

+
(p + q1)(p + q2)

p(p2 + r2)
epz2 (d(2)1 + id(2)2 p) sinh(px),

where the roots are given by (37), (38), and the constants d(2)1 , d(2)2
are obtained from the first equation of the singular system (30)
with n = 2 after some algebraic manipulations and the constraint

∫ z2
0 h2(x)dx = 1. They are given by

d(2)1 = r(p2 + r2)((r2 − q1q2) cos(rz2)

+ r(q1 + q2) sin(rz2))/∆(z2),

d(2)2 = −i(p2 + r2)(r(q1 + q2) cos(rz2)

+ (q1q2 − r2) sin(rz2))/∆(z2),

(41)

where

∆(z2) =
1

2p2r

[
2p2(q21 + r2)(q22 + r2) + (epz2 − 1)2(p + q1)

× (p + q2)r[pq1q2 + (q1 + q2 − p)r2] sin(rz2)

+ cos(rz2){(epz2 − 1)2p3(q1 + q2)r2 + (epz2 − 1)2p(q1 + q2)r4

− (epz2 − 1)2q1q2r2(q1q2 − r2)

+ p2[(epz2 − 1)2q1q2r2 − q21(2q
2
2 − 2epz2 r2(sinh(pz2) − 1))

+ 2epz2 r2(q22 + r2)(sinh(pz2) − 1)]}
]
.

The strainw2(x) is obtained from (34), (35) with the roots given
by (37), (38):

w2(x) =wc

(
1 −

V 2
− c21

d(2)1 (c22 − V 2)q1q2(p2 + r2)

×

[
p2(q1 − ir)(q2 − ir)e−irz2 (d(2)1 + d(2)2 r)(cos(rx)

− cos(rz2)) + r2(p + q1)(p + q2)epz2 (d
(2)
1 + id(2)2 p)

× (cosh(px) − cosh(pz2))
])
, |x| < z2,

(42)

w2(x) =
wc

d(2)1 (q2 − q1)

[
q2(d

(2)
1 + id(2)2 q1)e−q1(|x|−z2)

−q1(d
(2)
1 + id(2)2 q2)e−q2(|x|−z2)

]
, |x| > z2, (43)

where the coefficients d(2)1 and d(2)2 are given by (41). The top left
panel (V = 0.8989) in Fig. 5 shows a typical solution profile in
this regime together with the semi-analytical solution obtained
using the trapezoidal approximation, as described in Appendix A.
One can see that the first-roots approximation captures themono-
tonely decaying solution very well.
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Fig. 5. Strain profiles obtained from the semi-analytical solution (solid gray curves) and the n = 2 approximation (dashed black curves). Here α = 4, β = −0.2, which yield
c1 ≈ 0.8944, Vcr ≈ 0.9 and c2 ≈ 1.9494, andwc = 1. The top left panel corresponds to the case c1 < V < Vcr (monotone decay), while in the other two panels Vcr < V < c2
(oscillatory decay).

The amplitude of the solitary wave is given by

w2(0) = wc

(
1 +

(V 2
− c21 )p

2r2

(c22 − V 2)d(2)1 q1q2

)
, c1 < V < Vcr,

−1/4 < β < 0, (44)

where we used (36) with n = 2. Consider now the lower velocity

limit V → c1 and recall that in this limit q1 ≈

√
12(V2−c21 )

1+4β → 0,

while q2, p, r and, as can be shown, d(2)1 tend to finite positive
values. This implies thatw2(0) → wc , and the solution approaches
w(x) = wc for all x. In other words, in this limit the solution
delocalizes into a straight line at the critical strain, as in the sonic
limit in the β = 0 case [17].

Solutions with an oscillatory decay. We now consider the case
when either −1 < β < −1/4 and Vm < V < c2 or −1/4 < β < 0
and Vcr < V < c2. Then, as illustrated in Fig. 4(b), the roots are

λ+

1 = ξ + iη, λ+

2 = −ξ + iη, λ−

1 = ξ − iη,

λ−

2 = −ξ − iη,
(45)

where ξ > 0 and η > 0. In this case M2 is given by Eq. (46) in
Box II. Eq. (32) then yields the following nonlinear equation
for z2:

F (z2) := r[(r2 − η2 − ξ 2) cos(rz2) + 2rη sin(rz2)]

× [(ξ 2 + p2 + η2) sinh(pz2) + 2pη cosh(pz2)]

− p[(r2 − η2 − ξ 2) sin(rz2) − 2rη cos(rz2)]

× [(ξ 2 + p2 + η2) cosh(pz2) + 2pη sinh(pz2)] = 0.

(47)

As in the previous case, we can show that (47) has infinitely many
positive solutions, of which we again select the relevant first root.

Observe that F (0) = 2prη(r2 + p2) > 0 and that F (0) → 0
as η → 0 when V approaches the lower velocity limit Vm at
< −1 < β < −1/4, so in the limit V → Vm we have z2 → 0.
As the velocity increases, p and r monotonically decrease, while
η and ξ monotonically increase, so that z2 grows. At large pz2,
cosh(pz2) ≈ sinh(pz2), so z2 is well approximated by

z2 ≈
1
r

(
π − arctan

r(r2 − η2 − ξ 2 + 2pη)
p(η2 + ξ 2 − r2) + 2r2η

)
. (48)

Suppose α > −4β (note that this inequality always holds if
−1/4 < β < 0, since then α > 1 > −4β , but may fail if
−1 < β < −1/4). Then as V → c2, we have r → 0, while the
other roots have finite nonzero limits, so we have z2 ≈ π/r → ∞

in the upper sonic limit. If −1 < β < −1/4 and 1 < α < −4β , we
have p → 0 as V → c2, while the other roots tend to finite nonzero
limits, so in this case z2 approaches a finite nonzero value solving
the transcendental equation

r(2η + (η2 + ξ 2)z)
(
2ηr sin(rz) − (η2 − r2 + ξ 2) cos(rz)

)
+ (η2 + ξ 2)

(
2ηr cos(rz) + (η2 − r2 + ξ 2) sin(rz)

)
= 0,

obtained by expanding (47) at small p.
Using (33), (37) and (45), we obtain the shape function

h2(x) =
(r + iη)2 − ξ 2

r(r2 + p2)
e−irz2 (d(2)1 + d(2)2 r) sin(rx)

+
(p + η)2 + ξ 2

p(p2 + r2)
epz2 (d(2)1 + id(2)2 p) sinh(px),
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M2(z2) =

⎡⎢⎢⎣
e−irz2

(r − iη)2 − ξ 2
−

eirz2

(r + iη)2 − ξ 2
r
(

eirz2

(r + iη)2 − ξ 2
+

e−irz2

(r − iη)2 − ξ 2

)
e−pz2

(p + η)2 + ξ 2
−

epz2

(p − η)2 + ξ 2
(−ip)

(
e−pz2

(p + η)2 + ξ 2
+

e−pz2

(p − η)2 + ξ 2

)
⎤⎥⎥⎦ . (46)

Box II.

where the constants d(2)1 , d(2)2 are obtained as before from the
first equation of (30) and the constraint on h2(x) and are
given by

d(2)1 = r(p2 + r2)((r2 − ξ 2 − η2) cos(rz2)

+ 2rη sin(rz2))/∆(z2),

d(2)2 = −i(p2 + r2)(2rη cos(rz2)

− (r2 − ξ 2 − η2) sin(rz2))/∆(z2),

(49)

where
∆(z2) = −(r4 + 2r2(η2 − ξ 2) + (ξ 2 + η2)2)(cos(rz2) − 1)/r

+ (1/p2)epz2 (ξ 2 + (p + η)2)(cosh(pz2) − 1)

× [r(r2 − ξ 2 + 2pη − η2) cos(rz2)

+ (2r2η + p(ξ 2 + η2 − r2)) sin(rz2)].

(50)

Recovering the strain field from (34), (35) with the roots given
by (37), (45), we obtain

w2(x) =wc

(
1 −

V 2
− c21

d(2)1 (c22 − V 2)(p2 + r2)(ξ 2 + η2)

×

[
p2(ξ 2 + (η − ir)2)e−irz2 (d(2)1 + d(2)2 r)(cos(rx)

− cos(rz2)) + r2(ξ 2 + (η + p)2)epz2 (d(2)1 + id(2)2 p)

× (cosh(px) − cosh(pz2))
])
, |x| < z2,

(51)

w2(x) =
wc

2d(2)1 ξ

[
(ξ − iη)(d(2)1 + d(2)2 (ξ + iη))e(−η+iξ )(|x|−z2)

+ (ξ + iη)(d(2)1 + d(2)2 (−ξ + iη))e(−η−iξ )(|x|−z2)
]
,

|x| > z2,

(52)

where the coefficients d(2)1 and d(2)2 are given by (49).
Typical solution profiles are shown in the top right and bottom

panels of Fig. 5 (V = 1.0733 and V = 1.6994) for −1/4 <
β < 0 and Vcr < V < c2 and in Fig. 6 for −1 < β <
−1/4 and Vm < V < c2. One can see an excellent agreement
between the n = 2 approximation (dashed black curves) and the
semi-analytical solution (solid gray curves). As expected, solutions
exhibit decaying oscillations in all cases except when−1/4 < β <
0 and c1 < V < Vcr (the top left panel in Fig. 5, V = 0.8989). At
−1 < β < −1/4 the oscillations are more pronounced than in
the smaller-|β| case, and their amplitude increases as the lower
velocity limit Vm is approached.

From (36) we find that the amplitude of the solitary wave is
given by

w2(0) = wc

(
1 +

(V 2
− c21 )p

2r2

(c22 − V 2)d(2)1 (ξ 2 + η2)

)
,

{
Vcr < V < c2, −1/4 < β < 0
Vm < V < c2, −1 < β < −1/4 (53)

In the limit V → Vm at −1 < β < −1/4, when η → 0 and
z2 → 0, as discussed above, we have ∆(z2) → 0 in (50) and
therefore d(2)1 → ∞ in (49), so the amplitude tends to wc in this
limit, while the solution approaches a non-decaying linear wave
w(x) = wc cos(kmx) (dashed curve in Fig. 7(b)), where we recall
that km is the limit of ξ when V → Vm. At velocities just above Vm
the solution w(x) has the envelope-soliton form, as illustrated by
the solid curve in Fig. 7.

Solution behavior in the upper velocity limit, V → c2, depends
on the sign ofα+4β . Consider first the casewhenα > −4β for any
β in (−1, 0) (with α > 1). As discussed above, in this case r → 0
and z2 → ∞, and one can show that d(2)1 ≈ p2r2/(2(η2 + ξ 2)) near
the upper sonic limit. As a result, the asymptotic behavior of the
amplitude (53) is

w2(0) ≈
2(α − 1)
c22 − V 2

wc, V → c2, (54)

and it becomes infinite in the limit. Turning now to the case when
−1 < β < −1/4 and 1 < α < −4β , recall that in this parameter
regime p → 0 as V → c2, while the other roots and z2 remain
nonzero and finite in the limit. One can show that this yields a finite
positive limit for d(2)1 . Since p2 ≈ 12(V 2

−c22 )/(α+4β) for velocities
just below c2, the limit of the amplitude (53) is also finite in this
case:

w2(0) → wc

(
1 −

12(α − 1)r2

(α + 4β)d(2)1 (ξ 2 + η2)

)
, V → c2, (55)

where r , ξ , η and d(2)1 denote the limiting values of the correspond-
ing quantities.

6. Numerical analysis of stability

To study stability of the obtained traveling wave solutions one
needs to consider the initial value problem for the original system
(3) of ordinary differential equations. In this section we present
the results of numerical simulations for the chain with M mass
points, where M is chosen to be large enough to avoid reflections
of waves from the boundaries during the time of the computation.
We use the standard fourth-order Runge–Kuttamethodwith small
enough fixed time step (∆t = 0.001) to ensure approximate
energy conservation and boundary conditions w0 = w1 = wM =

wM+1 = 0. Two types of initial data are considered.
The first type of initial conditions are constructed from the

semi-analytical solitary wave solution at a given V (computed
numerically using the trapezoidal approximation as described in
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Fig. 6. Strain profiles obtained from the semi-analytical solution (solid gray curves) and the n = 2 approximation (dashed black curves). Here α = 4, β = −0.4, which yield
Vm ≈ 0.8057 (the lower velocity limit) and c2 ≈ 1.8974, and wc = 1.

Fig. 7. (a) Solitary wave solution at V = 0.806 > Vm at α = 4 and β = −0.4, which yield Vm ≈ 0.8057. Its amplitude is slightly above wc = 1. (b) The same solution (solid
curve) is shown over a smaller x-interval together with the linear wave cos(kmx) (dashed curve) approached in the limit V → Vm .

Appendix A), which is truncated and padded by zeros to create a
small perturbation:
wn(0) = w(n − n0), ẇn(0) = −Vw′(n − n0),

|n − n0| ≤ ntr,

wn(0) = ẇn(0) = 0,

1 ≤ n < n0 − ntr or n0 + ntr < n ≤ M,

(56)

wherewe typically set n0 = 100, ntr = 45,M = 400.We fix α = 4,
wc = 1 in all simulations and consider two different values of β ,
β = −0.2 and β = −0.4 that are above and below, respectively,
the threshold value −0.25. Recall that solitary waves exist in the
velocity intervals (17), which translate into 0.8944 < V < 1.9494
for β = −0.2 and 0.8057 < V < 1.7974 for β = −0.4. Note
that in the latter case −1 < β < −1/4, and thus, as discussed
above, the lower limit Vm = 0.8057 is above the sound speed

c1 = 0.7746. Running simulations with initial conditions (56)
constructed from solitary waves with different velocities in the
corresponding intervals, we find that there is a threshold velocity
value V∗ below which the solitary waves appear to be unstable
since the initial solitary wave is eventually destroyed, and a wave
in the first linear regime (w < wc) develops instead after a large
enough time,which increases as the threshold value is approached.
This instability is illustrated in Fig. 8, where the threshold values
are V∗ ≈ 0.93 at β = −0.2 (panel a) and V∗ ≈ 0.84 at β = −0.4
(panel b).

Using initial conditions with velocities above the threshold
value we observe steady propagation of solitary waves with veloc-
ity, amplitude, half-width z of the core region and profile very close
to the ones for the initial wave, suggesting that the corresponding
solitary waves are stable. These values are computed from the
numerical data (interpolated in time) as follows. To calculate the
velocity Vnum of the solitary wave in the numerical solution, we
recall that the traveling wave ansatz implies thatwn+1(t + 1/V ) =
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Fig. 8. Time snapshots of the numerical solutionswith initial conditions (56) formed from solitarywaveswith velocities below the corresponding threshold values, V∗ ≈ 0.93
in (a) and V∗ ≈ 0.84 in (b). Here α = 4 and wc = 1.

Fig. 9. (a) Time snapshots and (b) tile evolution of the numerical solutions with initial conditions (56) formed from the solitary wave with V = 0.86, above the threshold
value V∗ ≈ 0.84. Here α = 4, β = −0.4 and wc = 1.

Fig. 10. Comparison of (a) the relation z(V ) and (b) the corresponding amplitude–velocity relation at α = 4, β = −0.4 and wc = 1 obtained from the semi-analytical
solution (solid curves) and the results of the numerical simulations (circles) above the threshold velocity. Black circles indicate the results of numerical simulations with
initial conditions (56), gray circles are the results of simulations with initial data (57).

wn(t), which yields Vnum = 1/(t2 − t1), where t1 and t2 are the first
time instances whenwn(t1) = wn+1(t2) = wc and n is chosen large
enough so that t1 and t2 are near the end of the computation. The
amplitude of the solitary wave in the numerical simulation is then
found from Anum = wn((t1 + T1)/2), where T1 > t1 is the second
time instant when wn(T1) = wc , and the half-width of the core
region is determined from znum = (T1 − t1)Vnum/2. An example
of an apparently stable solitary is presented in Fig. 9, which shows
time snapshots of the solutions (panel a) and time evolutionwn(t)
at different n (panel b) for simulations initialized by a solitarywave
with V = 0.86 at β = −0.4. The numerical solution yields a
solitary wave with slightly lower velocity, amplitude and z value
(with differences of O(10−5)). This excellent agreement persists
throughout the entire range V∗ < V < c2, as one can see in Figs. 10

and 11, which compare z(V ) and amplitude–velocity data obtained
fromnumerical simulations (black circles)with the semi-analytical
results.

To probe robustness of the solitary waves in a larger domain,
we now consider a more generic type of initial conditions with
exponentially localized initial profile

wn(0) = A0 exp
(

−
1
2

⏐⏐⏐⏐n −
M
2

⏐⏐⏐⏐2), ẇn(0) = 0, (57)

where the amplitudeA0 served as a parameter. At sufficiently small
amplitudes, e.g. A0 < 1.763 at β = −0.2, the long-time behavior
corresponds again to a solution of the linear equation with w <
wc . For larger A0 the initial data evolved into two solitary waves
propagating towards different ends of the chain and separating
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Fig. 11. Comparison of (a) the relation z(V ) and (b) the corresponding amplitude–velocity relation at α = 4, β = −0.2 and wc = 1 obtained from the semi-analytical
solution (solid curves) and the results of the numerical simulations (circles) above the threshold velocity. Black circles indicate the results of numerical simulations with
initial conditions (56), gray circles are the results of simulations with initial data (57).

Fig. 12. Time snapshots of the numerical solutions with initial conditions (57) with A0 = 2.75, β = −0.2 in panel (a) and A0 = 5, β = −0.4 in panel (b). In both cases the
numerical simulations yield two symmetric solitary waves propagating in opposite directions with indicated velocities. Here α = 4 and wc = 1.

from the linear waves formed in the middle of the chain; see
Fig. 12 for examples. The threshold initial amplitude value of A0
corresponds to the threshold velocity V∗. A broad agreement with
semi-analytical results is again seen for V > V∗ in Figs. 10 and 11,
where results of the numerical simulations with initial conditions
(57) are marked by gray circles. The results again suggest stability
of solitary waves with V∗ < V < c2.

To understand why stability apparently changes at V∗, we com-
pute the energy (1) of the chain as a function of V using (A.5) and
(A.7). The results are shown in Fig. 13. One can see that the energy
of the solitary wave tends to infinity in the lower velocity limit,
V → c1 at 1/4 < β ≤ 0 and V → Vm at −1 < β < −1/4,
since in the former case w(x) → wc , while in the latter case
the solution approaches a non-decaying linear wave in the limit.
The energy also diverges in the upper limit V → c2 because
the amplitude of the solitary wave goes to infinity. As velocity
parameter V varies from the lower to upper limits, the energy
H(V ) first decreases, reaching a minimum value at some value and
thenmonotonically increases. In the present examples, the velocity
where H is minimal is around V = V∗ and thus coincides with
the stability threshold in the simulations. Following [35,17], we

conjecture that dH/dV > 0 is at least a necessary condition for
stability, so that dH/dV < 0 indicates unstable solutions. This is
analogous to theVakhitov–Kolokolov criterion [36]widely used for
the study of soliton stability in continuous systems including the
nonlinear Schrödinger equation. The conjecture is consistent with
the result recently proved in [37,38] for smooth potentials that the
critical velocity V∗ such thatH′(V∗) = 0 constitutes a threshold for
instability of traveling waves in a Hamiltonian lattice.

7. Quasicontinuum approximations

Having analyzed the main features of solitary wave solutions
of the discrete model, we now investigate whether they can be
adequately captured by a quasicontinuum approximation. In what
follows, we consider the entire parameter range β > −1 and
deal with general nonlinear interaction forces f (w) satisfying the
conditions stated in Section 2.

7.1. Low-order approximations

We begin with the two commonly used low-order quasicontin-
uum approximations and explain why they fail to reproduce some
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Fig. 13. The Hamiltonian (energy) of the system as a function of V at (a) β = −0.2; (b) β = −0.4. In both cases α = 4 andwc = 1. Black circles and crosses mark velocities
at which the solitary wave solutions were found stable and unstable, respectively, in the numerical simulations.

Fig. 14. Real roots of the zero-strain characteristic equations for the Boussinesq model (59) (dashed curves, B), Collins–Rosenau model (64) (dotted curves, C–R) and the
discrete model (solid curves, D) at (a) β = −0.5, (b) β = −0.1 and (c) β = 0.1.

important features of the discretemodel when the interactions are
competitive.

Consider first the Boussinesq-type quasicontinuumapproxima-
tion [39,8]. Let u(y, t) be a slowly varying approximation of the
small displacement un(t), where y is a spatial variable. Expanding
(2) in Taylor series and keeping second-order derivatives of all
terms but fourth-order derivatives of only linear terms we obtain

utt = (f (uy) + βuy)y +
1 + 4β

12
uyyyy. (58)

The fourth-order spatial derivative corresponds to a quadratic
strain-gradient term in the energy [39]. Seeking traveling wave
solution in the form u(y, t) = û(x), x = y − Vt , with w(x) = û′(x),
integrating and taking into account the fact that strain w(x) van-
ishes at infinity, we arrive at the following second-order nonlinear
ordinary differential equation for w(x):

1 + 4β
12

w′′
+ (β − V 2)w + f (w) = 0. (59)

Linearization of (59) aboutw = 0 yields the characteristic equation

V 2
= c2 −

1 + 4β
12

k2, (60)

where k is the wave number associated with the plane wave
solution w = eikx of the linearized problem, and c defined in (9)
is the corresponding sound speed. For each V > 0 this equation
yields a symmetric pair of either real or purely imaginary roots,
depending on the signs of V − c and 1 + 4β . Fig. 14 compares
the corresponding real roots (dashed curves) to the ones for the
discrete model at different values of β .

Note that for β > −1/4 the Boussinesq model correctly
predicts existence of real roots at subsonic velocities, and hence
requires solitarywaves to be supersonic; see, e.g. Fig. 14(b,c). In the

supersonic regime the two symmetric roots are purely imaginary,
so the decay to zero is always monotone. However, at −1 < β <

−1/4 the second-order characteristic equation (60) only captures
the convexity of the discrete V (k) curve at k = 0 and not the
subsequent peak, as can be seen in Fig. 14(a). Thus, in this case the
quasicontinuum approximation yields real roots for all supersonic
velocities and no such roots in the subsonic regime (where the
roots are purely imaginary). Hence it predicts subsonic solitary
waves in this parameter range, in contrast to the discrete model,
which, as we saw, excludes this possibility due to the existence
of nonzero real roots at V ≤ c. The Boussinesq model does not
allow any supersonic waves in this regime, while the discrete
model allows strictly supersonic ones. These results are illustrated
in Fig. 15(a), which should be compared to the diagram in Fig. 2(b)
for the discrete model. As pointed out in [8], supersonic waves at
β > −1/4 can only exist for strains on the superlinear side of the
interaction force f (w), while subsonicwaves allowed by thismodel
for −1 < β < −1/4 require strains to be on the sublinear side.
For example, for quadratic interaction force f (w) = w + aw2, the
model yields supersonic solitarywaveswhen β > −1/4 and a > 0
and subsonic waves when −1 < β < −1/4 and a < 0. Note also
that since the characteristic equation (60) for the quasicontinuum
model has only purely imaginary roots in the parameter regions
where solitary waves may exist, the decay at infinity is always
monotone, while the discrete model also allows oscillatory decay.

An advantage of a simple model like (59) is that it can be solved
by quadrature, which yields explicit solutions for commonly used
interaction potentials, such as cubic and quartic ones [8]. Indeed,
one can integrate (59) and use the fact that strain vanishes at
infinity to obtain

1 + 4β
24

(w′)2 = (V 2
− β)

w2

2
− φ(w).
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Fig. 15. Velocity ranges where solitary waves may exist for (a) the Boussinesq model (59) and (b) the Collins–Rosenau model (64). See the text for details.

For the cubic potential φ(w) =
w2

2 + aw
3

3 this results in [8]

w(x) =
3
2a

(V 2
− c2)sech2

(√
3(V 2 − c2)
1 + 4β

x
)
,

which yields, in agreement with Fig. 15(a), supersonic solutions at
β > −1/4 and a > 0 and subsonic ones at −1 < β < −1/4
and a < 0, with both types of solutions monotonically decaying
at infinity and delocalizing to zero strain when the sonic limit is
approached. At β → −1/4 the solutions tend to w(x) ≡ 0.

Another low-order quasicontinuummodel extends the approx-
imation proposed by Collins [40] and Rosenau [41] by including
second-neighbor interactions [8,42]. Following [8], we obtain this
model by first rewriting the advance-delay differential equation (4)
in Fourier space:

Ω(k)W (k) = F (k), (61)

where W (k) and F (k) are the Fourier transforms of w(x) and
f (w(x)), respectively, and

Ω(k) =
V 2k2 − βsin2k
4sin2(k/2)

, (62)

and then expanding Ω(k) in Taylor series about k = 0 (the long-
wave limit):

Ω(k) = V 2
− β +

1
12

(3β + V 2)k2

+
1

240
(V 2

− 5β)k4 + O(k6) (63)

If only O(k2) terms are retained in the expansion, as in [8], we ob-
tain the following quasicontinuum approximation of the traveling
wave equation:

−
1
12

(3β + V 2)w′′
+ (V 2

− β)w = f (w). (64)

The corresponding partial differential equation for the continuum
displacement is

utt = (f (uy) + βuy)y +
β

4
uyyyy +

1
12

uyytt . (65)

Unlike (58), it includes a mixed space–time fourth-order deriva-
tive, which corresponds to what can be interpreted as ‘‘microki-
netic’’ energy term [43]. Similar to (58), it contains a fourth-order
spatial derivative term (which vanishes in the case β = 0 studied
in [40,41]) associatedwith the strain-gradient energy contribution.
The characteristic equation for (64) linearized about w = 0 is

V 2
=

c2 −
β

4 k
2

1 +
k2
12

(66)

and yields, similar to (60), a symmetric pair of either real or purely
imaginary roots. As illustrated in Fig. 14 (dotted curves), for real
roots (66) results in a curve which is concave at k = 0 and
monotonically decreases as k grows at β > −1/4 (Fig. 14(b, c)),
convex at k = 0 and monotonically increases with k if −1 < β <

−1/4 (Fig. 14(a)) and remains flat if β = −1/4. For −1 < β ≤ 0
we have V →

√
−3β as k → ∞. Thus, at β > 0 the model

predicts only supersonic solitary waves. At −1/4 < β < 0 the
waves can be either strictly subsonic, with V <

√
−3β < c ,

or supersonic, V > c. Finally, at −1 < β < −1/4 one can
have either subsonic waves, V < c , or strictly supersonic, with
V >

√
−3β > c . In the last two cases subsonic and supersonic

waves involve superlinear and sublinear sides of f (w), respectively,
and no waves may exist with velocities in the gaps between the
curves V = c and V =

√
−3β . Note that this quasicontinuum

approximation is somewhat closer to the discrete model than the
Boussinesq approximation (59), in that it captures the possibility
of strictly supersonic solutions (with Vm =

√
−3β) and the finite

velocity gap at −1 < β < −1/4, as can be seen by comparing Figs.
15(b) and 2(b). However, the model also predicts strictly subsonic
waves at −1/4 < β < 0, which are not present in either discrete
or Boussinesq models. Similar to the Boussinesq model, the decay
of the solitary waves at infinity is monotone, since the roots of (66)
are purely imaginary.

Again, (64) may also be solved in quadratures, and for the cubic
potential one obtains [8]

w(x) =
3
2a

(V 2
− c2)sech2

(√
3(V 2 − c2)
V 2 + 3β

x
)
,

a solitary wavewhich is subsonic if a < 0 and (V , β) is in the lower
shaded region in Fig. 15(b) and supersonic if a > 0 and (V , β) in
the upper shaded region. The waves tend to zero as the velocity
bounds V = c and V =

√
−3β are approached.

7.2. Higher-order approximation

The analysis in the previous section shows that the simplest
low-order quasicontinuum approximations do a good job at de-
scribing the basic features of the diagram in Fig. 2(b) for the
discrete model for β ≥ 0, namely, that solitary waves, if they
exist for given f (w) in this parameter range, must be supersonic
and have monotone decay at infinity. However, these models fail
to capture the velocity ranges for existence of solitary waves when
−1 < β < 0, as well as the possibility of oscillatory decay in this
parameter regime. An obvious problemwith these approximations
is that they yield characteristic equations that are of too low order
to capture the local maximum of the curve V (k) for real k at −1 <
β < −1/4 and for imaginary k at −1/4 < β < 0. To obtain these
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Fig. 16. Real roots k = r > 0 and imaginary roots k = iq, q > 0, of the zero-strain characteristic equations for the quasicontinuum approximation (67) (dashed curves) and
the discrete model (solid curves) at (a) β = −0.5, (b) β = −0.1 and (c) β = 0.1.

maxima, it suffices to include the O(k4) term in the expansion (63),
which results in the fourth-order traveling wave equation
1

240
(V 2

− 5β)w′′′′
−

1
12

(3β + V 2)w′′
+ (V 2

− β)w = f (w). (67)

This model, also considered in [42], corresponds to the sixth-order
partial differential equation

utt = (f (uy) + βuy)y +
β

4
uyyyy +

β

48
uyyyyyy

+
1
12

uyytt −
1

240
uyyyytt , (68)

which includes additional sixth-order spatial and mixed time-
spatial derivatives. The characteristic equation for (67) linearized
about w = 0 is

V 2
=

c2 −
β

4 k
2
+

β

48k
4

1 +
1
12k

2 +
1

240k
4
. (69)

For each V > 0, it has four roots given by (C.1) in Appendix C.
Depending on V , these roots can be real, k = ±r , imaginary,
k = ±iq, or complex, k = ±ξ±iη. Positive real and imaginary roots
are shown in Fig. 16. One can see that similar to the discretemodel,
at −1 < β < −1/4 real roots exist for velocities below Vm(β) > c ,
the maximum of V (r), so solitary waves in this parameter range
must be strictly supersonic, V > Vm (see Fig. 16(a)), with complex
roots (C.1) governing oscillatory decay at infinity. At −1/4 < β <

0 real roots exist for 0 ≤ V ≤ c , so the waves must be supersonic.
Similar to the discrete model, the curve V (q) for purely imaginary
roots k = ±iq has a maximum Vcr(β), so that for c < V < Vcr there
are two symmetric pairs of purely imaginary roots (C.1), and the
solution decay ismonotone, while above Vcr the roots are complex,
and the decay is oscillatory. Both Vm(β) and Vcr(β) have the form

V̂ (β) =

√
6 + 51β + 2

√
3
√
3 + 16β + 208β2

7
, (70)

where V̂ = Vm for −1 < β ≤ −1/4 and V̂ = Vcr for β ≥ −1/4;
they coincide at β = −1/4 (Vm = Vcr = c), and Vcr(β) continues

Fig. 17. Velocity ranges where solitary waves may exist for the quasicontinuum
model (67). Green curves marked by D show the Vm(β) (solid) and Vcr(β) (dashed)
for the discrete model. See the text for details.

into β > 0 region. These critical velocities are quasicontinuum
analogs of the ones defined in (10) and (13) for the discrete model.
Quantitative agreement with the discrete model is observed for
−0.45 < β < −0.1, as shown in Fig. 17. Outside this interval the
curves Vm(β) and Vcr(β) generated by the discrete model and the
approximation (67) diverge since the corresponding values of km
and qcr at which the maxima occur are outside the interval where
the Taylor expansionworkswell. In particular, the quasicontinuum
model predicts a finite value of Vcr at β = 0, with the curve
continuing on at β > 0, while in the discrete case this value tends
to infinity as β → 0. But overall the approximation captures the
main features of the discrete model for −1 < β < 0 quite well, as
can be seen by comparing Fig. 2(b) with Fig. 17 in this parameter
regime.

However, at β ≥ 0 the higher-order approximation is actually
worse than the Boussinesq and Collins–Rosenau models. First, in
this parameter regime it predicts the existence of strictly subsonic
waves (for sublinear f (w)) with 0 < V < Vs(β) < c , where

Vs(β) =

√
6 + 51β − 2

√
3
√
3 + 16β + 208β2

7
(71)
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Fig. 18. Real, k = r > 0, and imaginary, k = ip, p > 0, roots of the characteristic equations in the two linear regimes for the discrete model (solid curves, black for G(k) = 0,
gray for L(k) = 0) and its quasicontinuum approximation (67) (thick dashed curves) at α = 4 and (a) β = −0.05; (b) β = −0.9. For V = Vcr and V = Vm , the solid horizontal
line indicates the value for the discrete model, while the dashed line below is its quasicontinuum approximation.

corresponds to the local minimum of the V (r) curve (see the top
panel in Fig. 16(c)), and oscillatory decay at infinity. Recall for both
discrete model and the approximations (59) and (64) the waves
can be only supersonic in this parameter range. Second, while it
also allows supersonic waves (for superlinear f (w)), at β > 1/4
such waves must be strictly supersonic, with V >

√
5β > c .

Moreover, supersonic waves with V > Vcr(β) have an oscillatory
decay, while the decay is strictly monotone in both discrete model
and its two lower order approximations. Clearly, these significant
discrepancies are artifacts of the polynomial expansion (63) at
β ≥ 0, which, while faithful to the discrete model at small wave
numbers (long-wave limit) produces at larger k the features not
present in the characteristic equation for the discrete model. For
the lower-order approximations, similar artifacts take place when
−1 < β < 0 and are responsible for prediction of subsonic
solutions not present in the discrete model.

These results illustrate that quasicontinuum models do not
always even qualitatively reflect important features of the discrete
model and are applicable only in certain parameter regimes. In this
case, the lower-order models (59) and (64) may be used for β ≥ 0,
while a higher-order approximation such as (67) is clearly needed
when −1 < β < 0.

Piecewise linear NN interactions. We now use the quasicontin-
uum model (67) at −1 < β < 0 with the piecewise linear
NN interaction force (14) and compare the ensuing solitary waves
with those obtained above for the discrete model. In this case the
characteristic equation for (67) in the first linear regime (analog of
L(k) = 0 in the discrete model) is given by (69) with c = c1. The
corresponding analog of G(k) = 0 for the second linear regime is
(69) with c = c2. Here we recall (15). Real and purely imaginary
roots of the characteristic equations for the quasicontinuum and
discrete model in the two linear regimes, along with the corre-
sponding critical velocities Vm and Vcr defined in (70) are shown
in Fig. 18. As described above, in the first regime we have four
purely imaginary roots k = ±iq1 and k = ±iq2 for c1 < V < Vcr
when −1/4 < β < 0 and four complex roots k = ±ξ ± iη for
Vcr < V < c2 when −1/4 < β < 0 and for Vm < V < c2 when

−1 < β < −1/4; all of these roots are given by (C.1) inAppendix C.
Note that due its poor prediction of Vcr (much lower than the
actual value) for sufficiently small β ≤ 0, the quasicontinuum
model (67) yields complex roots with nonzero real part in the first
linear regime, and hence decaying oscillations at infinity, at some
velocities for which the discrete model has purely imaginary roots
of L(k) = 0 near the origin.Meanwhile, in the second linear regime,
there are purely imaginary roots k = ±ip and real roots k = ±r in
the corresponding velocity intervals. These roots are given by (C.2)
in Appendix C.

Using the roots of the characteristic equations, we construct
the solitary wave solution of (67) with f (w) given by (14); see
Appendix C for details. At c1 < V < Vcr and −1/4 < β < 0,
we obtain

w(x) = wc

×

⎧⎨⎩
α − 1
c22 − V 2

+ D1 cos(rx) + D2 cosh(px), |x| ≤ z,

C1 exp(−q1|x|) + C2 exp(−q2|x|), |x| ≥ z,
(72)

where the coefficients are given by (C.3), and z is the smallest
positive root of the nonlinear equation

p cosh(pz)[(q1 + q2)r(p2 + r2) cos(rz)

+ (q1q2(q21 + q1q2 + q22) + 2q1q2r2 − r4) sin(rz)]

+ sinh(pz)[(p4 + 2p2q1q2 − q1q2(q21 + q1q2 + q22))r cos(rz)

+ q1q2(q1 + q2)(p2 + r2) sin(rz)] = 0.

(73)

As in the n = 2 approximation considered above, one can show
that such z exists.
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For Vcr < V < c2, −1/4 < β < 0 and Vm < V < c2,
−1 < β < −1/4, the solution is given by

w(x) = wc

×

⎧⎨⎩
α − 1
c22 − V 2

+ D1 cos(rx) + D2 cosh(px), |x| ≤ z,

exp(−η|x|)(C1 cos(ξ |x|) + C2 sin(ξ |x|)), |x| ≥ z,
(74)

with the coefficients (C.4) and z given by the smallest positive root
(whose existence can again be shown) of

cosh(pz)[2ηpr(p2 + r2) cos(rz)

+ p(3η4 − (r2 − ξ 2)2 + 2η2(r2 + ξ 2)) sin(rz)]

+ sinh(pz)[r(−3η4 + 2η2(p2 − ξ 2) + (p2 + ξ 2)2) cos(rz)

+ 2η(p2 + r2)(η2 + ξ 2) sin(rz)] = 0.

(75)

Figs. 19 and 20 compare z(V ) and amplitude–velocity curves
obtained using the quasicontinuum approximation to those for the
discretemodel and its n = 2 approximation for β = −0.2 and β =

−0.4, respectively (with α = 4 and wc = 1). As one can see from
Fig. 17, at these values of β , the quasicontinuummodel predicts Vm
and Vcr that are close to the actual values, although slightly smaller.
The resulting z(V ) and amplitude–velocity curves are also quite
close to the ones for the discrete model, particularly at smaller
velocitieswhere they are even closer than the values obtained from
the n = 2 approximation. However, in the overall velocity ranges
the n = 2 approximation clearly does a better job of capturing
solutions of the discrete problem, as can be seen in the z(V ) plots
and insets in the amplitude–velocity plots showing the amplitude
differences. This is due to the fact that the quasicontinuum model
is based on the expansion around k = 0, and thus can never
approximate the first nonzero roots of L(k) = 0 and G(k) = 0
equally well, while the n = 2 model involves the exact roots.
Note also that the quasicontinuum approximation predicts higher
amplitudes and generally lower z values (except for a narrow
velocity range near Vm in Fig. 20a) than the discrete model.

Importantly, the quasicontinuum model captures the behavior
near the lower velocity limit Vm at −1 < β < −1/4 (although, as
shown in Fig. 17, it significantly underestimates Vm for β closer to
−1). As in the n = 2 model, in this limit z → 0, η → 0, and the
solution approaches the linear cosine wave w(x) = wc cos(kmx),
similar to Fig. 7, where km is the limit of ξ for the quasicontinuum
approximation. Meanwhile, in the limit V → c1 at −1/4 < β < 0,
we have q1 → 0, while all roots tend to finite values. This implies
that (73) yields a finite value of z in this limit, andwe have C1 → 1,
while all other coefficients tend to zero in (72), yieldingw(x) ≡ wc
as the limiting solution, as before.

Analysis of the solution in the upper sonic limit V → c2
also yields results mimicking the ones obtained for the n = 2
approximation. When α > −4β , the amplitude becomes infinite
in this limit, with the same asymptotic behavior as in (54), and
z → ∞ as well. When −1 < β < −1/4 and α < −4β < 1,
both have finite limits.

8. Smooth NN interactions and higher-order NLS equation

The piecewise linearity of our model brings analytic trans-
parency but carries with it important drawbacks. For instance, the
bifurcations of solitary waves from the homogeneous configura-
tion for β ≥ −1/4 (at the sonic velocities) and from the periodic
configurations for −1 < β < −1/4 (at supersonic velocities) are
not described properly: in both cases the solitary wave has a finite
amplitude as it approaches the bifurcation point. To capture these
bifurcations one has to consider smoother interaction potentials.

To be specific, we consider the simplest polynomial form

f (w) = w + aw2
+ bw3. (76)

Recall that solitary waves may exist in this model only in velocity
intervals (12). At β ≥ −1/4 bifurcate from the sonic limit V =

c with k = 0, and we expect solitary waves to be adequately
described by the long-wave KdV limit as their velocity approaches
c , similarly to the classical FPU case β = 0 [4]. Meanwhile, strictly
supersonic lattice waves at −1 < β < −1/4 bifurcate from the
short-length linear wave with V = Vm > c and k = km > 0
satisfying (11). Below we focus on this bifurcation, which, to the
best of our knowledge, has not been previously described for lattice
solitary waves.

Our analysis is inspired by the earlier work on solitary wave so-
lutions of partial differential equations modeling capillary–gravity
water waves [13–16], where a similar bifurcation (in that case,
from a minimum phase velocity) takes place. Those models were
based on fifth-order KdV and Euler equations, and the authors
obtained the lowest-order description of these waves by deriv-
ing the associated nonlinear Schrödinger (NLS) equation for the
amplitude of slowly modulated wave packet. The previous work
revealed that to approximate steady solitary wave solutions in
these models, higher-order corrections to the NLS equation must
be included [15,16]. Accounting for such higher-order effects al-
lows one to obtain the leading-order approximation of solitary
waves bifurcating from the nontrivial configuration where group
and phase velocities coincide [15]. Below we adapt this approach
to our lattice problem.

Modulation equation. We seek small-amplitude solutions of (3)
with f (w) given by (76) in the form of modulated plane-wave
packet

wn(t) = εA(X, T , τ )eiψ + ε2(B0(X, T , τ ) + B2(X, T , τ )e2iψ )

+c.c. + O(ε3), (77)

where ε ≪ 1, c.c. denotes the complex conjugate, and we set

X = εn, T = εt, τ = ε2t, ψ = kmn − ωmt.

Here X , T and τ define space and time scales, and ψ is the phase
variable with wave number km > 0 and frequency ωm = ω(km)
satisfying the dispersion relation (8) and the condition (11). The
ansatz (77) is equivalent to the one considered in [15] with the ob-
vious modifications for the discrete problem [6,44,45]. It accounts
for the formation of higher-order harmonics due to nonlinearity of
f (w). As in [15], the O(ε2eiψ ) term is not included, since it turns out
that it is not determined at the order of multiple-scale expansion
considered here and thus can be set to zero from the outset.

Substituting (77) into (3) and collecting the terms up to O(ε3)
(see Appendix D for details), one can show that the amplitude of
the leading-order term has the form

A = A(ζ , τ ), ζ = X − VmT (78)

and satisfies the NLS equation

Aτ + iλAζ ζ + iµ|A|
2A = 0, (79)

where

λ = −
1
2
ω′′(km) (80)

and

µ =
2sin2 km

2

ωm

{
3b +

8a2sin2km
4ω2

m − ω2(2km)
+

4a2

V 2
m − c2

}
. (81)

At β = 0 (79) reduces to the NLS equation for the classical FPU
problem [45]. Here we recall that Vm in (78) is defined in (10).
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Fig. 19. Comparison of (a) the relation z(V ) and (b) the corresponding amplitude–velocity relation at α = 4, β = −0.2 and wc = 1 obtained from the semi-analytical
solution (solid black curves), its n = 2 approximation (gray curves) and the quasicontinuum model (67) (dashed curves). Inset in (b) shows the amplitude difference from
the semi-analytical solution for the n = 2 (gray curve) and quasicontinuum (dashed curve) approximations.

Fig. 20. Comparison of (a) the relation z(V ) and (b) the corresponding amplitude–velocity relation at α = 4, β = −0.4 and wc = 1 obtained from the semi-analytical
solution (solid black curves), its n = 2 approximation (gray curves) and the quasicontinuum model (67) (dashed curves). Inset in (b) shows the amplitude difference from
the semi-analytical solution for the n = 2 (gray curve) and quasicontinuum (dashed curve) approximations.

To get the higher-order correction to (79) necessary to construct
a steady solitary wave, we need to consider O(ε4) terms in the
expansion. This yields

Aτ + iλAζ ζ + iµ|A|
2A + ε

{
ν|A|

2Aζ + κ(|A|
2Aζ − A2Āζ )

+ρAζ ζ ζ −
µ

km
(|A|

2A)ζ

}
= 0, (82)

where the coefficients in front of higher-order terms are given by

ρ = −
1
6
ω′′′(km), (83)

ν =
sin km
ωm

{
4a2
[

3
V 2
m − c2

+
1 + 4 cos km − 5 cos 2km

4ω2
m − ω2(2km)

−
64sin2kmsin4 km

2 (1 + β + 2β cos km + β cos 2km)
(4ω2

m − ω2(2km))2

]

+ 9b
}

(84)

and

κ = −
sin km
ωm

{
4a2

(
1

V 2
m − c2

+
2sin2km

4ω2
m − ω2(2km)

)
+ 3b

}
. (85)

Leading-order approximation. Following [15], we now seek solu-
tion of (82) in the form

A = R(χ ) exp[iεϕ(χ ) + iεlχ − iστ ], χ = ζ − εvτ , (86)

with the functions R(χ ), ϕ(χ ) and parameters l, σ and v to be
determined. We further require that

σ = vkm, (87)

which ensures [15] that the total phase of the leading-order ap-
proximation,

wA
n (t) = 2εRe[Aeikm(n−Vmt)

] = 2εR(χ )

× cos
[
km

(
χ

ε
+ vτ

)
+ εϕ(χ ) + εlχ − στ

]
, (88)

depends only on χ = ε(n − (Vm + vε2)t):

km

(
χ

ε
+ vτ

)
+ εϕ(χ ) + εlχ − στ =

kmχ
ε

+ ε(ϕ(χ ) + lχ ).

Since its amplitude also depends on χ , the entire approximation
(88) is a function of χ , or, equivalently, a traveling solitary wave
depending on x = χ/ε = n − Vt , with velocity

V = Vm + vε2. (89)

Substituting (86) in (82) yields, up to O(ε2) terms,

λR′′
− σR + µR3

= 0 (90)
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and

− [v + 2λ(l + ϕ′)]R′
− λRϕ′′

+ ρR′′′
+

(
ν −

3µ
km

)
R2R′

= 0. (91)

Note that λ defined in (80) is positive, and one can verify that for
b ≥ 0 and −1 < β < −1/4 (the parameter range of interest),
we have µ > 0 in (81). Thus, λµ > 0, and we are dealing with the
so-called focusing NLS equation (with higher-order corrections). In
this case Eq. (90) has solution in the form

R(χ ) = R0sech(γχ ), (92)

with

σ = λγ 2, R2
0 =

2λγ 2

µ
, v =

λγ 2

km
, (93)

where we used (87) to obtain the last equality. Since λ and µ are
both positive, this defines a real R0 in (92), and we have σ > 0 and
v > 0, with the last inequalitymeaning that thewave velocity (89)
increases away from the bifurcation value Vm with ε. As shown in
the Appendix D, solving (91) and using (92) then yields

l =
γ 2

2

(
ρ

λ
−

1
km

)
, (94)

and

ϕ(χ ) =
R2
0

4γ λ

{
ν − 3µ

(
1
km

+
ρ

λ

)}
tanh(γχ ). (95)

Substituting (92), (93), (95) and (94) into (88) and the last
equality in (93) into (89), we obtain the following leading-order
approximation of the solitary wave solution bifurcating from the
maximum of the dispersion curve at −1 < β < −1/4:

wA
n (t) = 2

√
2λ
µ

(γ ε)sech(γ εx)

× cos
[{

km +
(γ ε)2

2

(
ρ

λ
−

1
km

)}
x

+
γ ε

2

{
ν

µ
− 3

(
1
km

+
ρ

λ

)}
tanh(γ εx)

]
, x = n − Vt,

V = Vm +
λ

km
(γ ε)2.

(96)

Observe that for given km, which determines Vm, λ, µ, ν and ρ,
the solution (96) depends only on the single effective parameter
γ ε, which can be expressed in terms of wave velocity for given
V ≥ Vm:

γ ε =

√
(V − Vm)km

λ
. (97)

Thus, (96) completely determines the leading approximation of
the solitary wave with given velocity near Vm. We remark that it
describes oscillations of period 2π/km + O(V − Vm) that decay on
the scale of O((V − Vm)−1/2). Typical strain profiles generated by
the approximation (96) are shown in Fig. 21.

Note that the approximation (96) yields the square-root
amplitude–velocity relation

w(0) = 2

√
2(V − Vm)km

µ
, (98)

which depends on the parameters of the nonlinearity only through
µ in (81). The relation (98) is illustrated in Fig. 22 for different
parameters.

Numerical illustrations. We now proceed to solve (4) numeri-
cally to generate a family of solitary waves bifurcating from Vm.

To this end, we adopt the numerical codes in [37], where the
Fourier spectral collocation method and continuation procedure
used in [46] for the regular FPU problem were extended to the
problemwith long-range interactions. First, observe that assuming
w(x) = o(1/x), w′(x) = o(1/x2), multiplying (4) by x2 and
integrating it over the real line, we obtain

(V 2
− β)

∫
∞

−∞

w(x)dx =

∫
∞

−∞

f (w(x))dx. (99)

As in [46], this identity is used in the numerical procedure to
impose the constraint that the solutions vanish at infinity. Fol-
lowing [46,37], we assume L-periodic solutions with a large even
period L and discretize (4) on the finite interval (−L/2, L/2] with
mesh step ∆x such that 1/∆x is an integer, so that the advance
and delay terms are well defined on the mesh. We also obtain
a trapezoidal approximation of (99) with the same mesh. The
resulting system is solved using a Fourier collocation method as
in [37] for an initial velocity slightly above Vm using (96) at velocity
close to (but above)Vm as an initial guess. A continuationprocedure
is then employed to compute solutions at larger velocities, with
solution at the previous step used as an initial guess to obtain
solution at the current step.

As an example, we consider the case β = −0.6, a = 1,
b = 0 (quadratic nonlinearity). Fig. 23(a) shows the leading-order
approximation (96) (red curve) at the initial velocity V = 0.7684
slightly above the bifurcation value Vm = 0.7645 used as an initial
guess to compute the numerical solution shown in black. We used
∆x = 0.1 and L = 400 in the simulation. Note that the numerical
solution has a larger amplitude but the approximation captures
well its main features.

Solutions at larger velocities are shown in Fig. 24. Observe
that as the velocity increases away from the bifurcation value,
solutions gradually lose their envelope-soliton characterwhile still
retaining decaying amplitude oscillations in their tails. Fig. 23(b)
compares the resulting amplitude–velocity relation to the corre-
sponding relation (98) for the approximation. One can see that the
approximation captures the relation well at small velocities close
to the bifurcation point (while underestimating the amplitude) but
clearly is no longer valid at larger velocities.

We tested the stability of the obtained solitary waves by nu-
merically solving (3) with initial conditions obtained from a wave
with given velocity. As illustrated in Figs. 25 and 26, the resulting
steady propagation of such waves along the lattice suggests their
stability.

9. Conclusions

It is usually assumed that weak solitary waves in lattices are
necessarily near-sonic, that they spread over many inter-particle
distances and can be therefore described by the low-order, long-
wave quasicontinuum approximations exemplified by the KdV
equation. Herewehave shown that this intuitive picture holds only
for lattices with ‘ferromagnetic’ interactions described by convex
inter-particle potentials. More precisely, if in addition to such
stabilizing interactions, the model also contains sufficiently strong
destabilizing ‘anti-ferromagnetic’ interactions, described by con-
cave potentials, the character of the weak solitary waves changes
and they take the form of long-wave envelopes modulating un-
derlying lattice-scale oscillations. While being supersonic, such
solutions cannot reach the conventional sonic limit from which
they are separated by a finite gap.

We have also shown that the conventional low-order quasi-
continuum theories with one internal length scale fail to capture
this gap and one needs to use higher-order theories carrying at
least two internal length scales.We constructed a family of explicit
solutions describing discrete solitary waves in the model with
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Fig. 21. Approximate solitary wave profiles (96) at (a) γ ε = 0.2, (b) γ ε = 0.8. Here β = −0.6, a = 1, b = 0, which yield Vm = 0.7645, with V = 0.7680 in (a) and
V = 0.8205 in (b).

Fig. 22. Amplitude–velocity relation (98) at (a) β = −0.6, for different a and b; (b) different β at a = 1, b = 0.

Fig. 23. (a) Numerically computed solitary wave solution (black) at V = 0.7684 near the bifurcation point Vm = 0.7645 and the corresponding approximation (96) (red)
used as an initial guess. (b) Amplitude–velocity relation for the numerically computed solitary waves and the corresponding relation (98) providing an approximation near
the bifurcation point. Here β = −0.6, a = 1, b = 0.

piecewise linear interactions and developed a higher-order quasi-
continuum theory reproducing all essential features of such lattice
solutions. To describe the fine structure of the bifurcation of weak
solitary waves from the linear waves, we went beyond piecewise
linear NN interactions and derived an appropriate higher-order
NLS equation, which yields the leading-order approximation for
the bifurcating solutions in the case of smooth NN potentials.
This approximation was then used to numerically compute the
strictly supersonicwaves that appear to be stable. In particular, this
development shows that when β is sufficiently negative, solitary
waves become two-scale coherent structures and acquire some

features of discrete breathers. As we approach the threshold β =

−1/4 from below, the smaller length scale become irrelevant for
weak solitary waves, and the NLS-based description merges with
the conventional Boussinesq (KdV) description.

Our work can be also viewed as a cautionary tale about the
danger of indiscriminately using quasicontinuum theories based
on formal long-wave expansions. Our examples show that such
approximations may capture the behavior of the discrete model
in a certain parameter range while grossly misrepresenting the
essential features of the discrete problem outside this range. In
particular, while the low-order approximations we considered are
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Fig. 24. Numerically computed solitary wave solutions at different velocities. Here β = −0.6, a = 1, b = 0.

Fig. 25. Results of the numerical simulation of (3) initiated by the computed solitary wave with V = 0.7684: (a) space–time evolution of strain wn(t); (b) strain profiles at
some n. Here β = −0.6, a = 1, b = 0.

Fig. 26. Results of the numerical simulation of (3) initiated by the computed solitary wave with V = 0.8634: (a) space–time evolution of strain wn(t); (b) strain profiles at
some n. Here β = −0.6, a = 1, b = 0.
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adequate for β ≥ 0, they predict subsonic solitary waves for
−1 < β < −1/4, which prompted some authors [6–8] to assume
that such waves exist in the discrete model. We have shown,
however, that the discrete model excludes this possibility due to
the generic presence of radiation damping at subsonic velocities.
Similarly, while the higher-order quasicontinuum model we de-
veloped works reasonably well for −1 < β < 0, the expansion
introduces unwanted artifacts for β ≥ 0. These examples remind
us that quasicontinuum theories should not be used, even for a
qualitative prediction, outside the rigorously established ranges of
their validity.

We conclude with an observation that an interesting semantic
conundrum is associated with the very definition of a supersonic
wave in one-dimensional lattice models. The conventional idea of
a sonic velocity links it with the long-wave dispersionless limit of
the discrete model. In the classical continuum model such sonic
velocity is universal, characterizing the propagation of a general
signal. As we have shown, in dispersive models, where waves
of different lengths may propagate with different velocities, the
conventional long-wave sonic velocity may be lower than the
maximal velocity of linear waves. In other words, being supersonic
in the conventional sense would not mean being faster than any
linear wave. This is exactly the situation we encountered in our
problem, where the slowest nonlinear solitary waves are strictly
faster than the linearwaveswith zerowave length but their lowest
velocity bound coincides with the phase speed of the fastest linear
waves having a finite wave number. These short-length fastest
linear waves are the ones for which the group and the phase
velocities coincide, the property they share with the infinitely long
waves. The velocity of such essentially lattice waves, which are
paradoxically supersonic in the conventional sense, may instead
serve as an alternative definition of the characteristic (sonic) speed.
Under this definition, all of our solitary waves would have a sonic
lower velocity bound.
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Appendix A. Numerical solution of the integral equation

One can obtain a semianalytical solution of the problem using
numerical approximation of the integral equation (23). Since h(x)
is odd, it is convenient to rewrite it first in the symmetric form

h(x) = (α − 1)
∫ z

0
K (x, s)h(s)ds, 0 ≤ x < z, (A.1)

where the kernel is given by

K (x, s) = Q(x + s) − Q(x − s) = −
2

π (α − 1)

×

∫
∞

0

(
G(k)
L(k)

− 1
)
sin(ks) sin(kx)dk; (A.2)

Note that the function K (x, s) is symmetric. It can be explicitly
computed in terms of the roots of (7). Indeed, observe that

K (x, s) = 2g(x − s) − 2g(x + s) − g(x − s − 1) − g(x − s + 1)

+g(x + s − 1) + g(x + s + 1), (A.3)

where

g(x) = −
1
2π

∫
Γ

eikx

L(k)
dk.

Here the integration contour Γ follows the real axis everywhere
except near k = 0, where it goes in a small semicircle above the
singularity point. Closing the contour by a semicircle in the upper
half plane if x > 0 and the lower half-plane if x < 0, we obtain

g(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−i

∞∑
i=1

eixλ
+

i

L′(λ+

i )
, x > 0

x
V 2 − c21

+ i
∞∑
i=1

eixλ
−

i

L′(λ−

i )
, x < 0.

(A.4)

Using (A.3) and (A.4) with a sufficiently large number of roots
included (typically, N = 804), we can accurately compute K (x, s).
The integral in the left hand side of the integral equation (A.1)
can be then approximated by the trapezoidal rule with a uniform
mesh over the interval [0, z], so that the equation is replaced by
the linear system B(z)h = h, where B(z) is the matrix replacing
the integral operator andh is the vector representing the unknown
shape function at themesh points. Solving det(B(z)−I) = 0, where
I is the identity matrix, we find the value of z > 0 that ensures
that B(z) has the eigenvalue ϱ = 1, and find the corresponding
eigenvector h, normalized using the trapezoidal approximation of
(20). The solution is then found using this h and the trapezoidal
approximation of the integral in

w(x) = wc

∫ z
0 R(x, s)h(s)ds∫ z
0 R(z, s)h(s)ds

, (A.5)

which is obtained from (22) and the conditionw(z) = wc , with the
kernel

R(x, s) = −
2

π (α − 1)

∫
∞

0

(
G(k)
L(k)

− 1
)
sin(ks) cos(kx)

k
dk (A.6)

that is computed similarly to K (x, s). As before, there may be more
than one value of z, and we need to discard the spurious solutions
that do not satisfy the assumed inequalities. In our calculations,
there was always one admissible solution.

To compute the energy (1) of the resulting solution (the Hamil-
tonian), we will also need the expression for the particle velocity
u̇n(t) = v(x). Observe that ẇn = u̇n − u̇n−1, and so in the traveling
wave coordinates we have v(x)− v(x−1) = −Vw′(x). Solving this
equation using the Fourier transform and recalling (22) and (A.5),
we obtain

v(x) =
Vwc

∫ z
0 T (x, s)h(s)ds∫ z

0 R(z, s)h(s)ds
, (A.7)

where

T (x, s) =
1

π (α − 1)

∫
∞

0

(
G(k)
L(k)

− 1
)

×
sin(ks) cos(k(x +

1
2 ))

sin(k/2)
dk (A.8)

is again computed in terms of residues.

Appendix B. Accuracy of the nested approximations

In Section 5 we discussed how the value z2 and the amplitude
w2(0) of the wave depend on its velocity V . Recall that z2 solves
(40) when −1/4 < β < 0 and c1 < V < Vcr (monotone decay
case) and (47) when either −1/4 < β < 0 and Vcr < V < c2 or
−1 < β < −1/4 and Vm < V < c2 (oscillatory decay).Meanwhile,
the solution amplitudes are given by (44) and (53), respectively.
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Fig. B.27. The error of the zn values found by solving (32) relative to the value of z obtained using the trapezoidal approximation of (23). Here α = 4 and wc = 1.

In Figs. 19 and 20 we compare the functions z(V ) and
amplitude–velocity curves generated using the n = 2 approxi-
mation (gray curves) to the corresponding semi-analytical (black)
curves at β = −0.2 ∈ (−1/4, 0) and β = −0.4 ∈ (−1,−1/4),
with α = 4 andwc = 1. One can see an excellent agreement of the
amplitude–velocity curves, which are nearly undistinguishable.
The difference between z values is more visible, but the error is
still relatively small and decreases at large V .

Importantly, the simplest approximation captures the asymp-
totic behavior of the curves as velocity approaches the lower and
upper limits. In particular, as discussed in Section 5, in the lower
sonic limit V → c1 at −1/4 < β < 0, the solution delocalizes to a
straight linew(x) = wc , sow(0) → wc , as can be seen in Fig. 19(b),
but z(V ) approaches a finite nonzero value in this limit, as shown
in Fig. 19(a), with the simplest approximation predicting a slightly
larger value than the semi-analytical result. As velocity approaches
the lower limit, V → Vm, at 1 < β < −1/4, and the solution tends
to the linear cosine wave as shown in Fig. 7, we have z(V ) → 0,
as illustrated in Fig. 20(a), while the amplitude tends to wc in this
limit, as shown in Fig. 20(b).Meanwhile, in the upper velocity limit,
V → c2, we have both z(V ) and the amplitude tending to infinity
in both cases if α > −4β (as in the examples shown), while at
1 < α < −4β , −1 < β < −1/4 they approach finite values, as
discussed in Section 5.

As more roots are included, the accuracy of the approximation
rapidly improves. Fast convergence of zn values obtained by solving
(32) at given n is illustrated in Fig. B.27. For both values of β and
velocities shown in the figure, the error of the approximation is less
than 0.3% for n ≥ 10.

Appendix C. Some technical results for the quasicontinuum
approximation

To construct the solution of (67) with f (w) given by (14), we
solve the equation in the first and second linear regimes in terms
of the roots of the corresponding characteristic equations. These
roots are given by

k = ±

√
2

5β − V 2

×

√
15β + 5V 2 ∓

√
5(−60β − 15β2 + (12 + 102β)V 2 − 7V 4) (C.1)

and

k = ±

√
2

5β − V 2

×

√
15β + 5V 2 ∓

√
5(−60αβ − 15β2 + (12α + 102β)V 2 − 7V 4), (C.2)

respectively. We then use the boundary conditions w(x) → 0 as
|x| → ∞, continuity of the w(x) and its first three derivatives at
x = ±z, the switch condition w(±z) = wc and the fact that the
solution must be even to find z and the coefficients involved in the
solution. For c1 < V < Vcr and −1/4 < β < 0, we obtain (72),
where the coefficients are given by

C1 = eq1zq2(q21q
2
2 + p2r2)[p(q22 + r2) cosh(pz) sin(rz)

+ ((p2 − q22)r cos(rz) + q2(p2 + r2) sin(rz)) sinh(pz)]

/(p(q2 − q1)r∆(z))

C2 = eq2zq1(q21q
2
2 + p2r2)[p(q22 + r2) cosh(pz) sin(rz)

+ ((p2 − q21)r cos(rz) + q1(p2 + r2) sin(rz)) sinh(pz)]

/(p(q1 − q2)r∆(z))

D1 = q1q2(q21q
2
2 + p2r2)[p(q1 + q2) cosh(pz)

+ (p2 + q1q2) sinh(pz)]/(pr2∆(z))

D2 = q1q2(q21q
2
2 + p2r2)[r(q1 + q2) cos(rz)

+ (q1q2 − r2) sin(rz)]/(p2r∆(z)),

(C.3)

with
∆(z) = cosh(pz)[r(q1q2(r2 − q1q2)

+ p2(q21 + q1q2 + q22 + r2)) sin(rz)

− q1q2(q1 + q2)(p2 + r2) cos(rz)] + p sinh(pz)

× [(q1 + q2)r(p2 + r2) sin(rz)

− (q1q2(p2 + q1q2) + r2(q21 + q1q2 + q22 − p2)) cos(rz)],
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and z is the smallest positive root of the nonlinear equation (73).

For Vcr < V < c2, −1/4 < β < 0 and Vm < V < c2,

−1 < β < −1/4, the solution is given by (74) with the coefficients

C1 = −eηz(p2r2 + (η2 + ξ 2)2)[p cosh(pz) sin(rz)

× (ξ (3η2 + r2 − ξ 2) cos(ξz)

− η(η2 + r2 − 3ξ 2) sin(ξz)) + sinh(pz)(r cos(rz)

× (ξ (p2 + ξ 2 − 3η2) cos(ξz)

+ η(η2 − p2 − 3ξ 2) sin(ξz)) + (p2 + r2) sin(rz)

× (2ηξ cos(ξz) + (ξ 2 − η2) sin(ξz)))]/(prξ∆(z))

C2 = −eηz(p2r2 + (η2 + ξ 2)2)[p cosh(pz) sin(rz)

× (η(η2 + r2 − 3ξ 2) cos(ξz)

+ ξ (3η2 + r2 − ξ 2) sin(ξz)) + sinh(pz)(r cos(rz)

× (η(p2 + 3ξ 2 − η2) cos(ξz)

+ ξ (ξ 2 + p2 − 3η2) sin(ξz)) + (p2 + r2) sin(rz)

× (2ηξ sin(ξz) + (η2 − ξ 2) cos(ξz)))]/(prξ∆(z))

D1 = −(η2 + ξ 2)(p2r2 + (η2 + ξ 2)2)

× [2ηp cosh(pz) + (η2 + p2 + ξ 2) sinh(pz)]/(pr2∆(z))

(C.4)

D2 = −(η2 + ξ 2)(p2r2 + (η2 + ξ 2)2)

× [2ηr cos(rz) + (η2 − r2 + ξ 2) sin(rz)]/(p2r∆(z)),

where

∆(z) = cosh(pz)[2η(p2 + r2)(η2 + ξ 2) cos(rz)

+ r(η4 − η2(3p2 + r2 − 2ξ 2)

− (r2 − ξ 2)(p2 + ξ 2)) sin(rz)]

+ p sinh(pz)[(η4 − (r2 − ξ 2)(p2 + ξ 2)

+ η2(p2 + 3r2 + 2ξ 2)) cos(rz) − 2ηr(p2 + r2) sin(rz)]

and z is the smallest positive root of (75).

Appendix D. Derivation of the modulation equation and
leading-order solution

In this Appendix, we provide the details of the derivation of the

modulation equation (82) and the leading-order solution (96).

Substituting (77) into (3) and collecting the terms involving eiψ ,
we obtain

εA(−ω2
m + 4sin2 km

2
+ βsin2km)

+ ε2(−2iωm)(AT + VmAX ) + ε3{ATT − 2iωmAτ

− [V 2
m + ωmω

′′(km)]AXX + 4sin2 km
2

× (3b|A|
2A + 2aB2Ā + 2a(B0 + B̄0)A)}+

ε4
{
2ATτ + i

[
Vmω

′′(km) +
1
3
ωmω

′′′(km)
]
AXXX

− 4i sin km

[
aAX (B0 + B̄0)

+ aA(B0 + B̄0)X + 3b|A|
2AX + a(B2)X Ā

+ aB2(Ā)X +
3
2
bA2(Ā)X

]}
+ O(ε5) = 0.

(D.1)

Clearly, the O(ε) term is zero due to the dispersion relation (8),
while the O(ε2) term implies that A = A(ζ , τ ), with ζ defined in
(78), which also suggests that B0 = B0(ζ , τ ) and B2 = B2(ζ , τ ). The
O(ε3) term then yields

−2iωmAτ − ωmω
′′(km)Aζ ζ + 4sin2 km

2

× (3b|A|
2A + 2aB2Ā + 2a(B0 + B̄0)A) = 0. (D.2)

Next, collecting the terms multiplying e2iψ , we obtain

ε2{(ω2(2km) − 4ω2
m)B2 + 4aA2sin2km}+

2iε3{(2ωmVm − ω(2km)ω′(2km))(B2)ζ − 2a sin(2km)AAζ }

+ O(ε4) = 0.

One can check that the non-resonance condition

4ω2(k) ̸= ω2(2k), (D.3)

which implies that the phase velocities of the first and second
harmonics must differ, holds at k = km, so the above equation is
solved by

B2 =
4aA2sin2km

4ω2
m − ω2(2km)

+ εδAAζ , (D.4)

with δ given by

δ = 4ia
{
4sin2km(2ωmVm − ω(2km)ω′(2km))

(4ω2
m − ω2(2km))2

−
sin 2km

4ω2
m − ω2(2km)

}
. (D.5)

Finally, collecting the terms independent of ψ , we obtain

ε4{(B0 + B̄0)ζ ζ (V 2
m − c2) − 2a(|A|

2)ζ ζ } + O(ε5) = 0,

where we recall that Vm > c , with c defined in (9). Up to O(ε5) this
is solved by

B0 + B̄0 =
2a|A|

2

V 2
m − c2

. (D.6)
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Substituting (D.4), (D.5) and (D.6) into (D.1), considering O(ε3)
terms anddividing by−2iωm, we obtain theNLS equation (79)with
coefficients (80) and (81).

To get the higher-order correction to (79), we consider O(ε4)
terms in (D.1). The linear O(ε4) terms are

−2VmAτζ + i
(
Vmω

′′(km) +
1
3
ω(km)ω′′′(km)

)
Aζ ζ ζ

= −2iωm

(
ρAζ ζ ζ −

µ

km
(|A|

2A)ζ

)
, (D.7)

with ρ given by (83). Here we have differentiated (79) to obtain
Aτζ and used (11). Substituting (D.4), (D.5) and (D.6) into (D.1), we
obtain the nonlinear O(ε4) terms:

− 2iωm(ν|A|
2Aζ + κ(|A|

2Aζ − A2Āζ )), (D.8)

where ν and κ are given by (84) and (85), respectively. Combining
the O(ε4) terms (D.7) and (D.8) divided by −2iωm with O(ε3)
NLS equation (79), we obtain the modulation equation (82) with
higher-order corrections. This equation coincides with the one
obtained in [15] except for the opposite sign in front of the last
term on the left hand side.

We now provide some details about the derivation of the
leading-order solution (96). To find ϕ(χ ) in (86), we observe that
(91) can be rewritten as

λ

R
(R2ϕ′)′ = ρR′′′

+

(
ν −

3µ
km

)
R2R′

− (v + 2λl)R′.

Substituting R′′′
= (−3µR2R′

+ σR′)/λ implied by (90) into the
above equation and multiplying both sides by R, we obtain

λ(R2ϕ′)′ =
ρ

λ
(−3µR3R′

+ σRR′) +

(
ν −

3µ
km

)
R3R′

− (v + 2λl)RR′.

Assuming that ϕ′(χ ) is bounded when |χ | → ∞ and integrating
this equation, we obtain, after multiplying by 2/R2,

2λϕ′(χ ) = −(v + 2λl) + σ
ρ

λ
+

1
2

(
ν −

3µ
km

−
3µρ
λ

)
R2.

As in [15], we now assumewithout loss of generality that ϕ′(χ ) →

0 as |χ | → ∞, which yields (94), where we have used (93), and

ϕ′(χ ) =
1
4λ

(
ν −

3µ
km

−
3µρ
λ

)
R2.

Substituting (92) and integrating, we then obtain (95), where we
set the constant of integration to zero to get a solution symmetric
about χ = 0.
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